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1 Introduction
This paper provides an important extension of compressed sensing which bridges a substantial gap between
existing theory and its current use in real-world applications.

Compressed sensing (CS), introduced by Candès, Romberg & Tao [16] and Donoho [28], has been one
of the major developments in applied mathematics in the last decade [12, 31, 30, 24, 34, 35, 36]. Subject
to appropriate conditions, it allows one to circumvent the traditional barriers of sampling theory (e.g. the
Nyquist rate), and thereby recover signals from far fewer measurements than is classically considered possi-
ble. This has important implications in many practical applications, and for this reason compressed sensing
has, and continues to be, very intensively researched.

The theory of compressed sensing is based on three fundamental concepts: sparsity, incoherence and uni-
form random subsampling. Whilst there are examples where these apply, in many applications one or more
of these principles may be lacking. This includes virtually all of medical imaging – Magnetic Resonance
Imaging (MRI), Computerized Tomography (CT) and other versions of tomography such as Thermoacous-
tic, Photoacoustic or Electrical Impedance Tomography – most of electron microscopy, as well as seismic
tomography, fluorescence microscopy, Hadamard spectroscopy and radio interferometry. In many of these
problems, it is the principle of incoherence that is lacking, rendering the standard theory inapplicable. De-
spite this issue, compressed sensing has been, and continues to be, used with great success in many of these
areas. Yet, to do so it is typically implemented with sampling patterns that differ substantially from the uni-
form subsampling strategies suggested by the theory. In fact, in many cases uniform random subsampling
yields highly suboptimal numerical results.

The standard mathematical theory of compressed sensing has now reached a mature state. However, as
this discussion attests, there is a substantial, and arguably widening gap between the theoretical and applied
sides of the field. New developments and sampling strategies are increasingly based on empirical evidence
lacking mathematical justification. Furthermore, in the above applications one also witnesses a number of
intriguing phenomena that are not explained by the standard theory. For example, in such problems, the
optimal sampling strategy depends not just on the overall sparsity of the signal, but also on its structure,
as will be documented thoroughly in this paper. This phenomenon is in direct contradiction with the usual
sparsity-based theory of compressed sensing. Theorems that explain this observation – i.e. that reflect how
the optimal subsampling strategy depends on the structure of the signal – do not currently exist.

The purpose of this paper is to provide a bridge across this divide. It does so by generalizing the three
traditional pillars of compressed sensing to three new concepts: asymptotic sparsity, asymptotic incoherence
and multilevel random subsampling. This new theory shows that compressed sensing is also possible, and
reveals several advantages, under these substantially more general conditions. Critically, it also addresses
the important issue raised above: the dependence of the subsampling strategy on the structure of the signal.

The importance of this generalization is threefold. First, as will be explained, real-world inverse prob-
lems are typically not incoherent and sparse, but asymptotically incoherent and asymptotically sparse. This
paper provides the first comprehensive mathematical explanation for a range of empirical usages of com-
pressed sensing in applications such as those listed above. Second, in showing that incoherence is not a
requirement for compressed sensing, but instead that asymptotic incoherence suffices, the new theory offers
markedly greater flexibility in the design of sensing mechanisms. In the future, sensors need only satisfy this
significantly more relaxed condition. Third, by using asymptotic incoherence and multilevel sampling to ex-
ploit not just sparsity, but also structure, i.e. asymptotic sparsity, the new theory paves the way for improved
recovery algorithms that achieve better reconstructions in practice from fewer measurements.
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A critical aspect of many real-world problems such as those listed above is that they do not offer the
freedom to design or choose the sensing operator, but instead impose it (e.g. Fourier sampling in MRI). As
such, much of the existing compressed sensing work, which relies on random or custom designed sensing
matrices, typically to provide universality, is not applicable. This paper shows that in many such applica-
tions the imposed sensing operators are highly non-universal and coherent with popular sparsifying bases.
Yet they are asymptotically incoherent, and thus fall within the remit of the new theory. Spurred by this
observation, this paper also raises the question of whether universality is actually desirable in practice, even
in applications where there is flexibility to design sensing operators with this property (e.g. in compressive
imaging). The new theory shows that asymptotically incoherent sensing and multilevel sampling allow one
to exploit structure, not just sparsity. Doing so leads to notable advantages over universal operators, even
for problems where the latter are applicable. Moreover, and crucially, this can be done in a computationally
efficient manner using fast Fourier or Hadamard transforms.

This aside, another outcome of this work is that the Restricted Isometry Property (RIP), although a
popular tool in compressed sensing theory, is of little relevance in many practical inverse problems. As
confirmed later via the so-called flip test, the RIP does not hold in many real-world problems.

Before we commence with the remainder of this paper, let us make one further remark. Many of the
problems listed above are analog, i.e. they are modelled with continuous transforms, such as the Fourier or
Radon transforms. Conversely, the standard theory of compressed sensing is based on a finite-dimensional
model. Such mismatch can lead to critical errors when applied to real data arising from continuous models,
or inverse crimes when the data is inappropriately simulated [18, 41]. To overcome this issue, a theory of
compressed sensing in infinite dimensions was recently introduced in [1]. This paper fundamentally extends
[1] by presenting the new theory in both the finite- and infinite-dimensional settings, the infinite-dimensional
analysis also being instrumental for obtaining the Fourier and wavelets estimates in §6.

2 The need for a new theory
We now ask the following question: does the standard theory of compressed sensing explain its empirical
success in the aforementioned applications? We now argue that the answer is no. Specifically, even in
fundamental applications such as MRI (recall that MRI was one of the first applications of compressed
sensing, due to the pioneering work of Lustig et al. [51, 53, 54, 55]), there is a significant gap between theory
and practice.

2.1 Compressed sensing
Let us commence with a short review of finite-dimensional compressed sensing theory – infinite-dimensional
compressed sensing will be considered in §5. A typical setup, and one which we shall follow in part of this
paper, is as follows. Let {ψj}Nj=1 and {ϕj}Nj=1 be two orthonormal bases of CN , the sampling and sparsity
bases respectively, and write U = (uij)

N
i,j=1 ∈ CN×N , uij = 〈ϕj , ψi〉. Note that U is an isometry, i.e.

U∗U = I .

Definition 2.1. Let U = (uij)
N
i,j=1 ∈ CN×N be an isometry. The coherence of U is precisely

µ(U) = max
i,j=1,...,N

|uij |2 ∈ [N−1, 1]. (2.1)

We say that U is perfectly incoherent if µ(U) = N−1.

A signal f ∈ CN is said to be s-sparse in the orthonormal basis {ϕj}Nj=1 if at most s of its coefficients
in this basis are nonzero. In other words, f =

∑N
j=1 xjϕj , and the vector x ∈ CN satisfies |supp(x)| ≤ s,

where supp(x) = {j : xj 6= 0}. Let f ∈ CN be s-sparse in {ϕj}Nj=1, and suppose we have access to the
samples f̂j = 〈f, ψj〉, j = 1, . . . , N. Let Ω ⊆ {1, . . . , N} be of cardinality m and chosen uniformly at
random. According to a result of Candès & Plan [14] and Adcock & Hansen [1], f can be recovered exactly
with probability exceeding 1− ε from the subset of measurements {f̂j : j ∈ Ω}, provided

m & µ(U) ·N · s ·
(
1 + log(ε−1)

)
· logN, (2.2)
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Figure 1: Left to right: (i) 5% uniform random subsampling scheme, (ii) CS reconstruction from uniform
subsampling, (iii) 5% multilevel subsampling scheme, (iv) CS reconstruction from multilevel subsampling.

(here and elsewhere in this paper we shall use the notation a & b to mean that there exists a constant C > 0
independent of all relevant parameters such that a ≥ Cb). In practice, recovery is achieved by solving the
following convex optimization problem:

min
η∈CN

‖η‖l1 subject to PΩUη = PΩf̂ , (2.3)

where f̂ = (f̂1, . . . , f̂N )> and PΩ ∈ CN×N is the diagonal projection matrix with jth entry 1 if j ∈ Ω
and zero otherwise. The key estimate (2.2) shows that the number of measurements m required is, up to a
log factor, on the order of the sparsity s, provided the coherence µ(U) = O

(
N−1

)
. This is the case, for

example, when U is the DFT matrix; a problem which was studied in some of the first papers on compressed
sensing [16].

2.2 Incoherence is rare in practice
To test the practicality of the incoherence condition, let us consider a typical compressed sensing problem. In
a number of important applications, not least MRI, the sampling is carried out in the Fourier domain. Since
images are sparse in wavelets, the usual CS setup is to form the a matrix U = UN = UdfV

−1
dw ∈ CN×N ,

where Udf and Vdw represent the discrete Fourier and wavelet transforms respectively. However, in this case
the coherence

µ(UN ) = O (1) , N →∞,

for any wavelet basis. Thus, up to a constant factor, this problem has the worst possible coherence. The
standard compressed sensing estimate (2.2) states that m = N samples are needed in this case (i.e. full
sampling), even though the object to recover is typically highly sparse. Note that this is not an insufficiency
of the theory. If uniform random subsampling is employed, then the lack of incoherence leads to a very poor
reconstruction. This can be seen in Figure 1.

The underlying reason for this lack of incoherence can be traced to the fact that this finite-dimensional
problem is a discretization of an infinite-dimensional problem. Specifically,

WOT-lim
N→∞

UdfV
−1
dw = U, (2.4)

where U : l2(N)→ l2(N) is the operator represented as the infinite matrix

U =

 〈ϕ1, ψ1〉 〈ϕ2, ψ1〉 · · ·
〈ϕ1, ψ2〉 〈ϕ2, ψ2〉 · · ·

...
...

. . .

 , (2.5)

and the functions ϕj are the wavelets used, the ψj’s are the complex exponentials and WOT denotes the
weak operator topology. Since the coherence of the infinite matrix U – i.e. the supremum of its entries in
absolute value – is a fixed number, we cannot expect incoherence of the discretization UN for large N : at
some point, one will always encounter the coherence barrier.

This problem is not isolated to this example. Heuristically, any problem that arises as a discretization
of an infinite-dimensional problem will suffer from the same phenomenon. The list of applications of this
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type is long, and includes for example, MRI, CT, microscopy and seismology. To mitigate this problem, one
may naturally try to change {ϕj} or {ψj}. However, this will delivery only marginal benefit, since (2.4)
demonstrates that the coherence barrier will always occur for large enough N . One may now wonder how it
is possible that compressed sensing is applied so successfully to many such problems. The key to this is so-
called asymptotic incoherence (see §3.1) and the use of a variable density/multilevel subsampling strategy.
The success of such subsampling is confirmed numerically in Figure 1. However, it is important to note that
this is an empirical solution to the problem. None of the usual theory explains the success of compressed
sensing when implemented in this way.

2.3 Sparsity and the flip test
The previous discussion demonstrates that we must dispense with the principles of incoherence and uniform
random subsampling in order to develop a new theory of compressed sensing. We now claim that sparsity
must also be replaced with a more general concept. This may come as a surprise to the reader, since sparsity
is a central pillar of not just compressed sensing, but much of modern signal processing. However, as we
now describe, this can be confirmed by a simple experiment we refer to as the flip test.

Sparsity asserts that an unknown vector x has s important coefficients, where the locations can be ar-
bitrary. CS establishes that all s-sparse vectors can be recovered in the incoherent setting from the same
sampling strategy, i.e. uniform random subsampling. In particular, the sampling strategy is completely in-
dependent of the location of these coefficients. The flip test, described next, allows one to evaluate whether
this holds in practice. Let x ∈ CN and a measurement matrix U ∈ CN×N . Next we take samples according
to some appropriate subset Ω ⊆ {1, . . . , N} with |Ω| = m, and solve:

min ‖z‖1 subject to PΩUz = PΩUx. (2.6)

This gives a reconstruction z = z1. Now we flip x through the operation

x 7→ xfp ∈ CN , xfp
1 = xN , x

fp
2 = xN−1, . . . , x

fp
N = x1,

giving a new vector xfp with reverse entries. We now apply the same compressed sensing reconstruction to
xfp, using the same matrix U and the same subset Ω. That is we solve

min ‖z‖1 subject to PΩUz = PΩUx
fp. (2.7)

Let z be a solution of (2.7). In order to get a reconstruction of the original vector x, we perform the flipping
operation once more and form the final reconstruction z2 = zfp.

Suppose now that Ω is a good sampling pattern for recovering x using the solution z1 of (2.6). If sparsity
is the key structure that determines such reconstruction quality, then we expect exactly the same quality in
the approximation z2 obtained via (2.7), since xfp is merely a permutation of x. Is this true in practice? To
illustrate this we consider several examples arising from the following applications: fluorescence microscopy,
compressive imaging, MRI, CT, electron microscopy and radio interferometry. These examples are based
on the matrix U = UdftV

−1
dwt or U = UHadV

−1
dwt, where Udft is the discrete Fourier transform, UHad is a

Hadamard matrix and Vdwt is the discrete wavelet transform.
The results of this experiment are shown in Figure 2. As is evident, in all cases the flipped reconstructions

z2 are substantially worse than their unflipped counterparts z1. Hence, sparsity alone does not govern the
reconstruction quality, and consequently the success in the unflipped case must also be due in part to the
structure of the signal. We therefore conclude the following:

The success of compressed sensing depends critically on the structure of the signal.

Put another way, the optimal subsampling strategy Ω depends on the signal structure.
Note that the flip test reveals another interesting phenomenon:

There is no Restricted Isometry Property (RIP).

Suppose the matrix PΩU satisfied an RIP for realistic parameter values (i.e. problem size N , subsampling
percentage m, and sparsity s) found in applications. Then this would imply recovery of all approximately
sparse vectors with the same error. This is in direct contradiction with the results of the flip test.

Note that in all the examples in Figure 2, uniform random subsampling would have given nonsensical
results, analogously to what was shown in Figure 1.
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CS reconstruction CS reconstruction w/ flip Subsampling pattern used

512×512
10%

UHad·V −1
dwt

Fluorescence
Microscopy

512×512
15%

UHad·V −1
dwt

Compressive
Imaging,
Hadamard
Spectroscopy

1024×1024
20%

Udft·V −1
dwt

Magnetic
Resonance
Imaging

512×512
12%

Udft·V −1
dwt

Tomography,
Electron
Microscopy

512×512
15%

Udft·V −1
dwt

Radio
interferometry

Figure 2: Reconstructions from subsampled coefficients from the direct wavelet coefficients (left column)
and the flipped wavelet coefficients (middle column). The right column shows the subsampling map used.
The percentage shown is the fraction of Fourier (DFT) or Walsh-Hadamard (WHT) coefficients that were
sampled. The reconstruction basis was DB4 for the Fluorescence microscopy example, and DB6 for the rest.

5



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Relative threshold, ǫ

S
p
a
rs
it
y,

s k
(ǫ
)/
(M

k
−

M
k
−
1
)

 

 
Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7
Level 8
Worst sparsity
Best sparsity

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Relative threshold, ǫ

S
p
a
rs
it
y,

s k
(ǫ
)/
(M

k
−

M
k
−
1
)

 

 
Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7
Level 8
Worst sparsity
Best sparsity

Figure 3: Relative sparsity of the Daubechies-8 wavelet coefficients of two images. Here the levels corre-
spond to wavelet scales and sk(ε) is given by (2.8). Each curve shows the relative sparsity at level k as a
function of ε. The decreasing nature of the curves for increasing k confirms (2.9).

2.4 Real-world signals are asymptotically sparse
Given that structure is key, we now ask the question: what, if any, structure is characteristic of sparse signals
in practice? Let us consider a wavelet basis {ϕn}n∈N. Recall that associated to such a basis, there is a natural
decomposition of N into finite subsets according to different scales, i.e. N =

⋃
k∈N{Mk−1 + 1, . . . ,Mk},

where 0 = M0 < M1 < M2 < . . . and {Mk−1 + 1, . . . ,Mk} is the set of indices corresponding to the kth

scale. Let x ∈ l2(N) be the coefficients of a function f in this basis. Suppose that ε ∈ (0, 1] is given, and
define

sk = sk(ε) = min
{
K :

∥∥∥ K∑
i=1

xπ(i)ϕπ(i)

∥∥∥ ≥ ε∥∥∥ Mk∑
i=Mk−1+1

xjϕj

∥∥∥}, (2.8)

where π : {1, . . . ,Mk −Mk−1} → {Mk−1 + 1, . . . ,Mk} is a bijection such that |xπ(i)| ≥ |xπ(i+1)| for
i = 1, . . . ,Mk−Mk−1−1. In order words, the quantity sk is the effective sparsity of the wavelet coefficients
of f at the kth scale.

Sparsity of f in a wavelet basis means that for a given maximal scale r ∈ N, the ratio s/Mr � 1, where
M = Mr and s = s1 + . . . + sr is the total effective sparsity of f . The observation that typical images
and signals are approximately sparse in wavelet bases is one of the key results in nonlinear approximation
[25, 56]. However, such objects exhibit far more than sparsity alone. In fact, the ratios

sk/(Mk −Mk−1)→ 0, (2.9)

rapidly as k → ∞, for every fixed ε ∈ (0, 1]. Thus typical signals and images have a distinct sparsity
structure. They are much more sparse at fine scales (large k) than at coarse scales (small k). This is con-
firmed in Figure 3. This conclusion does not change fundamentally if one replaces wavelets by other related
approximation systems, such as curvelets [11, 13], contourlets [26, 59] or shearlets [20, 21, 50].

3 New principles
Having shown their necessity, we now introduce the main new concepts of the paper: namely, asymptotic
incoherence, asymptotic sparsity and multilevel sampling.

6



Figure 4: The absolute values of the matrix U in (2.5): (left): DB2 wavelets with Fourier sampling. (middle):
Legendre polynomials with Fourier sampling. (right): The absolute values of UHadV

−1
dwt, where UHad is a

Hadamard matrix and V −1
dwt is the discrete Haar transform. Light regions correspond to large values and dark

regions to small values.

