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Abstract—This paper considers the problem of recovering a one or
two dimensional discrete signal which is approximately sparse in its
gradient from an incomplete subset of its Fourier coefficients which
have been corrupted with noise. The results show that in order to
obtain a reconstruction which is robust to noise and stable to inexact
gradient sparsity of order s with high probability, it suffices to draw
O(s logN) of the available Fourier coefficients uniformly at random.
However, if one draws O(s logN) samples in accordance to a particular
distribution which concentrates on the low Fourier frequencies, then
the stability bounds which can be guaranteed are optimal up to log
factors. The final result of this paper shows that in the one dimensional
case where the underlying signal is gradient sparse and its sparsity
pattern satisfies a minimum separation condition, then to guarantee
exact recovery with high probability, for some M < N , it suffices to
draw O(s logM log s) samples uniformly at random from the Fourier
coefficients whose frequencies are no greater than M .

I. INTRODUCTION

This paper revisits one of the first examples of compressed sensing:
the recovery of a gradient sparse signal from a highly incomplete
subset of its Fourier coefficients. To motivate this paper, we first
recall the key result from the seminal paper of Candès, Romberg
and Tao [1]. Let N ∈ N and let the discrete gradient operator be
D : CN → CN with Dz = (zj−zj+1)Nj=1 where zN+1 := z1 for all
z ∈ CN . Define the total variation (TV) norm by ‖z‖TV = ‖Dz‖1.
Let A ∈ CN×N be the discrete Fourier transform on CN such that
given z ∈ CN ,

Az =

(
N∑
j=1

zje
2πikj/N

)dN/2e
k=−bN/2c+1

. (1)

The main result of [1] was that if x ∈ CN was such that
|{j : (Dx)j 6= 0}| = s and Ω = Ω′ ∪ {0} where Ω′ ⊂
{−bN/2c+ 1, . . . , dN/2e} consists of m indices chosen uniformly
at random with

m ≥ C · s ·
(
log(N) + log(ε−1)

)
for some numerical constant C, then, with probability exceeding 1−ε,
x is the unique solution to

min
z∈CN

‖z‖TV subject to PΩAz = PΩAx. (2)

Here, PΩ denotes the projection matrix which restricts a vector to its
entries indexed by Ω. In words, any gradient s-sparse signal can be
perfectly recovered by O(s logN) of its discrete Fourier coefficients.
This represents a significant saving in the data acquisition process
when s << N and consequently, generated much research into the
use of compressed sensing for imaging problems associated with
the Fourier transform, such as magnetic resonance imaging, radio
interferometry and electron tomography. (Note that the latter two
applications are in fact associated with the Radon transform but can
be seen as a Fourier sampling problem through the Fourier slice
theorem). However, to fully understand the use of TV regularized
compressed sensing for applications, it is imperative that we consider
the following two questions.

1) Natural signals are generally not perfectly sparse but compress-
ible in their gradient, and furthermore, measurements will likely
be contaminated with noise. So, it is more realistic to consider
the recovery of a signal x ∈ CN from y ∈ CΩ such that
‖PΩAx− y‖2 ≤ δ

√
m where m = |Ω| and δ > 0 is the noise

level. This leads to the study of solutions of

min
z∈CN

‖z‖TV subject to ‖PΩAz − y‖2 ≤ δ
√
m, (3)

and an immediate question is, to what the extent does choosing
O(s logN) samples uniformly at random guarantee reconstruc-
tions which are robust to noise and stable to inexact sparsity?

2) The work in [1] has generated much empirical work on the
optimal choice of Ω and this has led to the proposal of variable
density sampling schemes (see for example [2]) where one
samples more densely at low Fourier frequencies and less
densely at higher Fourier frequencies. So, why is uniform
random sampling not used in practice and what advantages
does dense sampling at low frequencies bring?

The results in this paper will partially address these two questions.
Note that the second question has been of prominence recently [3],
[4] and whilst it is now well understood in the case of wavelet
regularization [4], the case of TV remains open.