3.1 Asymptotic incoherence
Recall from §2.2 that the case of Fourier sampling with wavelets as the sparsity basis is a standard example of
a coherent problem. Similarly, Fourier sampling with Legendre polynomials is also coherent, as is the case
of Hadamard sampling with wavelets. In Figure 4 we plot the absolute values of the entries of the matrix U
for these three examples. As is evident, whilst U does indeed have large entries in all three case (since it is
coherent), these are isolated to a leading submatrix (note that we enumerate over Z for the Fourier sampling
basis and N for the wavelet/Legendre sparsity bases). As one moves away from this region the values get
progressively smaller. That is, the matrix U is incoherent aside from a leading coherent submatrix. This
motivates the following definition:

Definition 3.1 (Asymptotic incoherence). Let be {UN} be a sequence of isometries with UN ∈ CN or let
U ∈ l2(N). Then

(i) {UN} is asymptotically incoherent if µ(P⊥KUN ), µ(UNP
⊥
K )→ 0, when K →∞, with N/K = c, for

all c ≥ 1.

(ii) U is asymptotically incoherent if µ(P⊥KU), µ(UP⊥K )→ 0, when K →∞.

Here PK is the projection onto span{ej : j = 1, ...,K}, where {ej} is the canonical basis of either CN or
l2(N), and P⊥K is its orthogonal complement.

In other words, U is asymptotically incoherent if the coherences of the matrices formed by replacing
either the firstK rows or columns ofU are small. As it transpires, the Fourier/wavelets, Fourier/Legendre and
Hadamard/wavelets problems are asymptotically incoherent. In particular, µ(P⊥KU), µ(UP⊥K ) = O

(
K−1

)
as K →∞ for the former (see §6).

3.2 Multi-level sampling
Asymptotic incoherence suggests a different subsampling strategy should be used instead of uniform random
sampling. High coherence in the first few rows of U means that important information about the signal to
be recovered may well be contained in its corresponding measurements. Hence to ensure good recovery
we should fully sample these rows. Conversely, once outside of this region, when the coherence starts to
decrease, we can begin to subsample. Let N1, N,m ∈ N be given. This now leads us to consider an index
set Ω of the form Ω = Ω1 ∪Ω2, where Ω1 = {1, . . . , N1}, and Ω2 ⊆ {N1 + 1, . . . , N} is chosen uniformly
at random with |Ω2| = m. We refer to this as a two-level sampling scheme. As we shall prove later, the
amount of subsampling possible (i.e. the parameter m) in the region corresponding to Ω2 will depend solely
on the sparsity of the signal and coherence µ(P⊥N1

U).
The two-level scheme represents the simplest type of nonuniform density sampling. There is no reason,

however, to restrict our attention to just two levels, full and subsampled. In general, we shall consider
multilevel schemes, defined as follows:
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Definition 3.2 (Multilevel random sampling). Let r ∈ N, N = (N1, . . . , Nr) ∈ Nr with 1 ≤ N1 < . . . <
Nr, m = (m1, . . . ,mr) ∈ Nr, with mk ≤ Nk −Nk−1, k = 1, . . . , r, and suppose that

Ωk ⊆ {Nk−1 + 1, . . . , Nk}, |Ωk| = mk, k = 1, . . . , r,

are chosen uniformly at random, where N0 = 0. We refer to the set

Ω = ΩN,m = Ω1 ∪ . . . ∪ Ωr.

as an (N,m)-multilevel sampling scheme.

The idea of sampling the low-order coefficients of an image differently goes back to the early days of
compressed sensing. In particular, Donoho considers a two-level approach for recovering wavelet coeffi-
cients in his seminal paper [28], based on acquiring the coarse scale coefficients directly. This was later
extended by Tsaig & Donoho to so-called ‘multiscale compressed sensing’ in [72], where distinct subbands
were sensed separately. See also Romberg’s work [63], and as well as Candès & Romberg [15].

Note that, although in part motivated by wavelets, our definition is completely general, as are the main
theorems we present in §4 and §5. Moreover, and critically, we do not assume separation of the coefficients
into distinct levels before sampling (as done above), which is often infeasible in practice (in particular, any
application based on Fourier or Hadamard sampling). Note also that in MRI similar sampling strategies to
what we introduce here are found in most implementations of compressed sensing [54, 55, 61, 62]. Addi-
tionally, a so-called “half-half” scheme (an example of a two-level strategy) was used by [67] in application
of compressed sensing in fluorescence microscopy, albeit without theoretical recovery guarantees.

3.3 Asymptotic sparsity in levels
The flip test, the discussion in §2.4 and Figure 3 suggest that we need a different concept to sparsity. Given
the structure of modern function systems such as wavelets and their generalizations, we propose the notion
of sparsity in levels:

Definition 3.3 (Sparsity in levels). Let x be an element of either CN or l2(N). For r ∈ N let M =
(M1, . . . ,Mr) ∈ Nr with 1 ≤ M1 < . . . < Mr and s = (s1, . . . , sr) ∈ Nr, with sk ≤ Mk −Mk−1,
k = 1, . . . , r, where M0 = 0. We say that x is (s,M)-sparse if, for each k = 1, . . . , r,

∆k := supp(x) ∩ {Mk−1 + 1, . . . ,Mk},

satisfies |∆k| ≤ sk. We denote the set of (s,M)-sparse vectors by Σs,M.

Definition 3.4 ((s,M)-term approximation). Let f =
∑
j∈N xjϕj , where x = (xj)j∈N is an element of

either CN or l2(N). We say that f is (s,M)-compressible with respect to {ϕj}j∈N if σs,M(f) is small,
where

σs,M(f) = min
η∈Σs,M

‖x− η‖l1 . (3.1)

Typically, it is the case that sk/(Mk −Mk−1) → 0 as k → ∞, in which case we say that x is asymp-
totically sparse in levels. However, our theory does not explicitly require such decay. As we shall see
next, vectors x that are (asymptotically) sparse in levels are ideally suited to multilevel sampling schemes.
Roughly speaking, under the appropriate conditions, the number of measurements mk required in each sam-
pling band Ωk is determined by the sparsity of x in the corresponding sparsity band ∆k and the asymptotic
coherence.

4 Main theorems I: the finite-dimensional case
We now present the main theorems in the finite-dimensional setting. In §5 we address the infinite-dimensional
case. To avoid pathological examples we will assume throughout that the total sparsity s = s1 +. . .+sr ≥ 3.
This is simply to ensure that log(s) ≥ 1, which is convenient in the proofs.
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4.1 Two-level sampling schemes
We commence with the case of two-level sampling schemes. Recall that in practice, signals are never exactly
sparse (or sparse in levels), and their measurements are always contaminated by noise. Let f =

∑
j xjϕj be

a fixed signal, and write
y = PΩf̂ + z = PΩUx+ z,

for its noisy measurements, where z ∈ ran(PΩ) is a noise vector satisfying ‖z‖ ≤ δ for some δ ≥ 0. If δ is
known, we now consider the following problem:

min
η∈CN

‖η‖l1 subject to ‖PΩUη − y‖ ≤ δ. (4.1)

Our aim in this setting is to recover x up to an error proportional to δ and the best (s,M)-term approximation
error σs,M(x). Before stating our theorem, it is useful to make the following definition: µK = µ(P⊥KU), for
K ∈ N. We now have the following:

Theorem 4.1. LetU ∈ CN×N be an isometry and x ∈ CN . Suppose that Ω = ΩN,m is a two-level sampling
scheme, where N = (N1, N2), N2 = N , and m = (N1,m2). Let (s,M), where M = (M1,M2) ∈ N2,
M1 < M2, M2 = N , and s = (M1, s2) ∈ N2, s2 ≤M2 −M1, be any pair such that the following holds:

(i) we have
‖P⊥N1

UPM1
‖ ≤ γ√

M1

(4.2)

and γ ≤ s2
√
µN1

for some γ ∈ (0, 2/5];

(ii) for ε ∈ (0, e−1], let
m2 & (N −N1) · log(ε−1) · µN1

· s2 · log (N) .

Suppose that ξ ∈ l1(N) is a minimizer of (4.1). Then, with probability exceeding 1− sε, we have

‖ξ − x‖ ≤ C ·
(
δ ·
√
K ·

(
1 + L ·

√
s
)

+ σs,M(f)
)
, (4.3)

for some constant C, where σs,M(f) is as in (3.1), L = 1 +

√
log2(6ε−1)

log2(4KM
√
s)

and K = (N2 − N1)/m2. If
m2 = N −N1 then this holds with probability 1.

Let us now interpret Theorem 4.1, and in particular, demonstrates how it overcomes the coherence barrier.
We note the following:

(i) The condition ‖P⊥N1
UPM1‖ ≤ 2

5
√
M1

(which is always satisfied for some N1) implies that fully sam-
pling the first N1 measurements allows one to recover the first M1 coefficients of f .

(ii) To recover the remaining s2 coefficients we require, up to log factors, an additional

m2 & (N −N1) · µN1
· s2,

measurements, taken randomly from the range M1 + 1, . . . ,M2. In particular, if N1 is a fixed fraction
of N , and if µN1

= O
(
N−1

1

)
, such as for wavelets with Fourier measurements (Theorem 6.1), then

one requires only m2 & s2 additional measurements to recover the sparse part of the signal.

Thus, in the case where x is asymptotically sparse, we require a fixed number N1 measurements to recover
the nonsparse part of x, and then a numberm2 depending on s2 and the asymptotic coherence µN1

to recover
the sparse part.

Remark 4.1 It is not necessary to know the sparsity structure, i.e. the values s and M, of the image f
in order to implement the two-level sampling technique (the same also applies to the multilevel technique
discussed in the next section). Given a two-level scheme Ω = ΩN,m, Theorem 4.1 demonstrates that f will
be recovered exactly up to an error on the order of σs,M(f), where s and M are determined implicitly by
N, m and the conditions (i) and (ii) of the theorem. Of course, some a priori knowledge of s and M will
greatly assist in selecting the parameters N and m so as to get the best recovery results. However, this is not
necessary for implementation.
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4.2 Multilevel sampling schemes
We now consider the case of multilevel sampling schemes. Before presenting this case, we need several
definitions. The first is key concept in this paper: namely, the local coherence.

Definition 4.2 (Local coherence). Let U be an isometry of either CN or l2(N). If N = (N1, . . . , Nr) ∈ Nr
and M = (M1, . . . ,Mr) ∈ Nr with 1 ≤ N1 < . . .Nr and 1 ≤M1 < . . . < Mr the (k, l)th local coherence
of U with respect to N and M is given by

µN,M(k, l) =

√
µ(P

Nk−1

Nk
UP

Ml−1

Ml
) · µ(P

Nk−1

Nk
U), k, l = 1, . . . , r,

where N0 = M0 = 0 and P ab denotes the projection matrix corresponding to indices {a+ 1, . . . , b}. In the
case where U ∈ B(l2(N)) (i.e. U belongs to the space of bounded operators on l2(N)), we also define

µN,M(k,∞) =
√
µ(P

Nk−1

Nk
UP⊥Mr−1

) · µ(P
Nk−1

Nk
U), k = 1, . . . , r.

Besides the local sparsities sk, we shall also require the notion of a relative sparsity:

Definition 4.3 (Relative sparsity). Let U be an isometry of either CN or l2(N). For N = (N1, . . . , Nr) ∈
Nr, M = (M1, . . . ,Mr) ∈ Nr with 1 ≤ N1 < . . . < Nr and 1 ≤ M1 < . . . < Mr, s = (s1, . . . , sr) ∈ Nr
and 1 ≤ k ≤ r, the kth relative sparsity is given by

Sk = Sk(N,M, s) = max
η∈Θ
‖PNk−1

Nk
Uη‖2,

where N0 = M0 = 0 and Θ is the set

Θ = {η : ‖η‖l∞ ≤ 1, |supp(P
Ml−1

Ml
η)| = sl, l = 1, . . . , r}.

We can now present our main theorem:

Theorem 4.4. Let U ∈ CN×N be an isometry and x ∈ CN . Suppose that Ω = ΩN,m is a multilevel
sampling scheme, where N = (N1, . . . , Nr) ∈ Nr, Nr = N , and m = (m1, . . . ,mr) ∈ Nr. Let (s,M),
where M = (M1, . . . ,Mr) ∈ Nr, Mr = N , and s = (s1, . . . , sr) ∈ Nr, be any pair such that the following
holds: for ε ∈ (0, e−1] and 1 ≤ k ≤ r,

1 &
Nk −Nk−1

mk
· log(ε−1) ·

(
r∑
l=1

µN,M(k, l) · sl

)
· log (N) , (4.4)

where mk & m̂k · log(ε−1) · log (N) , and m̂k is such that

1 &
r∑

k=1

(
Nk −Nk−1

m̂k
− 1

)
· µN,M(k, l) · s̃k, (4.5)

for all l = 1, . . . , r and all s̃1, . . . , s̃r ∈ (0,∞) satisfying

s̃1 + . . .+ s̃r ≤ s1 + . . .+ sr, s̃k ≤ Sk(N,M, s).

Suppose that ξ ∈ CN is a minimizer of (4.1). Then, with probability exceeding 1−sε, where s = s1+. . .+sr,
we have that

‖ξ − x‖ ≤ C ·
(
δ ·
√
K ·

(
1 + L ·

√
s
)

+ σs,M(f)
)
,

for some constant C, where σs,M(f) is as in (3.1), L = 1 +

√
log2(6ε−1)

log2(4KM
√
s)

and K = max1≤k≤r{(Nk −
Nk−1)/mk}. If mk = Nk −Nk−1, 1 ≤ k ≤ r, then this holds with probability 1.

The key component of this theorem are the bounds (4.4) and (4.5). Whereas the standard compressed
sensing estimate (2.2) relates the total number of samples m to the global coherence and the global sparsity,
these bounds now relate the local sampling mk to the local coherences µN,M(k, l) and local and relative
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sparsities sk and Sk. In particular, by relating these local quantities this theorem conforms with the conclu-
sions of the flip test in §2.3: namely, the optimal sampling strategy must depend on the signal structure, and
this is exactly what is advocated in (4.4) and (4.5).

On the face of it, the bounds (4.4) and (4.5) may appear somewhat complicated, not least because they
involve the relative sparsities Sk. As we next show, however, they are indeed sharp in the sense that they
reduce to the correct information-theoretic limits in several important cases. Furthermore, in the important
case of wavelet sparsity with Fourier sampling, they can be used to provide near-optimal recovery guarantees.
We discuss this in §6. Note, however, that to do this it is first necessary to generalize Theorem 4.4 to the
infinite-dimensional setting, which we do in §5.

4.2.1 Sharpness of the estimates – the block-diagonal case

Suppose that Ω = ΩN,m is a multilevel sampling scheme, where N = (N1, . . . , Nr) ∈ Nr and m =
(m1, . . . ,mr) ∈ Nr. Let (s,M), where M = (M1, . . . ,Mr) ∈ Nr, and suppose for simplicity that M = N.
Consider the block-diagonal matrix

CN×N 3 A =

r⊕
k=1

Ak, Ak ∈ C(Nk−Nk−1)×(Nk−Nk−1), A∗kAk = I,

where N0 = 0. Note that in this setting we have Sk = sk, µN,M(k, l) = 0, k 6= l. Also, since
µ(N,M)(k, k) = µ(Ak), equations (4.4) and (4.5) reduce to

1 &
Nk −Nk−1

mk
· log(ε−1) · µ(Ak) · sk · logN, 1 &

(
Nk −Nk−1

m̂k
− 1

)
· µ(Ak) · sk.

In particular, it suffices to take

mk & (Nk −Nk−1) · log(ε−1) · µ(Ak) · sk · logN, 1 ≤ k ≤ r. (4.6)

This is exactly as one expects: the number of measurements in the kth level depends on the size of the level
multiplied by the asymptotic incoherence and the sparsity in that level. Note that this result recovers the
standard one-level results in finite dimensions [1, 14] up to the 1− sε bound on the probability. In particular,
the typical bound would be 1− ε. The question as to whether or not this s can be removed in the multilevel
setting is open, although such a result would be more of a cosmetic improvement.

4.2.2 Sharpness of the estimates – the non-block diagonal case

The previous argument demonstrated that Theorem 4.4 is sharp, up to the probability term, in the sense that
it reduces to the usual estimate (4.6) for block-diagonal matrices. A key step in showing this is noting that
the quantities Sk reduce to the sparsities sk in the block-diagonal case. Unfortunately, this is not true in
the general setting. Note that one has the upper bound Sk ≤ s = s1 + . . . + sr. However in general there
is usually interference between different sparsity levels, which means that Sk need not have anything to do
with sk, or can indeed be proportional to the total sparsity s. This may seem an undesirable aspect of the
theorems, since Sk may be significantly larger than sk, and thus the estimate on the number of measurements
mk required in the kth level may also be much larger than the corresponding sparsity sk. Could it therefore
be that the Sks are an unfortunate artefact of the proof? As we now show by example, this is not the case.

To do this, we consider the following setting. Let N = rn for some n ∈ N and N = M =
(n, 2n, . . . , rn). Let W ∈ Cn×n and V ∈ Cr×r be isometries and consider the matrix A = V ⊗ W,
where ⊗ is the usual Kronecker product. Note that A ∈ CN×N is also an isometry. Now suppose that
x = (x1, . . . , xr) ∈ CN is an (s,M)-sparse vector, where each xk ∈ Cn is sk-sparse. Then

Ax = y, y = (y1, . . . , yr), yk = Wzk, zk =

r∑
l=1

vklxl.

Hence the problem of recovering x from measurements y with an (N,m)-multilevel strategy decouples into
r problems of recovering the vector zk from the measurements yk = Wzk, k = 1, . . . , r. Let ŝk denote the
sparsity of zk. Since the coherence provides an information-theoretic limit [14], one requires at least

mk & n · µ(W ) · ŝk · log n, 1 ≤ k ≤ r. (4.7)
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measurements at level k in order to recover each zk, and therefore recover x, regardless of the reconstruction
method used. We now consider two examples of this setup:

Example 4.1 Let π : {1, . . . , r} → {1, . . . , r} be a permutation and let V be the matrix with entries vkl =
δl,π(k). Since zk = xπ(k) in this case, the lower bound (4.7) reads

mk & n · µ(W ) · sπ(k) · log n, 1 ≤ k ≤ r. (4.8)

Now consider Theorem 4.4 for this matrix. First, we note that Sk = sπ(k). In particular, Sk is completely
unrelated to sk. Substituting this into Theorem 4.4 and noting that µN,M(k, l) = µ(W )δl,π(k) in this case,
we arrive at the condition mk & n · µ(W ) · sπ(k) ·

(
log(ε−1) + 1

)
· log(nr), which is equivalent to (4.8).

Example 4.2 Now suppose that V is the r × r DFT matrix. Suppose also that s ≤ n/r and that the
xk’s have disjoint support sets, i.e. supp(xk) ∩ supp(xl) = ∅, k 6= l. Then by construction, each zk is
s-sparse, and therefore the lower bound (4.7) reads mk & n · µ(W ) · s · log n, for 1 ≤ k ≤ r. After a
short argument, one finds that s/r ≤ Sk ≤ s in this case. Hence, Sk is typically much larger than sk.
Moreover, after noting that µN,M(k, l) = 1

rµ(W ), we find that Theorem 4.4 gives the condition mk &
n · µ(W ) · s ·

(
log(ε−1) + 1

)
· log(nr). Thus, Theorem 4.4 obtains the lower bound in this case as well.

4.2.3 Sparsity leads to pessimistic reconstruction guarantees

Recall that the flip test demonstrates that any sparsity-based theory of compressed sensing does not describe
the reconstructions seen in practice. To conclude this section, we now use the block-diagonal case to further
emphasize the need for theorems that go beyond sparsity, such as Theorems 4.1 and 4.4. To see this, consider
the block-diagonal matrix

U =

r⊕
k=1

Ur, Uk ∈ C(Nk−Nk−1)×(Nk−Nk−1),

where each Uk is perfectly incoherent, i.e. µ(Uk) = (Nk−Nk−1)−1, and suppose we takemk measurements
within each block Uk. Let x ∈ CN be the signal we wish to recover, where N = Nr. The question is, how
many samples m = m1 + . . .+mr do we require?

Suppose we assume that x is s-sparse, where s ≤ mink=1,...,r{Nk − Nk−1}. Given no further infor-
mation about the sparsity structure, it is necessary to take mk & s log(N) measurements in each block,
giving m & rs log(N) in total. However, suppose now that x is known to be sk-sparse within each level,
i.e. |supp(x) ∩ {Nk−1 + 1, . . . , Nk}| = sk. Then we now require only mk & sk log(N), and therefore
m & s log(N) total measurements. Thus, structured sparsity leads to a significant saving by a factor of r in
the total number of measurements required.

5 Main theorems II: the infinite-dimensional case
Finite-dimensional compressed sensing is suitable in many cases. However, there are some important
problems where this framework can lead to significant problems, since the underlying problem is contin-
uous/analog. Discretization of the problem in order to produce a finite-dimensional, vector-space model can
lead to substantial errors [1, 7, 18, 66], due to the phenomenon of model mismatch such as the inverse or the
wavelet crimes.

To address this issue, a theory of compressed sensing in infinite dimensions was introduced by Adcock
& Hansen in [1], based on a new approach to classical sampling known as generalized sampling [2, 3,
4, 5]. We describe this theory next. Note that this infinite-dimensional compressed sensing model has
also been advocated and implemented in MRI by Guerquin–Kern, Häberlin, Pruessmann & Unser [40].
Furthermore, we shall see in §6 that the infinite-dimensional analysis is crucial in order to obtain accurate
recovery estimates in the Fourier/wavelets case.

5.1 Infinite-dimensional compressed sensing
Let us now describe the framework of [1] in more detail. Suppose thatH is a separable Hilbert space over C,
and let {ψj}j∈N be an orthonormal basis onH (the sampling basis). Let {ϕj}j∈N be an orthonormal system
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inH (the sparsity system), and suppose that

U = (uij)i,j∈N, uij = 〈ϕj , ψi〉, (5.1)

is an infinite matrix. We may consider U as an element of B(l2(N)); the space of bounded operators on l2(N)
(we will make no distinction between bounded operators on sequence spaces and infinite matrices). As in
the finite-dimensional case, U is an isometry, and we may define its coherence µ(U) ∈ (0, 1] analogously
to (2.1). We say that an element f ∈ H is (s,M)-sparse with respect to {ϕj}j∈N, where s,M ∈ N,
s ≤ M , if the following holds: f =

∑
j∈N xjϕj , supp(x) = {j : xj 6= 0} ⊆ {1, . . . ,M}, |supp(x)| ≤

s. Setting Σs,M =
{
x ∈ l2(N) : x is (s,M)-sparse

}
, we define σs,M (f) = minη∈Σs,M ‖x − η‖l1 , with

f =
∑
j∈N xjϕj , x = (xj)j∈N ∈ l1(N), and say that f is (s,M)-compressible with respect to {ϕj}j∈N if

σs,M (f) is small. Whenever f is (s,M)-sparse or compressible, we seek to recover it from a small number
of the measurements f̂j = 〈f, ψj〉, j ∈ N. To do this, we introduce a second parameter N ∈ N, and let Ω be
a randomly-chosen subset of indices 1, . . . , N of size m. Unlike in finite dimensions, we now consider two
cases. Suppose first that P⊥Mx = 0, i.e. x has no tail. Then we solve

inf
η∈l1(N)

‖η‖l1 subject to ‖PΩUPMη − y‖ ≤ δ, (5.2)

where y = PΩf̂ + z, f̂ = (f̂j)j∈N ∈ l2(N), z ∈ ran(PΩ) is a noise vector satisfying ‖z‖ ≤ δ, and PΩ is the
projection operator corresponding to the index set Ω. In [1] it was proved that any solution to (5.2) recovers
f exactly up to an error determined by σs,M (f), provided N and m satisfy the so-called weak balancing
property with respect to M and s (see Definition 5.1, as well as Remark 5.1 for a discussion), and provided

m & µ(U) ·N · s ·
(
1 + log(ε−1)

)
· log

(
m−1MN

√
s
)
. (5.3)

As in the finite-dimensional case, which turns out to be a corollary of this result, we find that m is on the
order of the sparsity s whenever µ(U) is sufficiently small.

In practice, the condition P⊥Mx = 0 is unrealistic. In the more general case, P⊥Mx 6= 0, we solve the
following problem:

inf
η∈l1(N)

‖η‖l1 subject to ‖PΩUη − y‖ ≤ δ. (5.4)

In [1] it was shown that any solution of (5.4) recovers f exactly up to an error determined by σs,M (f),
provided N and m satisfy the so-called strong balancing property with respect to M and s (see Definition
5.1), and provided a bound similar to (5.3) holds, where the M is replaced by a slightly larger constant (we
give the details in the next section in the more general setting of multilevel sampling). Note that (5.4) cannot
be solve numerically, since it is infinite-dimensional. Therefore in practice we replace (5.4) by

inf
η∈l1(N)

‖η‖l1 subject to ‖PΩUPRη − y‖ ≤ δ, (5.5)

where R is taken sufficiently large. See [1] for the details.

5.2 Main theorems
We first require the definition of the so-called balancing property [1]:

Definition 5.1 (Balancing property). Let U ∈ B(l2(N)) be an isometry. Then N ∈ N and K ≥ 1 satisfy the
weak balancing property with respect to U, M ∈ N and s ∈ N if

‖PMU∗PNUPM − PM‖l∞→l∞ ≤
1

8

(
log

1/2
2

(
4
√
sKM

))−1

, (5.6)

where ‖·‖l∞→l∞ is the norm on B(l∞(N)). We say that N and K satisfy the strong balancing property with
respect to U, M and s if (5.6) holds, as well as

‖P⊥MU∗PNUPM‖l∞→l∞ ≤
1

8
. (5.7)

As in the previous section, we commence with the two-level case. Furthermore, to illustrate the differ-
ences between the weak/strong balancing property, we first consider the setting of (5.2):
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Theorem 5.2. Let U ∈ B(l2(N)) be an isometry and x ∈ l1(N). Suppose that Ω = ΩN,m is a two-level
sampling scheme, where N = (N1, N2) and m = (N1,m2). Let (s,M), where M = (M1,M2) ∈ N2,
M1 < M2, and s = (M1, s2) ∈ N2, be any pair such that the following holds:

(i) we have ‖P⊥N1
UPM1

‖ ≤ γ√
M1

and γ ≤ s2
√
µN1

for some γ ∈ (0, 2/5];

(ii) the parameters
N = N2, K = (N2 −N1)/m2

satisfy the weak balancing property with respect to U , M := M2 and s := M1 + s2;

(iii) for ε ∈ (0, e−1], let

m2 & (N −N1) · log(ε−1) · µN1
· s2 · log

(
KM

√
s
)
.

Suppose that P⊥M2
x = 0 and let ξ ∈ l1(N) be a minimizer of (5.2). Then, with probability exceeding 1− sε,

we have
‖ξ − x‖ ≤ C ·

(
δ ·
√
K ·

(
1 + L ·

√
s
)

+ σs,M(f)
)
, (5.8)

for some constant C, where σs,M(f) is as in (3.1), and L = 1 +

√
log2(6ε−1)

log2(4KM
√
s)

. If m2 = N − N1 then this
holds with probability 1.

We next state a result for multilevel sampling in the more general setting of (5.4). For this, we require
the following notation:

M̃ = min{i ∈ N : max
k≥i
‖PNUek‖ ≤ 1/(32K

√
s)},

where N , s and K are as defined below.

Theorem 5.3. Let U ∈ B(l2(N)) be an isometry and x ∈ l1(N). Suppose that Ω = ΩN,m is a multilevel
sampling scheme, where N = (N1, . . . , Nr) ∈ Nr and m = (m1, . . . ,mr) ∈ Nr. Let (s,M), where
M = (M1, . . . ,Mr) ∈ Nr, M1 < . . . < Mr, and s = (s1, . . . , sr) ∈ Nr, be any pair such that the
following holds:

(i) the parameters

N = Nr, K = max
k=1,...,r

{
Nk −Nk−1

mk

}
,

satisfy the strong balancing property with respect to U , M := Mr and s := s1 + . . .+ sr;

(ii) for ε ∈ (0, e−1] and 1 ≤ k ≤ r,

1 &
Nk −Nk−1

mk
· log(ε−1) ·

(
r∑
l=1

µN,M(k, l) · sl

)
· log

(
KM̃

√
s
)
,

(with µN,M(k, r) replaced by µN,M(k,∞)) and mk & m̂k · log(ε−1) · log
(
KM̃

√
s
)
, where m̂k

satisfies (4.5).

Suppose that ξ ∈ l1(N) is a minimizer of (4.1). Then, with probability exceeding 1− sε,

‖ξ − x‖ ≤ C ·
(
δ ·
√
K ·

(
1 + L ·

√
s
)

+ σs,M(f)
)
,

for some constant C, where σs,M(f) is as in (3.1), and L = C ·
(

1 +

√
log2(6ε−1)

log2(4KM
√
s)

)
. If mk = Nk −Nk−1

for 1 ≤ k ≤ r then this holds with probability 1.

This theorem removes the condition in Theorem 5.2 that x has zero tail. Note that the price to pay is
the M̃ in the logarithmic term rather than M (M̃ ≥ M because of the balancing property). Observe that
M̃ is finite, and in the case of Fourier sampling with wavelets, we have that M̃ = O (KN) (see §6). Note
that Theorem 5.2 has a strong form analogous to Theorem 5.3 which removes the tail condition. The only
difference is the requirement of the strong, as opposed to the weak, balancing property, and the replacement
of M by M̃ in the log factor. Similarly, Theorem 5.3 has a weak form involving a tail condition. For
succinctness we do not state these.
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Remark 5.1 The balancing property is the main difference between the finite- and infinite-dimensional the-
orems. Its role is to ensure that the truncated matrix PNUPM is close to an isometry. In reconstruction
problems, the presence of an isometry ensures stability in the mapping between measurements and coeffi-
cients [2], which explains the need for a such a property in our theorems. As explained in [1], without the
balancing property the lack of stability in the underlying mapping leads to numerically useless reconstruc-
tions. Note that the balancing property is usually not satisfied for N = M , and this choice typically leads to
numerical instability. In general, one requires N > M for the balancing property to hold. However, there is
always a finite N for which it is satisfied, since the infinite matrix U is an isometry. For details we refer to
[1]. We will provide specific estimates in §6 for required magnitude of N for the case of Fourier sampling
with wavelet sparsity.

6 Recovery of wavelet coefficients from Fourier samples
Fourier sampling with wavelets as the sparsity system is a fundamentally important reconstruction problem
in compressed sensing, with numerous applications ranging from medical imaging (e.g. MRI, X-ray CT via
the Fourier slice theorem) to seismology and interferometry. We consider only the one-dimensional case
for simplicity, since the extension to higher dimensions is conceptually straightforward. The incoherence
properties can be described as follows.

Theorem 6.1. Let U ∈ B(l2(N)) be the matrix corresponding to the Fourier/wavelets system described in
§7.4. Then µ(U) ≥ ω|Φ̂(0)|2, where ω is the sampling density and Φ is the corresponding scaling function.
Furthermore, µ(P⊥NU), µ(UP⊥N ) = O

(
N−1

)
as N →∞.

Thus, Fourier sampling with wavelet sparsity is indeed globally coherent, yet asymptotically incoherent.
This result holds for essentially any wavelet basis in one dimension (see [46] for the multidimensional case).
To recover wavelet coefficients, we now apply a multilevel sampling strategy. This raises the question: how
do we design this strategy, and how many measurements are required? If the levels M = (M1, . . . ,Mr)
correspond to the wavelet scales, and s = (s1, . . . , sr) to the sparsities within them, then the best one could
hope to achieve is that the number of measurements mk in the kth sampling level is proportional to the
sparsity sk in the corresponding sparsity level. Our main theorem below shows that multilevel sampling can
achieve this, up to an exponentially-localized factor and the usual log terms.

Theorem 6.2. Consider an orthonormal basis of compactly supported wavelets with a multiresolution anal-
ysis (MRA). Let Φ and Ψ denote the scaling function and mother wavelet respectively, and let α ≥ 1 be such
that ∣∣∣Φ̂(ξ)

∣∣∣ ≤ C

(1 + |ξ|)α
,
∣∣∣Ψ̂(ξ)

∣∣∣ ≤ C

(1 + |ξ|)α
, ξ ∈ R,

for some constant C > 0. Suppose that the Fourier sampling density ω satisfies (7.104). Suppose that M =
(M1, . . . ,Mr) corresponds to wavelet scales with Mk = O

(
2Rk

)
for k = 1, . . . , r and s = (s1, . . . , sr)

corresponds to the sparsities within them. Let ε > 0 and let Ω = ΩN,m be a multilevel sampling scheme
such that the following holds:

(i) For general Φ and Ψ, the parameters

N = Nr, K = max
k=1,...,r

{
Nk −Nk−1

mk

}
, M = Mr, s = s1 + . . .+ sr

satisfy N &M1+1/(2α−1) · (log2(4MK
√
s))

1/(2α−1). If we additionally assume that∣∣∣Φ̂(k)(ξ)
∣∣∣ ≤ C

(1 + |ξ|)α
,
∣∣∣Ψ̂(k)(ξ)

∣∣∣ ≤ C

(1 + |ξ|)α
, ξ ∈ R, k = 0, 1, 2, α ≥ 1.5, (6.1)

where Φ̂(k) and Ψ̂(k) denotes the kth derivative of the Fourier transform of Φ and Ψ respectively, then
it suffices to let N &M · (log2(4KM

√
s))

1/(2α−1).

(ii) For k = 1, . . . , r − 1, Nk = 2Rkω−1.

15



(iii) For each k = 1, . . . , r,

mk & log(ε−1)· log
(

(K
√
s)1+1/vN

)
· Nk −Nk−1

Nk−1

·

(
ŝk +

k−2∑
l=1

sl · 2−α(Rk−1−Rl) +

r∑
l=k+2

sl · 2−v(Rl−1−Rk)

) (6.2)

where ŝk = max{sk−1, sk, sk+1}.

Then, with probability exceeding 1− sε, any minimizer ξ ∈ l1(N) of (4.1) satisfies

‖ξ − x‖ ≤ C ·
(
δ ·
√
K ·

(
1 + L ·

√
s
)

+ σs,M(f)
)
,

for some constant C, where σs,M(f) is as in (3.1), and L = C ·
(

1 +

√
log2(6ε−1)

log2(4KM
√
s)

)
. If mk = Nk −Nk−1

for 1 ≤ k ≤ r then this holds with probability 1.

This theorem shows near-optimal recovery of wavelet coefficients from Fourier samples when using
multilevel sampling. It therefore provides the first comprehensive explanation for the success of compressed
sensing in the aforementioned applications. To see this, consider the key estimate (6.2). This shows that mk

need only scale as a linear combination of the local sparsities sl, 1 ≤ l ≤ r. Critically, the dependence of the
sparsities sl for l 6= k is exponentially diminishing in |k− l|. Note that the presence of the off-diagonal terms
is due to the previously-discussed phenomenon of interference, which occurs since the Fourier/wavelets
system is not exactly block diagonal. Nonetheless, the system is nearly block-diagonal, and this results in
the near-optimality seen in (6.2).

Remark 6.1 The Fourier/wavelets recovery problem was studied by Candès & Romberg in [15]. Their result
shows that if an image can be first separated into separate wavelet subbands before sampling, then it can be
recovered using approximately sk measurements (up to a log factor) in each sampling band. Unfortunately,
separation into separate wavelet subbands is infeasible in most practical situations. Theorem 6.2 improves
on this result by removing this restriction, with the sole penalty being the slightly worse bound (6.2).

A recovery result for bivariate Haar wavelets, as well as the related technique of TV minimization, was
given in [47]. Similarly [10] analyzes block sampling strategies with application to MRI. However, these
results are based on sparsity, and therefore they do not explain how the sampling strategy will depend on the
signal structure.

7 Proofs
The proofs rely on some key propositions from which one can deduce the main theorems. The main work is
to prove these proposition, and that will be done subsequently.