A. Notation

This paper considers the recovery of both one dimensional and two
dimensional signals. We have already defined the discrete Fourier
operator A and the discrete gradient operator D for vectors in CN .
To state the two dimensional results, we define the discrete Fourier
transform and the discrete gradient operator for two dimensional
vectors as follows. Let A be the discrete Fourier transform on CN×N ,
such that given z ∈ CN×N ,

Az =

(
N∑
j1=1

N∑
j2=1

zj1,j2e
2πi(j1k1+j2k2)/N

)dN/2e
k1,k2=−bN/2c+1

. (4)

Define the vertical gradient operator as

D1 : CN×N → CN×N , x 7→ (xj+1,k − xj,k)Nj,k=1

with xN+1,k = x1,k for each k = 1, . . . , N and the horizontal
gradient operator as

D2 : CN×N → CN×N , x 7→ (xj,k+1 − xj,k)Nj,k=1

with xj,N+1 = xj,1 for each j = 1, . . . , N . Now define the gradient
operator D : CN×N → CN×N as

Dx = D1x+ iD2x, (5)

and the isotropic total variation norm as

‖x‖TV = ‖Dx‖1 .

Given any Λ ⊂ Z2, and x ∈ CN×N , PΛ : CN×N → CN×N is the
projection operator such that PΛx is the restriction of x to its entries
indexed by Λ.978-1-4673-7353-1/15/$31.00 c©2015 IEEE



Throughout, A denotes the discrete Fourier transform and D
denotes the discrete gradient transform. It will be clear from the
context whether the one dimensional or two dimensional definitions
are being applied. The following three sections will present recovery
guarantees for the 1D problem (3) and the 2D problem

min
z∈CN×N

‖z‖TV subject to ‖PΩAz − y‖2 ≤ δ
√
m. (6)

II. UNIFORM + POWER LAW SAMPLING

This section presents results which offer near optimal error bounds
when considering the recovery of gradient compressible signals by
solving (3) and (6) with a uniform + power law sampling strategy.

Definition II.1. (i) We say that Ω ⊂ {−bN/2c+ 1, . . . , dN/2e}
is a (one dimensional) uniform + power law sampling scheme
of cardinality m if Ω = Ω1 ∪ Ω2, with Ω1 and Ω2 defined
as follows. Let Ω1 be m indices chosen uniformly at random,
and let Ω2 = {k1, . . . , km} consist of m indices which are
independent and identically distributed (i.i.d.) such that for each
j = 1, . . . ,m and n = −N/2 + 1, . . . , N/2,

P(kj = n) = p(n), p(n) = C (log(N) max {1, |n|})−1 ,

where C is an appropriate constant such that p is a probability
measure.

(ii) We say that Ω ⊂ {−bN/2c+ 1, . . . , dN/2e}2 is a (two dimen-
sional) uniform + power law sampling scheme of cardinality m
if Ω = Ω1 ∪ Ω2 where Ω1 and Ω2 are defined as follows.
Ω1 consists of m indices chosen uniformly at random, and
Ω2 = {k1, . . . , km} consist of m i.i.d. indices such that for
each j = 1, . . . ,m, and n,m = −N/2 + 1, . . . , N/2,

P(kj = (n,m)) = p(n,m),

p(n,m) = C
(
log(N) max

{
1, |n|2 + |m|2

})−1
,

where C > 0 is such that p is a probability measure.

We now present a result concerning TV regularization in the 1D
case using a uniform + power law sampling scheme.

Theorem II.2. [5] For N = 2J with J ∈ N, let A be the discrete
Fourier transform and let D be the discrete gradient operator on CN .
Let ε ∈ (0, 1) and let ∆ ⊂ {1, . . . , N} with |∆| = s. Let x ∈ CN .
Let Ω be a uniform + power law sampling scheme of cardinality

m & s · log(N)(1 + log(ε−1)).

Suppose that y ∈ CN is such that ‖y − PΩAx‖2 ≤
√
m · δ for some

δ ≥ 0. Let x̂ be a minimizer of (3). Then with probability exceeding
1− ε,

‖Dx−Dx̂‖2 .

(
δ
√
s+ L2 ·

∥∥P⊥∆Dx∥∥1√
s

)
,

‖x− x̂‖2√
N

. L1 ·

(
δ√
s

+ L2 ·
∥∥P⊥∆Dx∥∥1

s

)
,

where L1 = log2(s) log(N) log(m) and L2 = log(s) log1/2(m).

Remark II.3. In the presence of noise and inexact sparsity, recall
from [6, Theorem 9.14] that if f ∈ BV [0, 1) (the space of bounded
variation functions), then the optimal error-decay rate for all bounded
variation functions by any type of nonlinear approximation f̃ from s
samples is ‖f̃ − f‖L2[0,1) = O(‖f‖V · s

−1). By comparison to the
optimal error bounds achievable for bounded variation function, the
term of ‖x‖TV · s

−1 is inevitable. Thus, one can improve upon this
result only by removing the log factors in the error bound.