7.1 Key results
Proposition 7.1. Let U ∈ B(l2(N)) and suppose that ∆ and Ω = Ω1∪ . . .∪Ωr (where the union is disjoint)
are subsets of N. Let x0 ∈ H and z ∈ ran(PΩU) be such that ‖z‖ ≤ δ for δ ≥ 0. Let M ∈ N and
y = PΩUx0 + z and yM = PΩUPMx0 + z. Suppose that ξ ∈ H and ξM ∈ H satisfiy

‖ξ‖l1 = inf
η∈H
{‖η‖l1 : ‖PΩUη − y‖ ≤ δ}. (7.1)

‖ξM‖l1 = inf
η∈CM

{‖η‖l1 : ‖PΩUPMη − yM‖ ≤ δ}. (7.2)

If there exists a vector ρ = U∗PΩw such that

(i) ‖P∆U
∗ (q−1

1 PΩ1 ⊕ . . .⊕ q−1
r PΩr

)
UP∆ − I∆‖ ≤ 1

4

(ii) maxi∈∆c ‖
(
q
−1/2
1 PΩ1

⊕ . . .⊕ q−1/2
r PΩr

)
Uei‖ ≤

√
5
4
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(iii) ‖P∆ρ− sgn(P∆x0)‖ ≤ q
8 .

(iv) ‖P⊥∆ ρ‖l∞ ≤ 1
2

(v) ‖w‖ ≤ L ·
√
|∆|

for some L > 0 and 0 < qk ≤ 1, k = 1, . . . , r, then we have that

‖ξ − x0‖ ≤ C ·
(
δ ·
(

1
√
q

+ L
√
s

)
+ ‖P⊥∆x0‖l1

)
,

for some constant C, where s = |∆| and q = min{qk}rk=1. Also, if (ii) is replaced by

max
i∈{1,...,M}∩∆c

‖
(
q
−1/2
1 PΩ1

⊕ . . .⊕ q−1/2
r PΩr

)
Uei‖ ≤

√
5

4

and (iv) is replaced by ‖PMP⊥∆ ρ‖l∞ ≤ 1
2 then

‖ξM − x0‖ ≤ C ·
(
δ ·
(

1
√
q

+ L
√
s

)
+ ‖PMP⊥∆x0‖l1

)
. (7.3)

Proof. First observe that (i) implies that (P∆U
∗ (q−1

1 PΩ1 ⊕ . . .⊕ q−1
r PΩr

)
UP∆|P∆(H))

−1 exists and

‖(P∆U
∗ (q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr

)
UP∆|P∆(H))

−1‖ ≤ 4

3
. (7.4)

Also, (i) implies that

‖
(
q
−1/2
1 PΩ1

⊕ . . .⊕ q−1/2
r PΩr

)
UP∆‖2 = ‖P∆U

∗ (q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr

)
UP∆‖ ≤

5

4
, (7.5)

and

‖P∆U
∗ (q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr

)
‖2 = ‖

(
q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr

)
UP∆‖2

= sup
‖η‖=1

‖
(
q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr

)
UP∆η‖2

= sup
‖η‖=1

r∑
k=1

‖q−1
k PΩkUP∆η‖2 ≤

1

q
sup
‖η‖=1

r∑
k=1

q−1
k ‖PΩkUP∆η‖2,

1

q
= max

1≤k≤r
{ 1

qk
}

=
1

q
sup
‖η‖=1

〈P∆U
∗

(
r∑

k=1

q−1
k PΩk

)
UP∆η, η〉 ≤

1

q
‖P∆U

∗ (q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr

)
UP∆‖.

(7.6)

Thus, (7.5) and (7.6) imply

‖P∆U
∗ (q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr

)
‖ ≤

√
5

4q
. (7.7)

Suppose that there exists a vector ρ, constructed with y0 = P∆x0, satisfying (iii)-(v). Let ξ be a solution to
(7.1) and let h = ξ − x0. Let A∆ = P∆U

∗ (q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr

)
UP∆|P∆(H). Then, it follows from

(ii) and observations (7.4), (7.5), (7.7) that

‖P∆h‖ = ‖A−1
∆ A∆P∆h‖

≤ ‖A−1
∆ ‖‖P∆U

∗ (q−1
1 PΩ1 ⊕ . . .⊕ q−1

r PΩr

)
U(I − P⊥∆ )h‖

≤ 4

3
‖P∆U

∗ (q−1
1 PΩ1 ⊕ . . .⊕ q−1

r PΩr

)
‖‖PΩUh‖

+
4

3
max
i∈∆c

‖P∆U
∗ (q−1

1 PΩ1 ⊕ . . .⊕ q−1
r PΩr

)
Uei‖‖P⊥∆h‖l1

≤ 4

3
‖P∆U

∗ (q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr

)
‖‖PΩUh‖

+
4

3

∥∥∥P∆U
∗
(
q
−1/2
1 PΩ1

⊕ . . .⊕ q−1/2
r

)∥∥∥max
i∈∆c

∥∥∥(q−1/2
1 PΩ1

⊕ . . .⊕ q−1/2
r PΩr

)
Uei

∥∥∥‖P⊥∆h‖l1
≤ 4
√

5

3
√
q
δ +

5

3
‖P⊥∆h‖l1 ,

(7.8)
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where in the final step we use ‖PΩUh‖ ≤ ‖PΩUζ − y‖ + ‖z‖ ≤ 2δ. We will now obtain a bound for
‖P⊥∆h‖l1 . First note that

‖h+ x0‖l1 = ‖P∆h+ P∆x0‖l1 + ‖P⊥∆ (h+ x0)‖l1
≥ Re 〈P∆h, sgn(P∆x0)〉+ ‖P∆x0‖l1 + ‖P⊥∆h‖l1 − ‖P⊥∆x0‖l1
≥ Re 〈P∆h, sgn(P∆x0)〉+ ‖x0‖l1 + ‖P⊥∆h‖l1 − 2‖P⊥∆x0‖l1 .

(7.9)

Since ‖x0‖l1 ≥ ‖h+ x0‖l1 , we have that

‖P⊥∆h‖l1 ≤ |〈P∆h, sgn(P∆x0)〉|+ 2‖P⊥∆x0‖l1 . (7.10)

We will use this equation later on in the proof, but before we do that observe that some basic adding and
subtracting yields

|〈P∆h, sgn(x0)〉| ≤ |〈P∆h, sgn(P∆x0)− P∆ρ〉|+ |〈h, ρ〉|+
∣∣〈P⊥∆h, P⊥∆ ρ〉∣∣

≤ ‖P∆h‖‖sgn(P∆x0)− P∆ρ‖+ |〈PΩUh,w〉|+ ‖P⊥∆h‖l1‖P⊥∆ ρ‖l∞

≤ q

8
‖P∆h‖+ 2Lδ

√
s+

1

2
‖P⊥∆h‖l1

≤
√

5q

6
δ +

5q

24
‖P⊥∆h‖l1 + 2Lδ

√
s+

1

2
‖P⊥∆h‖l1

(7.11)

where the last inequality utilises (7.8) and the penultimate inequality follows from properties (iii), (iv) and
(v) of the dual vector ρ. Combining this with (7.10) and the fact that q ≤ 1 gives that

‖P⊥∆h‖l1 ≤ δ
(

4
√

5q

3
+ 8L

√
s

)
+ 8‖P⊥∆x0‖l1 . (7.12)

Thus, (7.8) and (7.12) yields:

‖h‖ ≤ ‖P∆h‖+
∥∥P⊥∆h∥∥ ≤ 8

3
‖P⊥∆h‖l1 +

4
√

5

3
√
q
δ ≤

(
8
√
q + 22L

√
s+

3
√
q

)
· δ + 22

∥∥P⊥∆x0

∥∥
l1
. (7.13)

The proof of the second part of this proposition follows the proof as outlined above and we omit the details.

The next two propositions give sufficient conditions for Proposition 7.1 to be true. But before we state
them we need to define the following.

Definition 7.2. Let U be an isometry of either CN×N or B(l2(N)). For N = (N1, . . . , Nr) ∈ Nr, M =
(M1, . . . ,Mr) ∈ Nr with 1 ≤ N1 < . . . < Nr and 1 ≤ M1 < . . . < Mr, s = (s1, . . . , sr) ∈ Nr and
1 ≤ k ≤ r, let

κN,M(k, l) = max
η∈Θ
‖PNk−1

Nk
UP

Ml−1

Ml
η‖l∞ ·

√
µ(P

Nk−1

Nk
U).

where

Θ = {η : ‖η‖l∞ ≤ 1, |supp(P
Ml−1

Ml
η)| = sl, l = 1, . . . , r − 1, |supp(P⊥Mr−1

η)| = sr, },

and N0 = M0 = 0. We also define

κN,M(k,∞) = max
η∈Θ
‖PNk−1

Nk
UP⊥Mr−1

η‖l∞ ·
√
µ(P

Nk−1

Nk
U).

Proposition 7.3. Let U ∈ B(l2(N)) be an isometry and x ∈ l1(N). Suppose that Ω = ΩN,m is a multilevel
sampling scheme, where N = (N1, . . . , Nr) ∈ Nr and m = (m1, . . . ,mr) ∈ Nr. Let (s,M), where
M = (M1, . . . ,Mr) ∈ Nr, M1 < . . . < Mr, and s = (s1, . . . , sr) ∈ Nr, be any pair such that the
following holds:

(i) The parameters N := Nr, and K := maxk=1,...,r(Nk − Nk−1)/mk, satisfy the weak balancing
property with respect to U , M := Mr and s := s1 + . . .+ sr;
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(ii) for ε > 0 and 1 ≤ k ≤ r,

1 & (log(sε−1) + 1) · Nk −Nk−1

mk
·

(
r∑
l=1

κN,M(k, l)

)
· log

(
KM
√
s
)
, (7.14)

(iii)
mk & (log(sε−1) + 1) · m̂k · log

(
KM
√
s
)
, (7.15)

where m̂k satisfies

1 &
r∑

k=1

(
Nk −Nk−1

m̂k
− 1

)
· µN,M(k, l) · s̃k, ∀ l = 1, . . . , r,

where s̃1 + . . .+ s̃r ≤ s1 + . . .+ sr, s̃k ≤ Sk(s1, . . . , sr) and Sk is defined in (4.3).

Then (i)-(v) in Proposition 7.1 follow with probability exceeding 1− ε, with (ii) replaced by

max
i∈{1,...,M}∩∆c

‖
(
q
−1/2
1 PΩ1 ⊕ . . .⊕ q−1/2

r PΩr

)
Uei‖ ≤

√
5

4
, (7.16)

(iv) replaced by ‖PMP⊥∆ ρ‖l∞ ≤ 1
2 and L in (v) is given by

L = C ·
√
K ·

(
1 +

√
log2 (6ε−1)

log2(4KM
√
s)

)
. (7.17)

Ifmk = Nk−Nk−1 for all 1 ≤ k ≤ r then (i)-(v) follow with probability one (with the alterations suggested
above).

Proposition 7.4. Let U ∈ B(l2(N)) be an isometry and x ∈ l1(N). Suppose that Ω = ΩN,m is a multilevel
sampling scheme, where N = (N1, . . . , Nr) ∈ Nr and m = (m1, . . . ,mr) ∈ Nr. Let (s,M), where
M = (M1, . . . ,Mr) ∈ Nr, M1 < . . . < Mr, and s = (s1, . . . , sr) ∈ Nr, be any pair such that the
following holds:

(i) The parameters N and K (as in Proposition 7.3) satisfy the strong balancing property with respect to
U , M = Mr and s := s1 + . . .+ sr;

(ii) for ε > 0 and 1 ≤ k ≤ r,

1 & (log(sε−1) + 1) · Nk −Nk−1

mk
·

(
κN,M(k,∞) +

r−1∑
l=1

κN,M(k, l)

)
· log

(
KM̃

√
s
)
, (7.18)

(iii)
mk & (log(sε−1) + 1) · m̂k · log

(
KM̃

√
s
)
, (7.19)

where M̃ = min{i ∈ N : ‖maxj≥i PNUP{j}‖ ≤ 1/(K32
√
s)}, and m̂k is as in Proposition 7.3.

Then (i)-(v) in Proposition 7.1 follow with probability exceeding 1−εwithL as in (7.17). Ifmk = Nk−Nk−1

for all 1 ≤ k ≤ r then (i)-(v) follow with probability one.

Lemma 7.5 (Bounds for κN,M(k, l)). For k, l = 1, . . . , r

κN,M(k, l) ≤ min

{
µN,M(k, l) · sl,

√
sl · µ(P

Nk−1

Nk
U) ·

∥∥∥PNk−1

Nk
UP

Ml−1

Ml

∥∥∥} . (7.20)

Also, for k = 1, . . . , r

κN,M(k,∞) ≤ min

{
µN,M(k,∞) · sr,

√
sr · µ(P

Nk−1

Nk
U) ·

∥∥∥PNk−1

Nk
UP⊥Mr−1

∥∥∥} . (7.21)
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Proof. For k, l = 1, . . . , r

κN,M(k, l) = max
η∈Θ
‖PNk−1

Nk
UP

Ml−1

Ml
η‖l∞ ·

√
µ(P

Nk−1

Nk
U)

= max
η∈Θ

max
Nk−1<i≤Nk

∣∣∣∣∣∣
∑

Ml−1<j≤Ml

ηjuij

∣∣∣∣∣∣ ·
√
µ(P

Nk−1

Nk
U)

≤ sl ·
√
µ(P

Nk−1

Nk
UP

Ml−1

Ml
) ·
√
µ(P

Nk−1

Nk
U) ≤ sl · µN,M(k, l)

since |uij | ≤ 1, and similarly,

κN,M(k,∞) = max
η∈Θ
‖PNk−1

Nk
UP⊥Mr−1

η‖l∞ ·
√
µ(P

Nk−1

Nk
U)

= max
η∈Θ

max
Nk−1<i≤Nk

∣∣∣∣∣∣
∑

Mr−1<j

ηjuij

∣∣∣∣∣∣ ·
√
µ(P

Nk−1

Nk
U) ≤ sr · µN,M(k,∞).

Finally, it is straightforward to show that for k, l = 1, . . . , r,

κN,M(k, l) ≤
√
sl ·
∥∥∥PNk−1

Nk
UP

Ml−1

Ml

∥∥∥√µ(P
Nk−1

Nk
U)

and
κN,M(k,∞) ≤

√
sr ·

∥∥∥PNk−1

Nk
UP⊥Mr−1

∥∥∥√µ(P
Nk−1

Nk
U).

We are now ready to prove the main theorems.

Proof of Theorems 4.1 and 5.2. It is clear that Theorem 4.1 follows from Theorem 5.2, thus it remains to
prove the latter. We will apply Proposition 7.3 to a two-level sampling scheme Ω = ΩN,m, where N =
(N1, N2) and m = (m1,m2) with m1 = N1 and m2 = m. Also, consider (s,M), where s = (M1, s2),
M = (M1,M2). Thus, if N1, N2,m1,m2 ∈ N are such that

N = N2, K = max

{
N2 −N1

m2
,
N1

m1

}
satisfy the weak balancing property with respect to U , M = M2 and s = M1 + s2, we have that (i) - (v) in
Proposition 7.1 follow with probability exceeding 1− sε, with (ii) replaced by

max
i∈{1,...,M}∩∆c

‖
(
PN1 ⊕

N2 −N1

m2
PΩ2

)
Uei‖ ≤

√
5

4
,

(iv) replaced by ‖PMP⊥∆ ρ‖l∞ ≤ 1
2 and L in (v) is given by (7.17), if

1 & (log(sε−1) + 1) · N −N1

m2
· (κN,M(2, 1) + κN,M(2, 2)) · log

(
KM

√
s
)
, (7.22)

m2 & (log(sε−1) + 1) · m̂2 · log
(
KM
√
s
)
, (7.23)

where m̂2 satisfies 1 & ((N2 −N1)/m̂2 − 1) · µN1 · s̃2, and s̃2 ≤ S2 (recall S2 from Definition 4.3). Recall
from (7.20) that

κN,M(2, 1) ≤ √s1 · µN1
·
∥∥P⊥N1

UPM1

∥∥, κN,M(2, 2) ≤ s2 · µN1
.

Also, it follows directly from Definition 4.3 that

S2 ≤
(∥∥P⊥N1

UPM1

∥∥ ·√M1 +
√
s2

)2

.

Thus, provided that
∥∥P⊥N1

UPM1

∥∥ ≤ γ/
√
M1 where γ is as in (i) of Theorem 5.2, we observe that (iii) of

Theorem 5.2 implies (7.22) and (7.23). Thus, the theorem now follows from Proposition 7.1.
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Proof of Theorem 4.4 and Theorem 5.3. It is straightforward that Theorem 4.4 follows from Theorem 5.3.
Now, recall from Lemma 7.20 that

κN,M(k, l) ≤ sl · µN,M(k, l), κN,M(k,∞) ≤ sr · µN,M(k,∞), k, l = 1, . . . , r.

Thus, a direct application of Proposition 7.4 and Proposition 7.1 completes the proof.

It remains now to prove Propositions 7.3 and 7.4. This is the content of the next sections.

7.2 Preliminaries
Before we commence on the rather length proof of these propositions, let us recall one of the monumental
results in probability theory that will be of greater use later on.

Theorem 7.6. (Talagrand [69, 52]) There exists a number K with the following property. Consider n
independent random variables Xi valued in a measurable space Ω and let F be a (countable) class of
measurable functions on Ω. Let Z be the random variable Z = supf∈F

∑
i≤n f(Xi) and define

S = sup
f∈F
‖f‖∞, V = sup

f∈F
E

∑
i≤n

f(Xi)
2

 .

If E(f(Xi)) = 0 for all f ∈ F and i ≤ n, then, for each t > 0, we have

P(|Z − E(Z)| ≥ t) ≤ 3 exp

(
− 1

K

t

S
log

(
1 +

tS

V + SE(Z)

))
,

where Z = supf∈F |
∑
i≤n f(Xi)|.

Note that this version of Talagrand’s theorem is found in [52, Cor. 7.8]. We next present a theorem and
several technical propositions that will serve as the main tools in our proofs of Propositions 7.3 and 7.4. A
crucial tool herein is the Bernoulli sampling model. We will use the notation {a, . . . , b} ⊃ Ω ∼ Ber(q),
where a < b a, b ∈ N, when Ω is given by Ω = {k : δk = 1} and {δk}Nk=1 is a sequence of Bernoulli
variables with P(δk = 1) = q.

Definition 7.7. Let r ∈ N, N = (N1, . . . , Nr) ∈ Nr with 1 ≤ N1 < . . . < Nr, m = (m1, . . . ,mr) ∈ Nr,
with mk ≤ Nk −Nk−1, k = 1, . . . , r, and suppose that

Ωk ⊆ {Nk−1 + 1, . . . , Nk}, Ωk ∼ Ber

(
mk

Nk −Nk−1

)
, k = 1, . . . , r,

where N0 = 0. We refer to the set

Ω = ΩN,m := Ω1 ∪ . . . ∪ Ωr.

as an (N,m)-multilevel Bernoulli sampling scheme.

Theorem 7.8. Let U ∈ B(l2(N)) be an isometry. Suppose that Ω = ΩN,m is a multilevel Bernoulli
sampling scheme, where N = (N1, . . . , Nr) ∈ Nr and m = (m1, . . . ,mr) ∈ Nr. Consider (s,M),
where M = (M1, . . . ,Mr) ∈ Nr, M1 < . . . < Mr, and s = (s1, . . . , sr) ∈ Nr, and let

∆ = ∆1 ∪ . . . ∪∆r, ∆k ⊂ {Mk−1 + 1, . . . ,Mk}, |∆k| = sk

where M0 = 0. If ‖PMrU
∗PNrUPMr − PMr‖ ≤ 1/8 then, for γ ∈ (0, 1),

P(‖P∆U
∗(q−1

1 PΩ1 ⊕ . . .⊕ q−1
r PΩr )UP∆ − P∆‖ ≥ 1/4) ≤ γ, (7.24)

where qk = mk/(Nk −Nk−1), provided that

1 &
Nk −Nk−1

mk
·

(
r∑
l=1

κN,M(k, l)

)
·
(
log
(
γ−1 s

)
+ 1
)
. (7.25)

In addition, if q = min{qk}rk=1 = 1 then

P(‖P∆U
∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ − P∆‖ ≥ 1/4) = 0.
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In proving this theorem we deliberately avoid the use of the Matrix Bernstein inequality [39], as Tala-
grand’s theorem is more convenient for our setting. Before we can prove this theorem, we need the following
technical lemma.

Lemma 7.9. Let U ∈ B(l2(N)) with ‖U‖ ≤ 1, and consider the setup in Theorem 7.8. Let N = Nr and
let {δj}Nj=1 be independent random Bernoulli variables with P(δj = 1) = q̃j , q̃j = mk/(Nk −Nk−1) and
j ∈ {Nk−1 + 1, . . . , Nk}, and define Z =

∑N
j=1 Zj , Zj =

(
q̃−1
j δj − 1

)
ηj ⊗ η̄j and ηj = P∆U

∗ej . Then

E (‖Z‖)2 ≤ 48 max{log(|∆|), 1} max
1≤j≤N

{
q̃−1
j ‖ηj‖

2
}
,

when (max{log(|∆|), 1})−1 ≥ 18 max1≤j≤N
{
q̃−1
j ‖ηj‖2

}
.

The proof of this lemma involves essentially reworking an argument due to Rudelson [64], and is similar
to arguments given previously in [1] (see also [15]). We include it here for completeness as the setup deviates
slightly. We shall also require the following result:

Lemma 7.10. (Rudelson) Let η1, . . . , ηM ∈ Cn and let ε1, . . . εM be independent Bernoulli variables taking
values 1,−1 with probability 1/2. Then

E

(∥∥∥∥∥
M∑
i=1

εiη̄i ⊗ ηi

∥∥∥∥∥
)
≤ 3

2

√
pmax
i≤M
‖ηi‖

√√√√∥∥∥∥∥
M∑
i=1

η̄i ⊗ ηi

∥∥∥∥∥,
where p = max{2, 2 log(n)}.

Lemma 7.10 is often referred to as Rudelson’s Lemma [64]. However, we use the above complex version
that was proven by Tropp [71, Lem. 22].

Proof of Lemma 7.9. We commence by letting δ̃ = {δ̃j}Nj=1 be independent copies of δ = {δj}Nj=1. Then,
since E(Z) = 0,

Eδ (‖Z‖) = Eδ

∥∥∥∥∥∥Z − Eδ̃

 N∑
j=1

(
q̃−1
j δ̃j − 1

)
ηj ⊗ η̄j

∥∥∥∥∥∥


≤ Eδ

Eδ̃

∥∥∥∥∥∥Z −
N∑
j=1

(
q̃−1
j δ̃j − 1

)
ηj ⊗ η̄j

∥∥∥∥∥∥
 ,

(7.26)

by Jensen’s inequality. Let ε = {εj}Nj=1 be a sequence of Bernoulli variables taking values ±1 with proba-
bility 1/2. Then, by (7.26), symmetry, Fubini’s Theorem and the triangle inequality, it follows that

Eδ (‖Z‖) ≤ Eε

Eδ

Eδ̃

∥∥∥∥∥∥
N∑
j=1

εj

(
q̃−1
j δj − q̃−1

j δ̃j

)
ηj ⊗ η̄j

∥∥∥∥∥∥


≤ 2Eδ

Eε

∥∥∥∥∥∥
N∑
j=1

εj q̃
−1
j δjηj ⊗ η̄j

∥∥∥∥∥∥
 .

(7.27)

We are now able to apply Rudelson’s Lemma (Lemma 7.10). However, as specified before, it is the complex
version that is crucial here. By Lemma 7.10 we get that

Eε

∥∥∥∥∥∥
N∑
j=1

εj q̃
−1
j δjηj ⊗ η̄j

∥∥∥∥∥∥
 ≤ 3

2

√
max{2 log(s), 2} max

1≤j≤N
q̃
−1/2
j ‖ηj‖

√√√√√
∥∥∥∥∥∥
N∑
j=1

q−1
j q̃−1

j δjηj ⊗ η̄j

∥∥∥∥∥∥,
(7.28)

where s = |∆|. And hence, by using (7.27) and (7.28), it follows that

Eδ (‖Z‖) ≤ 3
√

max{2 log(s), 2} max
1≤j≤N

q̃
−1/2
j ‖ηj‖

√√√√√Eδ

∥∥∥∥∥∥Z +

N∑
j=1

ηj ⊗ η̄j

∥∥∥∥∥∥
.
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Note that ‖
∑N
j=1 ηj ⊗ η̄j‖ ≤ 1, since U is an isometry. The result now follows from the straightforward

calculus fact that if r > 0, c ≤ 1 and r ≤ c
√
r + 1 then we have that r ≤ c(1 +

√
5)/2.

Proof of Theorem 7.8. Let N = Nr just to be clear here. Let {δj}Nj=1 be random Bernoulli variables as
defined in Lemma 7.9 and define Z =

∑N
j=1 Zj , Zj =

(
q̃−1
j δj − 1

)
ηj ⊗ η̄j with ηj = P∆U

∗ej . Now
observe that

P∆U
∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ =

N∑
j=1

q̃−1
j δjηj ⊗ η̄j , P∆U

∗PNUP∆ =

N∑
j=1

ηj ⊗ η̄j . (7.29)

Thus, it follows that

‖P∆U
∗(q−1

1 PΩ1 ⊕ . . .⊕ q−1
r PΩr )UP∆ − P∆‖ ≤ ‖Z‖+ ‖(P∆U

∗PNUP∆ − P∆)‖

≤ ‖Z‖+
1

8
,

(7.30)

by the assumption that ‖PMrU
∗PNrUPMr −PMr‖ ≤ 1/8. Thus, to prove the assertion we need to estimate

‖Z‖, and Talagrand’s Theorem (Theorem 7.6) will be our main tool. Note that clearly, since Z is self-adjoint,
we have that ‖Z‖ = supζ∈G |〈Zζ, ζ〉|, where G is a countable set of vectors in the unit ball of P∆(H) . For
ζ ∈ G define the mappings

ζ̂1(T ) = 〈Tζ, ζ〉, ζ̂2(T ) = −〈Tζ, ζ〉, T ∈ B(H).

In order to use Talagrand’s Theorem 7.6 we restrict the domain D of the mappings ζi to

D = {T ∈ B(H) : ‖T‖ ≤ max
1≤j≤N

{q̃−1
j ‖ηj‖

2}}.

Let F denote the family of mappings ζ̂1, ζ̂2 for ζ ∈ G. Then ‖Z‖ = supζ̂∈F ζ̂(Z), and for i = 1, 2 we have

|ζ̂i(Zj)| =
∣∣(q̃−1

j δj − 1
)∣∣ |〈(ηj ⊗ η̄j) ζ, ζ〉| ≤ max

1≤j≤N
{q̃−1
j ‖ηj‖

2}.

Thus, Zj ∈ D for 1 ≤ j ≤ N and S := supζ∈F ‖ζ̂‖∞ = max1≤j≤N{q̃−1
j ‖ηj‖2}. Note that

‖ηj‖2 = 〈P∆U
∗ej , P∆U

∗ej〉 =

r∑
k=1

〈P∆k
U∗ej , P∆k

U∗ej〉.

Also, note that an easy application of Holder’s inequality gives the following (note that the l1 and l∞ bounds
are finite because all the projections have finite rank),

|〈P∆k
U∗ej , P∆k

U∗ej〉| ≤ ‖P∆k
U∗ej‖l1‖P∆k

U∗ej‖l∞

≤ ‖P∆k
U∗P

Nl−1

Nl
‖l1→l1‖P∆k

U∗ej‖l∞ ≤ ‖P
Nl−1

Nl
UP∆k

‖l∞→l∞ ·
√
µ(P

Nl−1

Nl
U) ≤ κN,M(l, k),

for j ∈ {Nl−1 + 1, . . . , Nl} and l ∈ {1, . . . , r}. Hence, it follows that

‖ηj‖2 ≤ max
1≤k≤r

(κN,M(k, 1) + . . .+ κN,M(k, r)), (7.31)

and therefore S ≤ max1≤k≤r

(
q−1
k

∑r
j=1 κN,M(k, j)

)
. Finally, note that by (7.31) and the reasoning

above, it follows that

V := sup
ζ̂i∈F

E

 N∑
j=1

ζ̂i(Zj)
2

 = sup
ζ∈G

E

 N∑
j=1

(
q̃−1
j δj − 1

)2 |〈P∆U
∗ej , ζ〉|4


≤ max

1≤k≤r
‖ηk‖2

(
Nk −Nk−1

mk
− 1

)
sup
ζ∈G

N∑
j=1

|〈ej , UP∆ζ〉|2,

≤ max
1≤k≤r

Nk −Nk−1

mk

(
r∑
l=1

κN,M(k, l)

)
sup
ζ∈G
‖Uζ‖2 = max

1≤k≤r

Nk −Nk−1

mk

(
r∑
l=1

κN,M(k, l)

)
,

(7.32)
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where we used the fact that U is an isometry to deduce that ‖U‖ = 1. Also, by Lemma 7.9 and (7.31) , it
follows that

E (‖Z‖)2 ≤ 48 max
1≤k≤r

Nk −Nk−1

mk

(
r∑
l=1

κN,M(k, l)

)
· log(s) (7.33)

when

1 ≥ 18 max
1≤k≤r

Nk −Nk−1

mk

(
r∑
l=1

κN,M(k, l)

)
· log(s), (7.34)

(recall that we have assumed s ≥ 3). Thus, by (7.30) and Talagrand’s Theorem 7.6, it follows that

P
(
‖P∆U

∗(q−1
1 PΩ1 ⊕ . . .⊕ q−1

r PΩr )UP∆ − P∆‖ ≥ 1/4
)

≤ P

‖Z‖ ≥ 1

16
+

√√√√24 max
1≤k≤r

Nk −Nk−1

mk

(
r∑
l=1

κN,M(k, l)

)
· log(s)


≤ 3 exp

− 1

16K

(
max

1≤k≤r

Nk −Nk−1

mk

(
r∑
l=1

κN,M(k, l)

))−1

log (1 + 1/32)

 , (7.35)

when mk’s are chosen such that the right hand side of (7.33) is less than or equal to 1. Thus, by (7.30) and
Talagrand’s Theorem 7.6, it follows that

P
(
‖P∆U

∗(q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr )UP∆ − P∆‖ ≥ 1/4

)
≤ P (‖Z‖ ≥ 1/8) ≤ P

(
‖Z‖ ≥ 1

16
+ E‖Z‖

)
≤ P

(
|‖Z‖ − E‖Z‖| ≥ 1

16

)

≤ 3 exp

− 1

16K

(
max

1≤k≤r

Nk −Nk−1

mk

(
r∑
l=1

κN,M(k, l)

))−1

log (1 + 1/32)

 , (7.36)

when mk’s are chosen such that the right hand side of (7.33) is less than or equal to 1/162. Note that this
condition is implied by the assumptions of the theorem as is (7.34). This yields the first part of the theorem.
The second claim of this theorem follows from the assumption that ‖PMrU

∗PNrUPMr −PMr‖ ≤ 1/8.

Proposition 7.11. Let U ∈ B(l2(N)) be an isometry. Suppose that Ω = ΩN,m is a multilevel Bernoulli
sampling scheme, where N = (N1, . . . , Nr) ∈ Nr and m = (m1, . . . ,mr) ∈ Nr. Consider (s,M), where
M = (M1, . . . ,Mr) ∈ Nr, M1 < . . . < Mr, and s = (s1, . . . , sr) ∈ Nr, and let

∆ = ∆1 ∪ . . . ∪∆r, ∆k ⊂ {Mk−1, . . . ,Mk}, |∆k| = sk

where M0 = 0. Let β ≥ 1/4.

(i) If

N := Nr, K := max
k=1,...,r

{
Nk −Nk−1

mk

}
,

satisfy the weak balancing property with respect to U , M := Mr and s := s1 + . . . + sr, then, for
ξ ∈ H and β, γ > 0, we have that

P
(
‖PMP⊥∆U∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ξ‖l∞ > β‖ξ‖l∞
)
≤ γ, (7.37)

provided that
β

log
(

4
γ (M − s)

) ≥ C Λ,
β2

log
(

4
γ (M − s)

) ≥ C Υ, (7.38)

for some constant C > 0, where qk = mk/(Nk −Nk−1) for k = 1, . . . , r,

Λ = max
1≤k≤r

{
Nk −Nk−1

mk
·

(
r∑
l=1

κN,M(k, l)

)}
, (7.39)
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Υ = max
1≤l≤r

r∑
k=1

(
Nk −Nk−1

mk
− 1

)
· µN,M(k, l) · s̃k, (7.40)

for all {s̃k}rk=1 such that s̃1 + . . .+ s̃r ≤ s1 + . . .+ sr and s̃k ≤ Sk(s1, . . . , sr). Moreover, if qk = 1
for all k = 1, . . . , r, then (7.38) is trivially satisfied for any γ > 0 and the left-hand side of (7.37) is
equal to zero.

(ii) IfN satisfies the strong Balancing Property with respect to U, M and s, then, for ξ ∈ H and β, γ > 0,
we have that

P
(
‖P⊥∆U∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ξ‖l∞ > β‖ξ‖l∞
)
≤ γ, (7.41)

provided that
β

log
(

4
γ (θ̃ − s)

) ≥ C Λ,
β2

log
(

4
γ (θ̃ − s)

) ≥ C Υ, (7.42)

for some constant C > 0, θ̃ = θ̃({qk}rk=1, 1/8, {Nk}rk=1, s,M) and Υ, Λ as defined in (i) and

θ̃({qk}rk=1, t, {Nk}rk=1, s,M)

=

∣∣∣∣∣∣∣
i ∈ N : max

Γ1⊂{1,...,M}, |Γ1|=s
Γ2,j⊂{Nj−1+1,...,Nj}, j=1,...,r

‖PΓ1
U∗(q−1

1 PΓ2,1
⊕ . . .⊕ q−1

r PΓ2,r
)Uei‖ >

t√
s


∣∣∣∣∣∣∣ .

Moreover, if qk = 1 for all k = 1, . . . , r, then (7.42) is trivially satisfied for any γ > 0 and the
left-hand side of (7.41) is equal to zero.

Proof. To prove (i) we note that, without loss of generality, we can assume that ‖ξ‖l∞ = 1. Let {δj}Nj=1 be
random Bernoulli variables with P(δj = 1) = q̃j = qk, for j ∈ {Nk−1 + 1, . . . , Nk} and 1 ≤ k ≤ r. A key
observation that will be crucial below is that

P⊥∆U
∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ξ =

N∑
j=1

P⊥∆U
∗q̃−1
j δj(ej ⊗ ej)UP∆ξ

=

N∑
j=1

P⊥∆U
∗(q̃−1

j δj − 1)(ej ⊗ ej)UP∆ξ + P⊥∆U
∗PNUP∆ξ.

(7.43)

We will use this equation at the end of the argument, but first we will estimate the size of the individual
components of

∑N
j=1 P

⊥
∆U

∗(q̃−1
j δj − 1)(ej ⊗ ej)UP∆ξ. To do that define, for 1 ≤ j ≤ N , the random

variables
Xi
j = 〈U∗(q̃−1

j δj − 1)(ej ⊗ ej)UP∆ξ, ei〉, i ∈ ∆c.

We will show using Bernstein’s inequality that, for each i ∈ ∆c and t > 0,

P

∣∣∣∣∣∣
N∑
j=1

Xi
j

∣∣∣∣∣∣ > t

 ≤ 4 exp

(
− t2/4

Υ + Λt/3

)
. (7.44)

To prove the claim, we need to estimate E
(
|Xi

j |2
)

and |Xi
j |. First note that,

E
(
|Xi

j |2
)

= (q̃−1
j − 1)|〈ej , UP∆ξ〉|2|〈ej , Uei〉|2,

and note that |〈ej , Uei〉|2 ≤ µN,M(k, l) for j ∈ {Nk−1 + 1, . . . , Nk} and i ∈ {Ml−1 + 1, . . . ,Ml}. Hence

N∑
j=1

E
(
|Xi

j |2
)
≤

r∑
k=1

(q−1
k − 1)µN,M(k, l)‖PNk−1

Nk
UP∆ξ‖2

≤ sup
ζ∈Θ

{
r∑

k=1

(q−1
k − 1)µN,M(k, l)‖PNk−1

Nk
Uζ‖2

}
,
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where
Θ = {η : ‖η‖l∞ ≤ 1, |supp(P

Ml−1

Ml
η)| = sl, l = 1, . . . , r}.