In the 2D case, we have the following analogous result.

Theorem II.4. [5] Let N = 2J for some J ∈ N. Let x ∈ CN×N .
Let ε ∈ (0, 1) and let ∆ ⊂ {1, . . . , N}2 with |∆| = s. Let Ω be a
uniform + power law sampling scheme of cardinality m with

m & s · log(N)(1 + log(ε−1)).

and suppose that y ∈ CN is such that ‖y − PΩAx‖2 ≤
√
m · δ for

some δ ≥ 0. Then, with probability exceeding 1 − ε, any minimizer
x̂ of (6) satisfies

‖Dx−Dx̂‖2 .

(
δ ·
√
s+ L2 ·

∥∥P⊥∆Dx∥∥1√
s

)
,

‖x− x̂‖2 . L1 ·

(
δ + L2 ·

∥∥P⊥∆Dx∥∥1√
s

)
,

where L1 = log(s) log(N2/s) log1/2(N) log1/2(m), and L2 =
log1/2(m) log(s).

Remark II.5. Up to the log factors, the error bound is typical of
compressed sensing results and as explained in [7], [8], the term of∥∥P⊥∆Dx∥∥1

·s−1/2 in the error bound cannot be avoided and the error
bounds of Theorem II.4 can only be improved by the removal of log
factors.

A. Relation to previous works

Prior work relating to the use of TV in compressed sensing for
the stable and robust recovery of signals in two or higher dimensions
include [8], which considered the use of a linear sampling operator
constructed from random Gaussians. Their techniques were later used
in [3] to derive recovery results for the case of weighted Fourier
samples. More recently, recovery guarantees for TV minimization
from random Gaussian samples in the one dimensional case have
also been derived [9].

However, to date, there has been few works directly analysing the
use of TV when sampling the Fourier transform and the purpose of
this paper is to extend the result of [1] to include the case of inexact
gradient sparsity and noisy Fourier measurements.

In contrast to the results of [3], our results are not concerned with
universal recovery where we guarantee the recovery of all gradient
s-sparse signals from one random sampling set Ω. Instead, our results
concern the recovery of one specific signal from a random choice of
Ω. For this reason, we require only O(s logN) samples for recovery
up to sparsity level s, as opposed to O(s log5 N log3 s) samples as
derived in [3]. Furthermore, our results assume the standard uniform
noise model instead of the weighted noise model considered in [3].

III. UNIFORM RANDOM SAMPLING

The following two results show that uniform random sampling on
its own can still achieve stable and robust recovery, albeit with non-
optimal error estimates. For the recovery of 1D signals, we have the
following result.

Theorem III.1. [5] For N ∈ N, let x ∈ CN . Let ε ∈ (0, 1) and
let ∆ ⊂ {1, . . . , N} with |∆| = s. Let x ∈ CN and let Ω =
Ω′ ∪ {0} where Ω′ ⊂ {−bN/2c+ 1, . . . , dN/2e} consists of m
indices chosen uniformly at random with

m & s ·
(
1 + log(ε−1)

)
· log (N) (7)

for some numerical constant C. Suppose that y = PΩAx+ η where
‖η‖2 ≤

√
m ·δ. Then with probability exceeding 1−ε, any minimizer



x̂ of (3) satisfies

‖Dx−Dx̂‖2 .

(
δ ·
√
s+ L ·

∥∥P⊥∆Dx∥∥1√
s

)
,

‖x− x̂‖2√
N

.
(
δ ·
√
s+ L ·

∥∥∥P⊥∆Dx∥∥∥
1

)
,

where L = log1/2(m) log(s).

Again, an analogous result can be obtained in the 2D case:

Theorem III.2. [5] Let N ∈ N. Let x ∈ CN×N . Let ε ∈ (0, 1) and
let ∆ ⊂ {1, . . . , N}2 with |∆| = s. Let Ω = Ω′ ∪ {0} where Ω′ ⊂
{−bN/2c+ 1, . . . , dN/2e}2 consists of m indices chosen uniformly
at random with

m & s ·
(
1 + log(ε−1)

)
· log (N) .

Suppose that y = PΩAx + η where ‖η‖2 ≤
√
m · δ. Then, with

probability exceeding 1− ε, any minimizer x̂ of (6) satisfies

‖Dx−Dx̂‖2 .

(
δ ·
√
s+ L ·

∥∥P⊥∆Dx∥∥1√
s

)
,

‖x− x̂‖2 .
(
δ ·
√
s+ L ·

∥∥∥P⊥∆Dx∥∥∥
1

)
,

where L = log1/2(m) log(s).

Although it is open as to whether better error bounds are possible
if one restricts to uniform random sampling, the numerical examples
presented in Section V-A suggest that any improvement over the
results of this section will be limited.

IV. LOW FREQUENCY SAMPLING

The final result of this paper considers the reconstruction of
one dimensional vectors when we sample only the low Fourier
frequencies. In particular, the result shows that if the discontinuities
of the underlying signal to be recovered are sufficiently far apart,
then we only need to sample from low Fourier frequencies. We first
required a definition.

Definition IV.1. Let N ∈ N, ∆ = {t1, . . . , ts} ⊂ {1, . . . , N} with
t1 < t2 < · · · < ts and t0 = −N + ts. The minimum separation
distance is defined to be

νmin(∆, N) =
s

min
j=1

|tj − tj−1|
N

.

The following result provides some initial insight into how the
minimum separation distance of a 1D signal should impact the
sampling strategy.

Theorem IV.2. [5] For N ∈ N, let x ∈ CN . Let ε ∈ [0, 1] and let
M ∈ N be such that N/4 ≥ M ≥ 10. Suppose that νmin(∆, N) =
1
M

. Let Ω = Ω′ ∪ {0} where Ω′ ⊂ {−2M, . . . , 2M} consists of m
indices chosen uniformly at random with

m & max

{
log2

(
M

ε

)
, s · log

(s
ε

)
· log

(
M

ε

)}
. (8)

Then with probability exceeding 1 − ε, any minimizer x̂ of (3) with
y = PΩAx+ η and ‖η‖2 ≤ δ ·

√
m satisfies

‖x− x̂‖2√
N

.
N2

M2
·
(
δ · s+

√
s ·
∥∥∥P⊥∆Dx∥∥∥

1

)
. (9)

Furthermore, if m = 4M + 1, then the error bound (9) holds with
probability 1.

Fig. 1. (a) Original test image (512 × 512); (b), (c) & (d) Reconstruction
of the test image from 35% of its noise corrupted Fourier coefficients chosen
uniformly at random. The SNR’s are∞, 10 and 5 respectively and the relative
errors are 0.20, 0.22 and 0.46 respectively.

Due to a commutative relationship between the discrete Fourier
transform and the discrete gradient operator, this result is closely
related to the idea of super-resolution, which considers the recovery
of a sum of diracs from its low frequency Fourier samples [10], [11].
Even though super-resolution is studied in an infinite dimensional
setting, the proof of Theorem IV.2 exploits finite dimensional versions
of the results in [10], [11].

V. NUMERICAL INSIGHTS

A. Variable density sampling and stability

The theoretical results demonstrated that uniform random sampling
strategies are stable to inexact sparsity and robust to noise, and this
can be observed in Figure 1. However, the provable error bounds
obtained for the uniform random sampling strategy are sub-optimal,
whereas, by adding the samples which are chosen in accordance to
the nonuniform distribution, one can guarantee near-optimal error
bounds. So, this begs the question: Does sampling in accordance to a
nonuniform distribution actually improve stability, or is the improved
stability between the theorems simply an artefact of the proofs? To
empirically address this question, consider the following experiment.

Given N ∈ N, a gradient sparse vector x ∈ RN and an inexact
sparsity level S, perturb x by a randomly generated vector h ∈ RN ,
where h is such that S = 10 log10

(
‖x‖2 / ‖h‖2

)
. Note that this is

the SNR of h relative to x, and smaller values of S represent larger
magnitudes of perturbations. We now consider the reconstruction of
the approximately sparse signal x+h from PΩA(x+h). The sampling
set Ω is such that its cardinality is d0.15Ne, and it is either chosen
uniformly at random which we denote by ΩU , or in accordance to
the uniform + power law sampling scheme which we denote by ΩP .

This experiment is performed for perturbations of two sparse
signals, shown in Figure 2, and the relative errors of reconstructing
the approximately sparse versions of these signals via solving (3) with
δ = 0 (since we are investigating stability rather than robustness) are
shown in Figure 3. Observe that both sampling with ΩP and ΩU
exhibit stability with respect to inexact sparsity, since the relative
errors all decay as the SNR values increase. However, the relative
errors obtained when sampling with ΩP are much lower, suggesting
that one of the benefits offered by dense sampling around the zero
frequency is increased stability. Finally, it is perhaps interesting to
note that the theoretical results guarantee optimal error bounds (up to
log factors) on the recovered gradient for both uniform and uniform
+ power law sampling schemes, and Figure 4 confirms this result by
showing that there is no substantial difference between the error on
the recovered gradient between ΩU and ΩP . So, experimentally, it
appears as though dense sampling at low frequencies will significantly
improve the stability of the recovered signal, although not the stability
of the recovered gradient.