The supremum in the above bound is attained for some ζ̃ ∈ Θ. If s̃k = ‖PNk−1

Nk
Uζ̃‖2, then we have

N∑
j=1

E
(
|Xi

j |2
)
≤

r∑
k=1

(q−1
k − 1)µN,M(k, l)s̃k. (7.45)

Note that it is clear from the definition that sk ≤ Sk(s1, . . . , sr) for 1 ≤ k ≤ r. Also, using the fact that
‖U‖ ≤ 1 and the definition of Θ, we note that

s̃1 + . . .+ s̃r =

r∑
k=1

‖PNk−1

Nk
UP∆ζ‖2 ≤ ‖UP∆ζ‖2 = ‖ζ‖2 ≤ s1 + . . .+ sr.

To estimate |Xi
j | we start by observing that, by the triangle inequality, the fact that ‖ξ‖l∞ = 1 and Holder’s

inequality, it follows that |〈ξ, P∆U
∗ej〉| ≤

∑r
k=1 |〈P

Mk−1

Mk
ξ, P∆U

∗ej〉|, and

|〈PMk−1

Mk
ξ, P∆U

∗ej〉| ≤ ‖P
Nl−1

Nl
UP∆k

‖l∞→l∞ , j ∈ {Nl−1 + 1, . . . , Nl}, l ∈ {1, . . . , r}.

Hence, it follows that for 1 ≤ j ≤ N and i ∈ ∆c,

|Xi
j | = q̃−1

j |(δj − q̃j)||〈ξ, P∆U
∗ej〉||〈ej , Uei〉|,

≤ max
1≤k≤r

{
Nk −Nk−1

mk
· (κN,M(k, 1) + . . .+ κN,M(k, r))

}
.

(7.46)

Now, clearly E(Xi
j) = 0 for 1 ≤ j ≤ N and i ∈ ∆c. Thus, by applying Bernstein’s inequality to Re(Xi

j)

and Im(Xi
j) for j = 1, . . . , N , via (7.45) and (7.46), the claim (7.44) follows.

Now, by (7.44), (7.43) and the assumed weak Balancing property (wBP), it follows that

P
(
‖PMP⊥∆U∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ξ‖l∞ > β
)

≤
∑

i∈∆c∩{1,...,M}

P

∣∣∣∣∣∣
N∑
j=1

Xi
j + 〈PMP⊥∆U∗P⊥NUP∆ξ, ei〉

∣∣∣∣∣∣ > β


≤

∑
i∈∆c∩{1,...,M}

P

∣∣∣∣∣∣
N∑
j=1

Xi
j

∣∣∣∣∣∣ > β − ‖PMP⊥∆U∗PNUP∆‖l∞


≤ 4(M − s) exp

(
− t2/4

Υ + Λt/3

)
, t =

1

2
β, by (7.44), (wBP),

Also,

4(M − s) exp

(
− t2/4

Υ + Λt/3

)
≤ γ

when

log

(
4

γ
(M − s)

)−1

≥
(

4Υ

t2
+

4Λ

3t

)
.

And this concludes the proof of (i). To prove (ii), for t > 0, suppose that there is a set Λt ⊂ N such that

P
(

sup
i∈Λt

|〈P⊥∆U∗(q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr )UP∆η, ei〉| > t

)
= 0, |Λct | <∞.

Then, as before, by (7.44), (7.43) and the assumed strong Balancing property (sBP), it follows that

P
(
‖P⊥∆U∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ξ‖l∞ > β
)

≤
∑

i∈∆c∩Λct

P

∣∣∣∣∣∣
N∑
j=1

Xi
j + 〈P⊥∆U∗P⊥NUP∆ξ, ei〉

∣∣∣∣∣∣ > β

 ,
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yielding

P
(
‖P⊥∆U∗(q−1

1 PΩ1 ⊕ . . .⊕ q−1
r PΩr )UP∆ξ‖l∞ > β

)
≤

∑
i∈∆c∩Λct

P

∣∣∣∣∣∣
N∑
j=1

Xi
j

∣∣∣∣∣∣ > β − ‖P⊥∆U∗PNUP∆‖l∞


≤ 4(|Λct | − s) exp

(
− t2/4

Υ + Λt/3

)
< γ, t =

1

2
β, by (7.44), (sBP),

whenever

log

(
4

γ
(|Λct | − s)

)−1

≥
(

4Υ

t2
+

4Λ

3t

)
.

Hence, it remains to obtain a bound on |Λct |. Let

θ(q1, . . . , qr, t, s) =

i ∈ N : max
Γ1⊂{1,...,M}, |Γ1|=s

Γ2,j⊂{Nj−1+1,...,Nj}, j=1,...,r

‖PΓ1
U∗(q−1

1 PΓ2,1
⊕ . . .⊕ q−1

r PΓ2,r
)Uei‖ >

t√
s

 .

Clearly, ∆c
t ⊂ θ(q1, . . . , qr, t, s) and

‖PΓ1U
∗(q−1

1 PΓ2,1 ⊕ . . .⊕ q−1
r PΓ2,r )Uei‖ ≤ max

1≤j≤r
q−1
j ‖PNUP

⊥
i−1‖ → 0

as i → ∞. So, |θ(q1, . . . , qr, t, s)| < ∞. Furthermore, since θ̃({qk}rk=1, t, {Nk}rk=1, s,M) is a decreasing
function in t, for all t ≥ 1

8 ,

|θ(q1, . . . , qr, t, s)| < θ̃({qk}rk=1, 1/8, {Nk}rk=1, s,M)

thus, we have proved (ii). The statements at the end of (i) and (ii) are clear from the reasoning above.

Proposition 7.12. Consider the same setup as in Proposition 7.11. If N and K satisfy the weak Balancing
Property with respect to U, M and s, then, for ξ ∈ H and γ > 0, we have

P(‖P∆U
∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ − P∆)ξ‖l∞ > α̃‖ξ‖l∞) ≤ γ, (7.47)

α̃ =
(

2 log
1/2
2

(
4
√
sKM

))−1

,

provided that

1 & Λ ·
(
log
(
sγ−1

)
+ 1
)
· log

(√
sKM

)
,

1 & Υ ·
(
log
(
sγ−1

)
+ 1
)
· log

(√
sKM

)
,

where Λ and Υ are defined in (7.39) and (7.40). Also,

P(‖P∆U
∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ − P∆)ξ‖l∞ >
1

2
‖ξ‖l∞) ≤ γ (7.48)

provided that
1 & Λ ·

(
log
(
sγ−1

)
+ 1
)
, 1 & Υ ·

(
log
(
sγ−1

)
+ 1
)
.

Moreover, if qk = 1 for all k = 1, . . . , r, then the left-hand sides of (7.47) and (7.48) are equal to zero.

Proof. Without loss of generality we may assume that ‖ξ‖l∞ = 1. Let {δj}Nj=1 be random Bernoulli vari-
ables with P(δj = 1) = q̃j := qk, with j ∈ {Nk−1 + 1, . . . , Nk} and 1 ≤ k ≤ r. Let also, for j ∈ N,
ηj = (UP∆)∗ej . Then, after observing that

P∆U
∗(q−1

1 PΩ1 ⊕ . . .⊕ q−1
r PΩr )UP∆ =

N∑
j=1

q−1
j δjηj ⊗ η̄j , P∆U

∗PNUP∆ =

N∑
j=1

ηj ⊗ η̄j ,
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it follows immediately that

P∆U
∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP∆ − P∆ =

N∑
j=1

(q̃−1
j δj − 1)ηj ⊗ η̄j − (P∆U

∗PNUP∆ − P∆). (7.49)

As in the proof of Proposition 7.11 our goal is to eventually use Bernstein’s inequality and the following is
therefore a setup for that. Define, for 1 ≤ j ≤ N , the random variables Zij = 〈(q̃−1

j δj − 1)(ηj ⊗ η̄j)ξ, ei〉,
for i ∈ ∆. We claim that, for t > 0,

P

∣∣∣∣∣∣
N∑
j=1

Zij

∣∣∣∣∣∣ > t

 ≤ 4 exp

(
− t2/4

Υ + Λt/3

)
, i ∈ ∆. (7.50)

Now, clearly E(Zij) = 0, so we may use Bernstein’s inequality. Thus, we need to estimate E
(
|Zij |2

)
and

|Zij |. We will start with E
(
|Zij |2

)
. Note that

E
(
|Zij |2

)
= (q̃−1

j − 1)|〈ej , UP∆ξ〉|2|〈ej , Uei〉|2. (7.51)

Thus, we can argue exactly as in the proof of Proposition 7.11 and deduce that

N∑
j=1

E
(
|Zij |2

)
≤

r∑
k=1

(q−1
k − 1)µNk−1

s̃k, (7.52)

where sk ≤ Sk(s1, . . . , sr) for 1 ≤ k ≤ r and s̃1 + . . .+ s̃r ≤ s1 + . . .+ sr. To estimate |Zij | we argue as
in the proof of Proposition 7.11 and obtain

|Zij | ≤ max
1≤k≤r

{
Nk −Nk−1

mk
· (κN,M(k, 1) + . . .+ κN,M(k, r))

}
. (7.53)

Thus, by applying Bernstein’s inequality to Re(Zi1), . . . ,Re(ZiN ) and Im(Zi1), . . . , Im(ZiN ) we obtain, via
(7.52) and (7.53) the estimate (7.50), and we have proved the claim.

Now armed with (7.50) we can deduce that , by (7.43) and the assumed weak Balancing property (wBP),
it follows that

P
(
‖P∆U

∗(q−1
1 PΩ1 ⊕ . . .⊕ q−1

r PΩr )UP∆ − P∆)ξ‖l∞ > α̃
)

≤
∑
i∈∆

P

∣∣∣∣∣∣
N∑
j=1

Zij + 〈(P∆U
∗PNUP∆ − P∆)ξ, ei〉

∣∣∣∣∣∣ > α̃


≤
∑
i∈∆

P

∣∣∣∣∣∣
N∑
j=1

Zij

∣∣∣∣∣∣ > α̃− ‖PMU∗PNUPM − PM‖l1

 ,

≤ 4 s exp

(
− t2/4

Υ + Λt/3

)
, t = α̃, by (7.50), (wBP).

(7.54)

Also,

4s exp

(
− t2/4

Υ + Λt/3

)
≤ γ, (7.55)

when

1 ≥
(

4Υ

t2
+

4

3t
Λ

)
· log

(
4s

γ

)
.

And this gives the first part of the proposition. Also, the fact that the left hand side of (7.47) is zero when
qk = 1 for 1 ≤ k ≤ r is clear from (7.55). Note that (ii) follows by arguing exactly as above and replacing
α̃ by 1

4 .
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Proposition 7.13. Let U ∈ B(l2(N)) such that ‖U‖ ≤ 1. Suppose that Ω = ΩN,m is a multilevel Bernoulli
sampling scheme, where N = (N1, . . . , Nr) ∈ Nr and m = (m1, . . . ,mr) ∈ Nr. Consider (s,M), where
M = (M1, . . . ,Mr) ∈ Nr, M1 < . . . < Mr, and s = (s1, . . . , sr) ∈ Nr, and let ∆ = ∆1∪ . . .∪∆r, where
∆k ⊂ {Mk−1 + 1, . . . ,Mk}, |∆k| = sk, and M0 = 0. Then, for any t ∈ (0, 1) and γ ∈ (0, 1),

P
(

max
i∈{1,...,M}∩∆c

‖P{i}U∗(q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr )UP{i}‖ ≥ 1 + t

)
≤ γ

provided that
t2

4
≥ log

(
2M

γ

)
· max

1≤k≤r

{(
Nk −Nk−1

mk
− 1

)
· µN,M(k, l)

}
(7.56)

for all l = 1, . . . , r when M = Mr and for all l = 1, . . . , r − 1,∞ when M > Mr. In addition, if
mk = Nk −Nk−1 for each k = 1, . . . r, then

P(‖P{i}U∗(q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr )UP{i}‖ ≥ 1 + t) = 0, ∀i ∈ N. (7.57)

Proof. Fix i ∈ {1, . . . ,M}. Let {δj}Nj=1 be random independent Bernoulli variables with P(δj = 1) =

q̃j := qk for j ∈ {Nk−1 + 1, . . . , Nk}. Define Z =
∑N
j=1 Zj and Zj =

(
q̃−1
j δj − 1

)
|uji|2 . Now observe

that

P{i}U
∗(q−1

1 PΩ1
⊕ . . .⊕ q−1

r PΩr )UP{i} =

N∑
j=1

q̃−1
j δj |uji|2 =

N∑
j=1

Zj +

N∑
j=1

|uji|2 ,

where we interpret U as the infinite matrix U = {uij}i,j∈N. Thus, since ‖U‖ ≤ 1,

‖P{i}U∗(q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr )UP{i}‖ ≤

∣∣∣∣∣∣
N∑
j=1

Zj

∣∣∣∣∣∣+ 1 (7.58)

and it is clear that (7.57) is true. For the case where qk < 1 for some k ∈ {1, . . . , r}, observe that for
i ∈ {Ml−1 + 1, . . . ,Ml} (recall that Zj depend on i), we have that E(Zj) = 0. Also,

|Zj | ≤

{
max1≤k≤r{max{q−1

k − 1, 1} · µN,M(k, l)} := Bi i ∈ {Ml−1 + 1, . . . ,Ml}
max1≤k≤r{max{q−1

k − 1, 1} · µN,M(k,∞)} := B∞ i > Mr,

and, by again using the assumption that ‖U‖ ≤ 1,

N∑
j=1

E(|Zj |2) =

N∑
j=1

(q̃−1
j − 1) |uji|4

≤

{
max1≤k≤r{(q−1

k − 1)µN,M(k, l)} =: σ2
i i ∈ {Ml−1 + 1, . . . ,Ml}

max1≤k≤r{(q−1
k − 1)µN,M(k,∞)} =: σ2

∞ i > Mr.

Thus, by Bernstein’s inequality and (7.58),

P(‖P{i}U∗(q−1
1 PΩ1

⊕ . . .⊕ q−1
r PΩr )UP{i}‖ ≥ 1 + t)

≤ P

∣∣∣∣∣∣
N∑
j=1

Zj

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
− t2/2

σ2 +Bt/3

)
,

B =

{
max1≤i≤r Bi M = Mr,

maxi∈{1,...,r−1,∞}Bi M > Mr

, σ2 =

{
max1≤i≤r σ

2
i M = Mr,

maxi∈{1,...,r−1,∞} σ
2
1 M > Mr.

Applying the union bound yields

P
(

max
i∈{1,...,M}

‖P{i}U∗(q−1
1 PΩ1 ⊕ . . .⊕ q−1

r PΩr )UP{i}‖ ≥ 1 + t

)
≤ γ

whenever (7.56) holds.
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7.3 Proofs of Propositions 7.3 and 7.4
The proof of the propositions relies on an idea that originated in a paper by D. Gross [39], namely, the
golfing scheme. The variant we are using here is based on an idea from [1]. However, the informed reader
will recognise that the setup here differs substantially from both [39] and [1]. See also [14] for other examples
of the use of the golfing scheme. Before we embark on the proof, we will state and prove a useful lemma.

Lemma 7.14. Let X̃k be independent binary variables taking values 0 and 1, such that X̃k = 1 with
probability P . Then,

P

(
N∑
i=1

X̃i ≥ k

)
≥
(
N · e
k

)−k (
N

k

)
P k. (7.59)

Proof. First observe that

P

(
N∑
i=1

X̃i ≥ k

)
=

N∑
i=k

(
N

i

)
P i(1− P )N−i =

N−k∑
i=0

(
N

i+ k

)
P i+k(1− P )N−k−i

=

(
N

k

)
P k

N−k∑
i=0

(N − k)!k!

(N − i− k)!(i+ k)!
P i(1− P )N−k−i

=

(
N

k

)
P k

N−k∑
i=0

(
N − k
i

)
P i(1− P )N−k−i

[(
i+ k

k

)]−1

.

The result now follows because
∑N−k
i=0

(
N−k
i

)
P i(1−P )N−k−i = 1 and for i = 0, . . . , N − k, we have that(

i+ k

k

)
≤
(

(i+ k) · e
k

)k
≤
(
N · e
k

)k
,

where the first inequality follows from Stirling’s approximation (see [19], p. 1186).

Proof of Proposition 7.3. We start by mentioning that converting from the Bernoulli sampling model and
uniform sampling model has become standard in the literature. In particular, one can do this by showing
that the Bernoulli model implies (up to a constant) the uniform sampling model in each of the conditions in
Proposition 7.1. This is straightforward and the reader may consult [16, 15, 36] for details. We will therefore
consider (without loss of generality) only the multilevel Bernoulli sampling scheme.

Recall that we are using the following Bernoulli sampling model: Given N0 = 0, N1, . . . , Nr ∈ N we
let

{Nk−1 + 1, . . . , Nk} ⊃ Ωk ∼ Ber (qk) , qk =
mk

Nk −Nk−1
.

Note that we may replace this Bernoulli sampling model with the following equivalent sampling model (see
[1]):

Ωk = Ω1
k ∪ Ω2

k ∪ · · · ∪ Ωuk , Ωjk ∼ Ber(qjk), 1 ≤ k ≤ r,

for some u ∈ N with
(1− q1

k)(1− q2
k) · · · (1− quk ) = (1− qk). (7.60)

The latter model is the one we will use throughout the proof and the specific value of u will be chosen later.
Note also that because of overlaps we will have

q1
k + q2

k + . . .+ quk ≥ qk, 1 ≤ k ≤ r. (7.61)

The strategy of the proof is to show the validity of (i) and (ii), and the existence of a ρ ∈ ran(U∗(PΩ1 ⊕
. . .⊕ PΩr )) that satisfies (iii)-(v) in Proposition 7.1 with probability exceeding 1− ε, where (iii) is replaced
by (7.16), (iv) is replaced by ‖PMP⊥∆ ρ‖l∞ ≤ 1

2 and L in (v) is given by (7.17).
Step I: The construction of ρ: We start by defining γ = ε/6 (the reason for this particular choice will

become clear later). We also define a number of quantities (and the reason for these choices will become
clear later in the proof):

u = 8d3v + log(γ−1)e, v = dlog2(8KM
√
s)e, (7.62)
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as well as
{qik : 1 ≤ k ≤ r, 1 ≤ i ≤ u}, {αi}ui=1, {βi}ui=1

by

q1
k = q2

k =
1

4
qk, q̃k = q3

k = . . . = quk , qk = (Nk −Nk−1)m−1
k , 1 ≤ k ≤ r, (7.63)

with
(1− q1

k)(1− q2
k) · · · (1− quk ) = (1− qk)

and
α1 = α2 = (2 log

1/2
2 (4KM

√
s))−1, αi = 1/2, 3 ≤ i ≤ u, (7.64)

as well as
β1 = β2 =

1

4
, βi =

1

4
log2(4KM

√
s), 3 ≤ i ≤ u. (7.65)

Consider now the following construction of ρ. We will define recursively the sequences {Zi}ui=0 ⊂ H,
{Yi}ui=1 ⊂ H and {ωi}ui=0 ⊂ N as follows: first let ω0 = {0}, ω1 = {0, 1} and ω2 = {0, 1, 2}. Then define
recursively, for i ≥ 3, the following:

ωi =


ωi−1 ∪ {i} if ‖(P∆ − P∆U

∗( 1
qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆)Zi−1‖l∞ ≤ αi‖P∆k
Zi−1‖l∞ ,

and ‖PMP⊥∆U∗( 1
qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆Zi−1‖l∞ ≤ βi‖Zi−1‖l∞ ,
ωi−1 otherwise,

(7.66)

Yi =

{∑
j∈ωi U

∗( 1

qj1
PΩj1
⊕ . . .⊕ 1

qjr
PΩjr

)UZj−1 if i ∈ ωi,
Yi−1 otherwise,

i ≥ 1,

Zi =

{
sgn(x0)− P∆Yi if i ∈ ωi,
Zi−1 otherwise,

i ≥ 1, Z0 = sgn(x0).

Now, let {Ai}2i=1 and {Bi}5i=1 denote the following events

Ai : ‖(P∆ − U∗(
1

qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆)Zi−1‖l∞ ≤ αi ‖Zi−1‖l∞ , i = 1, 2,

Bi : ‖PMP⊥∆U∗(
1

qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆Zi−1‖l∞ ≤ βi‖Zi−1‖l∞ , i = 1, 2,

B3 : ‖P∆U
∗(

1

q1
PΩ1 ⊕ . . .⊕

1

qr
PΩr )UP∆ − P∆‖ ≤ 1/4,

max
i∈∆c∩{1,...,M}

‖
(
q
−1/2
1 PΩ1

⊕ . . .⊕ q−1/2
r PΩr

)
Uei‖ ≤

√
5/4

B4 : |ωu| ≥ v,
B5 : (∩2

i=1Ai) ∩ (∩4
i=1Bi).

(7.67)

Also, let τ(j) denote the jth element in ωu (e.g. τ(0) = 0, τ(1) = 1, τ(2) = 2 etc.) and finally define ρ by

ρ =

{
Yτ(v) if B5 occurs,
0 otherwise.

Note that, clearly, ρ ∈ ran(U∗PΩ), and we just need to show that when the event B5 occurs, then (i)-(v) in
Proposition 7.1 will follow.

Step II: B5 ⇒ (i), (ii). To see that the assertion is true, note that if B5 occurs then B3 occurs, which
immediately (i) and (ii).
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Step III: B5 ⇒ (iii), (iv). To show the assertion, we start by making the following observations: By the
construction of Zτ(i) and the fact that Z0 = sgn(x0), it follows that

Zτ(i) = Z0 − (P∆U
∗(

1

q
τ(1)
1

P
Ω
τ(1)
1
⊕ . . .⊕ 1

q
τ(1)
r

P
Ω
τ(i)
r

)UP∆)Z0

+ . . .+ P∆U
∗(

1

q
τ(i)
1

P
Ω
τ(i)
1
⊕ . . .⊕ 1

q
τ(i)
r

P
Ω
τ(i)
r

)UP∆)Zτ(i−1))

= Zτ(i−1) − P∆U
∗(

1

q
τ(i)
1

P
Ω
τ(i)
1
⊕ . . .⊕ 1

q
τ(i)
r

P
Ω
τ(i)
r

)UP∆)Zτ(i−1) i ≤ |ωu|,

so we immediately get that

Zτ(i) = (P∆ − P∆U
∗(

1

q
τ(i)
1

P
Ω
τ(i)
1
⊕ . . .⊕ 1

q
τ(i)
r

P
Ω
τ(i)
r

)UP∆)Zτ(i−1), i ≤ |ωu|.

Hence, if the event B5 occurs, we have, by the choices in (7.64) and (7.65)

‖ρ− sgn(x0)‖ = ‖Zτ(v)‖ ≤
√
s‖Zτ(v)‖l∞ ≤

√
s

v∏
i=1

ατ(i) ≤
√
s

2v
≤ 1

8K
, (7.68)

since we have chosen v = dlog2(8KM
√
s)e. Also,

‖PMP⊥∆ ρ‖l∞ ≤
v∑
i=1

‖PMP⊥∆U∗(
1

q
τ(i)
1

P
Ω
τ(i)
1
⊕ . . .⊕ 1

q
τ(i)
r

P
Ω
τ(i)
r

)UP∆Zτ(i−1)‖l∞

≤
v∑
i=1

βτ(i)‖Zτ(i−1)‖l∞ ≤
v∑
i=1

βτ(i)

i−1∏
j=1

ατ(j)

≤ 1

4
(1 +

1

2 log
1/2
2 (a)

+
log2(a)

23 log2(a)
+ . . .+

1

2v−1
) ≤ 1

2
, a = 4KM

√
s.

(7.69)

In particular, (7.68) and (7.69) imply (iii) and (iv) in Proposition 7.1.
Step IV: B5 ⇒ (v). To show that, note that we may write the already constructed ρ as ρ = U∗PΩw

where

w =

v∑
i=1

wi, wi =

(
1

q
τ(i)
1

PΩ1
⊕ . . .⊕ 1

q
τ(i)
r

PΩr

)
UP∆Zτ(i−1).

To estimate ‖w‖ we simply compute

‖wi‖2 =

〈(
1

q
τ(i)
1

P
Ω
τ(i)
1
⊕ . . .⊕ 1

q
τ(i)
r

P
Ω
τ(i)
r

)
UP∆Zτ(i−1),

(
1

q
τ(i)
1

P
Ω
τ(i)
1
⊕ . . .⊕ 1

q
τ(i)
r

P
Ω
τ(i)
r

)
UP∆Zτ(i−1)

〉

=

r∑
k=1

(
1

q
τ(i)
k

)2

‖P
Ω
τ(i)
k

UZτ(i−1)‖2,

and then use the assumption that the event B5 holds to deduce that

r∑
k=1

(
1

q
τ(i)
k

)2

‖P
Ω
τ(i)
k

UZτ(i−1)‖2 ≤ max
1≤k≤r

{
1

q
τ(i)
k

}
〈
r∑

k=1

1

q
τ(i)
k

P∆U
∗P

Ω
τ(i)
k

UZτ(i−1), Zτ(i−1)〉

= max
1≤k≤r

{
1

q
τ(i)
k

}
〈

(
r∑

k=1

1

q
τ(i)
k

P∆U
∗P

Ω
τ(i)
k

U − P∆

)
Zτ(i−1), Zτ(i−1)〉+ ‖Zτ(i−1)‖2

≤ max
1≤k≤r

{
1

q
τ(i)
k

}(
‖Zτ(i−1)‖‖Zτ(i)‖+ ‖Zτ(i−1)‖2

)

≤ max
1≤k≤r

{
1

q
τ(i)
k

}
s
(
‖Zτ(i−1)‖l∞‖Zτ(i)‖l∞ + ‖Zτ(i−1)‖2l∞

)
≤ max

1≤k≤r

{
1

q
τ(i)
k

}
s(αi + 1)

i−1∏
j=1

αj

2

,
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where the last inequality follows from the assumption that the event B5 holds. Hence

‖w‖ ≤
√
s

v∑
i=1

 max
1≤k≤r

 1√
q
τ(i)
k

√αi + 1

i−1∏
j=1

αj

 (7.70)

Note that, due to the fact that q1
k + . . .+ quk ≥ qk, we have that

q̃k ≥
mk

2(Nk −Nk−1)

1

8 dlog(γ−1) + 3dlog2(8KM
√
s)ee − 2

.

This gives, in combination with the chosen values of {αj} and (7.70) that

‖w‖ ≤ 2
√
s max

1≤k≤r

√
Nk −Nk−1

mk

(
1 +

1

2 log
1/2
2 (4KM

√
s)

)3/2

+
√
s max

1≤k≤r

√
Nk −Nk−1

mk
·
√

3

2
·
√

8 dlog(γ−1) + 3dlog2(8KM
√
s)ee − 2

log2 (4KM
√
s)

·
v∑
i=3

1

2i−3

≤ 2
√
s max

1≤k≤r

√
Nk −Nk−1

mk

((
3

2

)3/2

+

√
6

log2(4KM
√
s)

√
1 +

log2 (γ−1) + 6

log2(4KM
√
s)

)

≤
√
s max

1≤k≤r

√
Nk −Nk−1

mk

(
3
√

3√
2

+
2
√

6√
log2(4KM

√
s)

√
1 +

log2 (γ−1) + 6

log2(4KM
√
s)

)
.

(7.71)

Step V: The weak balancing property, (7.14) and (7.15)⇒ P(Ac1 ∪Ac2 ∪Bc1 ∪Bc2 ∪Bc3) ≤ 5γ.
To see this, note that by Proposition 7.12 we immediately get (recall that q1

k = q2
k = 1/4qk) that P(Ac1) ≤

γ and P(Ac2) ≤ γ as long as the weak balancing property and

1 & Λ ·
(
log
(
sγ−1

)
+ 1
)
· log

(√
sKM

)
, 1 & Υ ·

(
log
(
sγ−1

)
+ 1
)
· log

(√
sKM

)
, (7.72)

are satisfied, where K = max1≤k≤r(Nk −Nk−1)/mk,

Λ = max
1≤k≤r

{
Nk −Nk−1

mk
·

(
r∑
l=1

κN,M(k, l)

)}
, (7.73)

Υ = max
1≤l≤r

r∑
k=1

(
Nk −Nk−1

mk
− 1

)
· µN,M(k, l) · s̃k, (7.74)

and where s̃1 + . . .+ s̃r ≤ s1 + . . .+ sr and s̃k ≤ Sk(s1, . . . , sr). However, clearly, (7.14) and (7.15) imply
(7.72). Also, Proposition 7.11 yields that P(Bc1) ≤ γ and P(Bc2) ≤ γ as long as the weak balancing property
and

1 & Λ · log

(
4

γ
(M − s)

)
, 1 & Υ · log

(
4

γ
(M − s)

)
, (7.75)

are satisfied. However, again, (7.14) and (7.15) imply (7.75). Finally, it remains to bound P(Bc3). First note
that by Theorem 7.8, we may deduce that

P
(
‖P∆U

∗(
1

q1
PΩ1 ⊕ . . .⊕

1

qr
PΩr )UP∆ − P∆‖ > 1/4,

)
≤ γ/2,

when the weak balancing property and

1 & Λ ·
(
log
(
γ−1 s

)
+ 1
)

(7.76)

holds and (7.14) implies (7.76).
For the second part of B3, we may deduce from Proposition 7.13 that

P
(

max
i∈∆c∩{1,...,M}

‖
(
q
−1/2
1 PΩ1

⊕ . . .⊕ q−1/2
r PΩr

)
Uei‖ >

√
5/4

)
≤ γ

2
,
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whenever

1 & log

(
2M

γ

)
· max

1≤k≤r

{(
Nk −Nk−1

mk
− 1

)
· µN,M(k, l)

}
, l = 1, . . . , r. (7.77)

which is true whenever (7.14) holds. Indeed, recalling the definition of κN,M(k, j) and Θ in Definition 7.2,
observe that

max
η∈Θ,‖η‖∞=1

r∑
l=1

∥∥∥PNk−1

Nk
UP

Ml−1

Ml
η
∥∥∥
∞
≥ max
η∈Θ,‖η‖∞=1

∥∥∥PNk−1

Nk
Uη
∥∥∥
∞
≥
√
µ(P

Nk−1

Nk
UP

Ml−1

Ml
) (7.78)

for each l = 1, . . . , r which implies that
∑r
j=1 κN,M(k, j) ≥ µN,M(k, l), for l = 1, . . . , r. Consequently,

(7.77) follows from (7.14). Thus, P(Bc3) ≤ γ.
Step VI: The weak balancing property, (7.14) and (7.15) ⇒ P(Bc4) ≤ γ. To see this, define the

random variables X1, . . . Xu−2 by

Xj =

{
0 ωj+2 6= ωj+1,

1 ωj+2 = ωj+1.
(7.79)

We immediately observe that

P(Bc4) = P(|ωu| < v) = P(X1 + . . .+Xu−2 > u− v). (7.80)

However, the random variables X1, . . . Xu−2 are not independent, and we therefore cannot directly apply
the standard Chernoff bound. In particular, we must adapt the setup slightly. Note that

P(X1 + . . .+Xu−2 > u− v)

≤
(u−2
u−v)∑
l=1

P(Xπ(l)1
= 1, Xπ(l)2

= 1, . . . , Xπ(l)u−v = 1)

=

(u−2
u−v)∑
l=1

P(Xπ(l)u−v = 1 |Xπ(l)1
= 1, . . . , Xπ(l)u−v−1

= 1)P(Xπ(l)1
= 1, . . . , Xπ(l)u−v−1

= 1)

=

(u−2
u−v)∑
l=1

P(Xπ(l)u−v = 1 |Xπ(l)1
= 1, . . . , Xπ(l)u−v−1

= 1)

× P(Xπ(l)u−v−1
= 1 |Xπ(l)1

= 1, . . . , Xπ(l)u−v−2
= 1) · · ·P(Xπ(l)1

= 1)

(7.81)

where π : {1, . . . ,
(
u−2
u−v
)
} → Nu−v ranges over all

(
u−2
u−v
)

ordered subsets of {1, . . . , u − 2} of size u − v.
Thus, if we can provide a bound P such that

P ≥ P(Xπ(l)u−v−j = 1 |Xπ(l)1
= 1, . . . , Xπ(l)u−v−(j+1)

= 1),

P ≥ P(Xπ(l)1
= 1)

(7.82)

l = 1, . . . ,

(
u− 2

u− v

)
, j = 0, . . . , u− v − 2,

then, by (7.81),

P(X1 + . . .+Xu−2 > u− v) ≤
(
u− 2

u− v

)
Pu−v. (7.83)

We will continue assuming that (7.82) is true, and then return to this inequality below.
Let {X̃k}u−2

k=1 be independent binary variables taking values 0 and 1, such that X̃k = 1 with probability
P . Then, by Lemma 7.14, (7.83) and (7.80) it follows that

P(Bc4) ≤ P
(
X̃1 + . . .+ X̃u−2 ≥ u− v

)( (u− 2) · e
u− v

)u−v
. (7.84)

Then, by the standard Chernoff bound ([57, Theorem 2.1, equation 2]), it follows that, for t > 0,

P
(
X̃1 + . . .+ X̃u−2 ≥ (u− 2)(t+ P )

)
≤ e−2(u−2)t2 . (7.85)
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Hence, if we let t = (u− v)/(u− 2)− P , it follows from (7.84) and (7.85) that

P(Bc4) ≤ e−2(u−2)t2+(u−v)(log( u−2
u−v )+1) ≤ e−2(u−2)t2+u−2.

Thus, by choosing P = 1/4 we get that P(Bc4) ≤ γ whenever u ≥ x and x is the largest root satisfying

(x− u)

(
x− v
u− 2

− 1

4

)
− log(γ−1/2)− x− 2

2
= 0,

and this yields u ≥ 8d3v+ log(γ−1/2)e which is satisfied by the choice of u in (7.62). Thus, we would have
been done with Step VI if we could verify (7.82) with P = 1/4, and this is the theme in the following claim.

Claim: The weak balancing property, (7.14) and (7.15)⇒ (7.82) with P = 1/4. To prove the claim
we first observe that Xj = 0 when

‖(P∆ − P∆U
∗(

1

qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆)Zi−1‖l∞ ≤
1

2
‖Zi−1‖l∞

‖PMP⊥∆U∗(
1

qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆Zi−1‖l∞ ≤
1

4
log2(4KM

√
s)‖Zi−1‖l∞ , i = j + 2,

where we recall from (7.63) that

q3
k = q4

k = . . . = quk = q̃k, 1 ≤ k ≤ r.