This improvement in stability is particularly visible in two di-
mensions. Consider the recovery of the 256 × 256 SIPI Image
Database ‘Peppers’ test image. Figure 5 shows the reconstruction
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Fig. 2. The coarse signal, x1, to be perturbed (left). The fine signal x2 to
be perturbed (centre), and a zoom in of x2 (right) on indices between 90 and
160, for clarity, the values of x2 on each index is marked by a cross.
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Fig. 3. Left: plot of relative error ‖x̂− (x + h)‖2 / ‖x + h‖2 against
SNR = 10 log10

(
‖x‖2 / ‖h‖2

)
, where x := x1 is shown in Figure 2 and

x̂ is the reconstruction. The blue line refers to choosing Ω := ΩU . The red
line refers to choosing Ω := ΩP . Right: the equivalent plot for x := x2.

from sampling uniformly at random or in accordance to the uniform +
power law scheme. Again, the reconstructions are obtained by solving
(6) with δ = 0, so we consider only the sparsity stability rather
than noise robustness. The improvement in reconstruction quality
is substantial and as suggested by this section and our theoretical
result, one possible reason for this is that additional samples at low
frequencies are required for optimal stability.

B. The price of randomness

This section elaborates on the final result of this paper; although
O(s logN) is the optimal sampling cardinality for s-sparse signals
[1], and this can be attained through drawing samples uniformly at
random, when one is interested in a subset of the possible s-sparse
signals (e.g. signals whose discontinuities are sufficiently far apart),
it may be unnecessary to pay the price of this log factor.

1) Sampling high frequencies is not necessary for coarse signals:
Under an additional assumption that the separation of the nonzero
gradient entries is at least 1/M , Theorem IV.2 stipulates that we can
sample uniformly at random from the first 4M samples at a slightly
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Fig. 4. Left: y-axis shows the relative error of the recovered gradient:
‖D(x + h− x̂)‖2 / ‖D(x + h)‖2, where x̂ is the recovered signal, x := x1

is the sparse signal shown in Figure 2, and h is the perturbation. The x-axis
shows the SNR of h relative to x. The blue line corresponds to sampling
uniformly at random, the red line corresponds to uniform plus variable
sampling of Theorem II.2. Right: same as the left graph, except that x := x2,
where x2 is as shown in Figure 2.

Fig. 5. Left: reconstructions from sampling uniformly at random (plus the zero
frequency sample) at 10% with a relative error of 0.33. Right: reconstruction
from sampling in the semi-uniform random manner described in Theorem II.4
at 10% with a relative error of 0.07.

smaller sampling order ofO(s log(M) log(s)) (although the provable
stability and robustness bounds are worse by a factor of

√
s, where

s is the approximate sparsity).
This firstly suggests that an understanding of the gradient structure

of the underlying signal can lead to sampling patterns which will
outperform uniform random sampling. Secondly, in order to recover
an s sparse signal of length N , one requires O(s log(N)) random
samples and this sampling cardinality is sharp for sparse signals
[1]. Thus, although such a statement guarantees the recovery of
any s-sparse signal, there is a price of log(N) associated with the
randomness introduced. However, suppose that our signal of interest
(denote by x) is of length N , is M -sparse in its gradient and these
nonzero gradient entries have minimum separation of 1/M . Then,
Theorem IV.2 says that x can be perfectly recovered from its first
4M + 1 Fourier samples of lowest frequencies. Note that there is no
randomness in the choice of sampling set Ω and the cardinality of Ω
is linear with respect to sparsity. Observe also that a uniform random
choice of Ω is guaranteed to result in accurate reconstructions and
allow for significant subsampling only if M log(N) << N . So in the
case that M ≥ N/ log(N), it will be better to choose Ω to index the
first M samples, rather than draw the samples uniformly at random.

2) A numerical example: To illustrate the remarks above, consider
the recovery of x1 of length N = 512 shown on the left of Figure 2.
It can be perfectly recovered by solving the following minimization
problem with Ω indexing the first 20 Fourier frequencies. This
accounts for 3.9% of the available Fourier coefficients. For simplicity,
we present this experiment without adding noise to the samples,
although similar results can be observed if noise is added.

min
z∈CN×N

‖z‖TV subject to PΩAz = PΩAx1. (10)

The result of repeating this experiment over 5 trials with Ω taken
to be 3.9%, 7%, 10% of the available indices, drawn uniformly at
random, is shown in Table I. By sampling uniformly at random, we
cannot achieve exact recovery from drawing only 3.9% and it is only
when we sample at 10% that we obtain exact recovery across all 5
trials.

3) The need for further investigation: Structured sampling: To
conclude, we present a numerical example to show that despite the
advances in the theoretical understanding of TV for compressed
sensing, there is still room for substantial improvements. Consider
the reconstruction of the resolution chart of size 528×500 in Figure
6 from 6.5% of its available Fourier coefficients using different
sampling maps
(i) ΩU indexes samples drawn uniformly at random,

(ii) ΩL which indexes the samples of lowest Fourier frequencies,



Trial Sampling Sampling Sampling Sampling
3.9% 7% 9% 10%

1 0.9096 0.2150 0 0
2 0.7739 0.1915 0 0
3 0.4388 0 0.1132 0
4 0.7287 0.4396 0.1603 0
5 0.7534 0.3044 0 0

TABLE I
RELATIVE ERROR OF RECONSTRUCTIONS OBTAINED BY SAMPLING THE

FOURIER TRANSFORM OF SIGNAL x1 UNIFORMLY AT RANDOM.

(iii) ΩP which is chosen in accordance to the uniform + power law,
(iv) ΩV which is constructed by first dividing up the available indices

into L levels in increasing order of frequency, such that P(Xj =
k) = C ·exp(−(bn/L)a) for some appropriate constant C such
that we have a probability measure, Xj is the jth element of
ΩV and k belongs to the Lth level. In this experiment, we chose
L = 25, a = 2.2, and b = 6.5.

Conclusion of the experiment: The following observations can
be made from the sampling maps and the reconstructions shown in
Figure 7.
(i) (ΩU ) Uniform random sampling yields a high relative error.

(ii) (ΩL) Sampling only the low Fourier frequencies recovers only
the coarse details.

(iii) (ΩP ) Concentrating on low Fourier frequencies but also sam-
pling high Fourier frequencies allowed for the recovery of both
the coarse and fine details.

(iv) (ΩV ) Allowed for the recovery of both the coarse and fine
details, but is substantially better than uniform + power law.

So, uniform random sampling maps are applicable only in the
case of extreme sparsity due to the price of a log factor, whilst
either fully sampling or subsampling the low frequencies will be
applicable when we aim to only recover low resolution components
of the underlying signal. This suggests that variable density sampling
patterns are successful because they accommodate for a combination
of these two scenarios – when there is both high and low resolution
components which we want to recover and some sparsity – sampling
fully at the low frequencies will allow for recovery of coarse details
without the price of a log factor, whilst increasingly subsampling at
high frequencies will allow for the recovery of fine details up to a
log factor. One can essentially repeat this experiment for any natural
image to observe the same phenomenon: by choosing the samples
uniformly at random, we will be required to sample more than is
necessary.

VI. CONCLUDING REMARKS

This paper showed that an uniform + power law sampling strategy
achieves recovery guarantees which are optimal up to log factors.
Furthermore, in the case where the discontinuities of the underlying
signal are sufficiently far apart, one only needs to sample from
low Fourier frequencies to ensure exact recovery. These results
provide some initial justification for the preference of variable density
sampling patterns over uniform random sampling patterns in terms
of stability and reduction in the number of samples. However, the
results of this paper provide only an initial understanding towards
how the distribution of the Fourier coefficients favours the recovery
of certain types of signals and can allow for sub-O(s logN) samples.
In particular, the final numerical example suggests that there exists
a much deeper connection between the gradient sparsity structure of
a signal and the distribution of the Fourier samples, and a thorough

Fig. 6. The 1951 USAF resolution test chart of size 528× 500.

ΩU ΩL ΩP ΩV

Fig. 7. Top row: the Fourier sampling maps, each indexing 6.5% of the
available Fourier samples. Bottom row: zooms in on the reconstructions for
pixels in [180, 300]× [220, 340]. The relative errors are (from left to right)
0.39,0.07, 0.09, 0.03.

understanding of this connection could lead to the design of more
efficient sampling strategies.
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