Thus, by choosing γ = 1/8 in (7.48) in Proposition 7.12 and γ = 1/8 in (i) in Proposition 7.11, it follows
that 1

4 ≥ P(Xj = 1), for j = 1, . . . , u− 2, when the weak balancing property is satisfied and

(log (8s) + 1)
−1 & q̃−1

k ·
r∑
l=1

κN,M(k, l), 1 ≤ k ≤ r (7.86)

(log (8s) + 1)
−1 &

(
r∑

k=1

(
q̃−1
k − 1

)
· µN,M(k, l) · s̃k

)
, 1 ≤ l ≤ r, (7.87)

as well as

log2(4KM
√
s)

log (32(M − s))
& q̃−1

k ·
r∑
l=1

κN,M(k, l), 1 ≤ k ≤ r (7.88)

log2(4KM
√
s)

log (32(M − s))
&

(
r∑

k=1

(
q̃−1
k − 1

)
· µN,M(k, l) · s̃k

)
, 1 ≤ l ≤ r, (7.89)

withK = max1≤k≤r(Nk−Nk−1)/mk. Thus, to prove the claim we must demonstrate that (7.14) and (7.15)
⇒ (7.86), (7.87), (7.88) and (7.89). We split this into two stages:

Stage 1: (7.15)⇒ (7.89) and (7.87). To show the assertion we must demonstrate that if, for 1 ≤ k ≤ r,

mk & (log(sε−1) + 1) · m̂k · log
(
KM

√
s
)
, (7.90)

where m̂k satisfies

1 &
r∑

k=1

(
Nk −Nk−1

m̂k
− 1

)
· µN,M(k, l) · s̃k, l = 1, . . . , r, (7.91)

we get (7.89) and (7.87). To see this, note that by (7.61) we have that

q1
k + q2

k + (u− 2)q̃k ≥ qk, 1 ≤ k ≤ r, (7.92)

so since q1
k = q2

k = 1
4qk, and by (7.92), (7.90) and the choice of u in (7.62), it follows that
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2(8(dlog(γ−1)+3dlog2(8KM
√
s)ee)− 2)q̃k ≥ qk =

mk

Nk −Nk−1

≥ C m̂k

Nk −Nk−1
(log(sε−1) + 1) log

(
KM
√
s
)

≥ C m̂k

Nk −Nk−1
(log(s) + 1)(log

(
KM
√
s
)

+ log(ε−1)),

for some constantC (recall that we have assumed that log(s) ≥ 1). And this gives (by recalling that γ = ε/6)
that q̃k ≥ Ĉ m̂k

Nk−Nk−1
(log(s) + 1), for some constant Ĉ. Thus, (7.15) implies that for 1 ≤ l ≤ r,

1 & (log (s) + 1)

(
r∑

k=1

(
Nk −Nk−1

mk(log(s) + 1)
− 1

log(s) + 1

)
· µN,M(k, l) · s̃k

)

& (log (s) + 1)

(
r∑

k=1

(
q̃−1
k − 1

)
· µN,M(k, l) · s̃k

)
,

and this implies (7.89) and (7.87), given an appropriate choice of the constant C.
Stage 2: (7.14)⇒ (7.88) and (7.86). To show the assertion we must demonstrate that if, for 1 ≤ k ≤ r,

1 & (log(sε−1) + 1) · Nk −Nk−1

mk
· (

r∑
l=1

κN,M(k, l)) · log
(
KM
√
s
)
, (7.93)

we obtain (7.88) and (7.86). To see this, note that by arguing as above via the fact that q1
k = q2

k = 1
4qk, and

by (7.92), (7.93) and the choice of u in (7.62) we have that

2(8(dlog(γ−1)+3dlog2(8KM
√
s)ee)− 2)q̃k ≥ qk =

mk

Nk −Nk−1

≥ C · (
r∑
l=1

κN,M(k, l)) · (log(sε−1) + 1) · log
(
KM

√
s
)

≥ C · (
r∑
l=1

κN,M(k, l)) · (log(s) + 1)
(
log(ε−1) + log

(
KM
√
s
))
,

for some constant C. Thus, we have that for some appropriately chosen constant Ĉ, q̃k ≥ Ĉ · (log(s) + 1) ·∑r
l=1 κN,M(k, l). So, (7.88) and (7.86) holds given an appropriately chosen C. This yields the last puzzle

of the proof, and we are done.

Proof of Proposition 7.4. The proof is very close to the proof of Proposition 7.3 and we will simply point
out the differences. The strategy of the proof is to show the validity of (i) and (ii), and the existence of a
ρ ∈ ran(U∗(PΩ1 ⊕ . . .⊕ PΩr )) that satisfies (iii)-(v) in Proposition 7.1 with probability exceeding 1− ε.

Step I: The construction of ρ: The construction is almost identical to the construction in the proof of
Proposition 7.3, except that

u = 8dlog(γ−1) + 3ve, v = dlog2(8KM̃
√
s)e, (7.94)

α1 = α2 = (2 log
1/2
2 (4KM̃

√
s))−1, αi = 1/2, 3 ≤ i ≤ u,

as well as
β1 = β2 =

1

4
, βi =

1

4
log2(4KM̃

√
s), 3 ≤ i ≤ u,

and (7.66) gets changed to

ωi =


ωi−1 ∪ {i} if ‖(P∆ − P∆U

∗( 1
qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆)Zi−1‖l∞ ≤ αi‖P∆k
Zi−1‖l∞ ,

and ‖P⊥∆U∗( 1
qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆Zi−1‖l∞ ≤ βi‖Zi−1‖l∞ ,
ωi−1 otherwise,
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the events Bi, i = 1, 2 in (7.67) get replaced by

B̃i : ‖P⊥∆U∗(
1

qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆Zi−1‖l∞ ≤ βi‖Zi−1‖l∞ , i = 1, 2.

and the second part of B3 becomes

max
i∈∆c

‖
(
q
−1/2
1 PΩ1

⊕ . . .⊕ q−1/2
r PΩr

)
Uei‖ ≤

√
5/4.

Step II: B5 ⇒ (i), (ii). This step is identical to Step II in the proof of Proposition 7.3.
Step III: B5 ⇒ (iii), (iv). Equation (7.69) gets changed to

‖P⊥∆ ρ‖l∞ ≤
v∑
i=1

‖P⊥∆U∗(
1

q
τ(i)
1

P
Ω
τ(i)
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q
τ(i)
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P
Ω
τ(i)
r

)UP∆Zτ(i−1)‖l∞

≤
v∑
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βτ(i)‖Zτ(i−1)‖l∞ ≤
v∑
i=1

βτ(i)

i−1∏
j=1

ατ(j)

≤ 1

4
(1 +

1

2 log
1/2
2 (a)

+
log2(a)

23 log2(a)
+ . . .+

1

2v−1
) ≤ 1

2
, a = 4M̃K

√
s.

Step IV: B5 ⇒ (v). This step is identical to Step IV in the proof of Proposition 7.3.
Step V: The strong balancing property, (7.18) and (7.19)⇒ P(Ac1 ∪ Ac2 ∪ B̃c1 ∪ B̃c2 ∪Bc3) ≤ 5γ. We

will start by bounding P(B̃c1) and P(B̃c2). Note that by Proposition 7.11 (ii) it follows that P(B̃c1) ≤ γ and
P(B̃c2) ≤ γ as long as the strong balancing property is satisfied and

1 & Λ · log

(
4

γ
(θ̃ − s)

)
, 1 & Υ · log

(
4

γ
(θ̃ − s)

)
(7.95)

where θ̃ = θ̃({qik}rk=1, 1/8, {Nk}rk=1, s,M) for i = 1, 2 and where θ̃ is defined in Proposition 7.11 (ii) and
Λ and Υ are defined in (7.73) and (7.74). Note that it is easy to see that we have∣∣∣∣∣∣∣
j ∈ N : max

Γ1⊂{1,...,M}, |Γ1|=s
Γ2,j⊂{Nj−1+1,...,Nj}, j=1,...,r

‖PΓ1
U∗((qi1)−1PΓ2,1

⊕ . . .⊕ (qir)
−1PΓ2,r

)Uej‖ >
1

8
√
s


∣∣∣∣∣∣∣ ≤ M̃,

where
M̃ = min{i ∈ N : max

j≥i
‖PNUP{j}‖ ≤ 1/(K32

√
s)},

and this follows from the choice in (7.63) where q1
k = q2

k = 1
4qk for 1 ≤ k ≤ r. Thus, it immediately follows

that (7.18) and (7.19) imply (7.95). To bound P(Bc3), we first deduce as in Step V of the proof of Proposition
7.3 that

P
(
‖P∆U

∗(
1

q1
PΩ1
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qr
PΩr )UP∆ − P∆‖ > 1/4,

)
≤ γ/2

when the strong balancing property and (7.18) holds. For the second part of B3, we know from the choice of
M̃ that
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i≥M̃
‖
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q
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1 PΩ1 ⊕ . . .⊕ q−1/2

r PΩr

)
Uei‖ ≤

√
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4

and we may deduce from Proposition 7.13 that

P

(
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i∈∆c∩{1,...,M̃}
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(
q
−1/2
1 PΩ1

⊕ . . .⊕ q−1/2
r PΩr
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Uei‖ >

√
5/4
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≤ γ

2
,

whenever

1 & log

(
2M̃

γ

)
· max

1≤k≤r

{(
Nk −Nk−1

mk
− 1

)
µN,M(k, l)

}
, l = 1, . . . , r − 1,∞,
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which is true whenever (7.18) holds, since by a similar argument to (7.78),

κN,M(k,∞) +

r−1∑
j=1

κN,M(k, j) ≥ µN,M(k, l), l = 1, . . . , r − 1,∞.

Thus, P(Bc3) ≤ γ. As for bounding P(Ac1) and P(Ac2), observe that by the strong balancing property
M̃ ≥M , thus this is done exactly as in Step V of the proof of Proposition 7.3.

Step VI: The strong balancing property, (7.18) and (7.19) ⇒ P(Bc4) ≤ γ. To see this, define the
random variables X1, . . . Xu−2 as in (7.79). Let π be defined as in Step VI of the proof of Proposition 7.3.
Then it suffices to show that (7.18) and (7.19) imply that for l = 1, . . .

(
u−2
u−v
)

and j = 0, . . . , u− v − 2, we
have

1

4
≥ P(Xπ(l)u−v−j = 1 |Xπ(l)1

= 1, . . . , Xπ(l)u−v−(j+1)
= 1),

1

4
≥ P(Xπ(l)1

= 1).

(7.96)

Claim: The strong balancing property, (7.18) and (7.19)⇒ (7.96). To prove the claim we first observe
that Xj = 0 when

‖(P∆ − P∆U
∗(

1

qi1
PΩi1
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qir
PΩir

)UP∆)Zi−1‖l∞ ≤
1

2
‖Zi−1‖l∞

‖P⊥∆U∗(
1

qi1
PΩi1
⊕ . . .⊕ 1

qir
PΩir

)UP∆Zi−1‖l∞ ≤
1

4
log2(4KM̃

√
s)‖Zi−1‖l∞ , i = j + 2.

Thus, by again recalling from (7.63) that q3
k = q4

k = . . . = quk = q̃k, 1 ≤ k ≤ r, and by choosing γ̃ = 1/4
in (7.48) in Proposition 7.12 and γ̃ = 1/4 in (ii) in Proposition 7.11, we conclude that (7.96) follows when
the strong balancing property is satisfied as well as (7.86) and (7.87). and

log2(4KM̃
√
s)

log
(

16(M̃ − s)
) ≥ C2 · q̃−1

k ·

(
r−1∑
l=1

κN,M(k, l) + κN,M(k,∞)

)
, k = 1, . . . , r (7.97)

log2(4KM̃
√
s)

log
(

16(M̃ − s)
) ≥ C2 ·

(
r∑
l=1

(
q̃−1
k − 1

)
· µN,M(k, l) · s̃k

)
, l = 1, . . . , r − 1,∞ (7.98)

for K = max1≤k≤r(Nk − Nk−1)/mk. for some constants C1 and C2. Thus, to prove the claim we must
demonstrate that (7.18) and (7.19)⇒ (7.86), (7.87), (7.97) and (7.98). This is done by repeating Stage 1 and
Stage 2 in Step VI of the proof of Proposition 7.3 almost verbatim, except replacing M by M̃ .

7.4 Proof of Theorem 6.2
Throughout this section, we use the notation

f̂(ξ) =

∫
R
f(x)e−ixξdx, (7.99)

to denote the Fourier transform of a function f ∈ L1(R).

7.4.1 Setup

We first introduce the wavelet sparsity and Fourier sampling bases that we consider, and in particular, their
orderings. Consider an orthonormal basis of compactly supported wavelets with an MRA [22, 23]. For
simplicity, suppose that supp(Ψ) = supp(Φ) = [0, a] for some a ≥ 1, where Ψ and Φ are the mother
wavelet and scaling function respectively. For later use, we recall the following three properties of any such
wavelet basis:
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1. There exist α ≥ 1, CΨ and CΦ > 0, such that∣∣∣Φ̂(ξ)
∣∣∣ ≤ CΦ

(1 + |ξ|)α
,
∣∣∣Ψ̂(ξ)

∣∣∣ ≤ CΨ

(1 + |ξ|)α
. (7.100)

See [23, Eqn. (7.1.4)]. We will denote max{CΨ, CΦ} by CΦ,Ψ.

2. Ψ has v ≥ 1 vanishing moments and Ψ̂(z) = (−iz)vθΨ(z) for some bounded function θΨ (see [56,
p.208 & p.284].

3. ‖Φ̂‖L∞ , ‖Ψ̂‖L∞ ≤ 1.

We now wish to construct a wavelet basis for the compact interval [0, a]. The most standard approach is
to consider the following collection of functions

Ωa = {Φk,Ψj,k : supp(Φk)o ∩ [0, a] 6= ∅, supp(Ψj,k)o ∩ [0, a] 6= ∅, j ∈ Z+, k ∈ Z, },

where
Φk = Φ(· − k), Ψj,k = 2

j
2 Ψ(2j · −k).

(the notation Ko denotes the interior of a set K ⊆ R). This now gives{
f ∈ L2(R) : supp(f) ⊆ [0, a]

}
⊆ span{ϕ : ϕ ∈ Ωa} ⊆

{
f ∈ L2(R) : supp(f) ⊆ [−T1, T2]

}
,

where T1, T2 > 0 are such that [−T1, T2] contains the support of all functions in Ωa. Note that the inclusions
may be proper (but not always, as is the case with the Haar wavelet). It is easy to see that

Ψj,k /∈ Ωa ⇐⇒
a+ k

2j
≤ 0, a ≤ k

2j
,

Φk /∈ Ωa ⇐⇒ a+ k ≤ 0, a ≤ k,

and therefore

Ωa ={Φk : |k| = 0, . . . , dae − 1} ∪ {Ψj,k : j ∈ Z+, k ∈ Z,−dae < k < 2jdae}.

We order Ωa in increasing order of wavelet resolution as follows:

{Φ−dae+1, . . . ,Φ−1,Φ0,Φ1, . . . ,Φdae−1,

Ψ0,−dae+1, . . . ,Ψ0,−1,Ψ0,0,Ψ0,1, . . . ,Ψ0,dae−1,Ψ1,−dae+1, . . .}.
(7.101)

By the definition of Ωa, we let T1 = dae − 1 and T2 = 2dae − 1. Finally, for R ∈ N let ΩR,a contain all
wavelets in Ωa with resolution less than R, so that

ΩR,a = {ϕ ∈ Ωa : ϕ = Ψj,k, j < R, or ϕ = Φk}. (7.102)

We also denote the size of ΩR,a by WR. It is easy to verify that

WR = 2Rdae+ (R+ 1)(dae − 1). (7.103)

Having constructed an orthonormal wavelet system form [0, a] we now introduce the appropriate Fourier
sampling basis. We must sample at at least the Nyquist rate. Hence we let ω ≤ 1/(T1 + T2) be the sampling
density (note that 1/(T1 + T2) is the Nyquist criterion for functions supported on [−T1, T2]). For simplicity,
we assume throughout that

ω ∈ (0, 1/(T1 + T2)), ω−1 ∈ N, (7.104)

and remark that this assumption is an artefact of our proofs and is not necessary in practice. The Fourier
sampling vectors are now defined as follows.

ψj(x) =
√
ωe2πijωxχ[−T1/(ω(T1+T2)),T2/(ω(T1+T2))](x), j ∈ Z. (7.105)

This gives an orthonormal sampling basis for the space {f ∈ L2(R) : supp(f) ⊆ [−T1, T2]}. Since Ωa is an
orthonormal system in for this space, it follows that the infinite matrix U = {〈ϕi, ψ̃j〉}i,j∈N is an isometry,
where {ϕj}j∈N represents the wavelets ordered according to (7.101) and {ψ̃j}j∈N is the standard ordering
of the Fourier basis (7.105) over N (ψ̃1 = ψ0, ψ̃2n = ψn and ψ̃2n+1 = ψ−n).
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7.4.2 Some preliminary estimates

Throughout this section, we assume the setup and notation introduced above.

Theorem 7.15. Let U be the matrix of the Fourier/wavelets pair introduced previously. Then

(i) We have µ(U) ≥ ω|Φ̂(0)|2 > 0, where Φ is the corresponding scaling function.

(ii) We have

µ(P⊥NU) ≤
C2

Φ,Ψ

πN(2α− 1)(1 + 1/(2α− 1))2α
, µ(UP⊥N ) ≤ 4

ωdae
N

,

and consequently µ(P⊥NU), µ(UP⊥N ) = O
(
N−1

)
as N →∞.

(iii) If the wavelet and scaling function satisfy decay estimate (7.100) with α > 1/2, then, for R such that
ω−12R ≤ N and M = |ΩR,a| (recalling the definition of ΩR,a from (7.102)),

µ(P⊥NUPM ) ≤
C2

Φ,Ψ

π2αω2α−1
(2R−1N−1)2α−1N−1.

(iv) If the wavelet has v ≥ 1 vanishing moments, ω−12R ≥ N and M = |ΩR,a| with R ≥ 1, then

µ(PNUP
⊥
M ) ≤ ω

2R
·
(
πωN

2R

)2v

· ‖θΨ‖2L∞ ,

where θΨ is the function such that Ψ̂(z) = (−iz)vθΨ(z) (see above).

Proof. Note that µ(U) ≥ |〈Φ, ψ0〉|2 = ω
∣∣∣Φ̂(0)

∣∣∣2, moreover, it is known that Φ̂(0) 6= 0 [44, Thm. 1.7].
Thus, (i) follows.

To show (ii), first note that for R ∈ N, j, k ∈ Z,

〈ΨR,j , ψk〉 =

√
ω

2R
Ψ̂

(
−2πkω

2R

)
e2πiωkj/2R , 〈Φj , ψk〉 =

√
ωΦ̂ (−2πkω) e2πiωkj .

Thus, the decay estimate in (7.100) yields

µ(P⊥NU) ≤ max
|k|≥N2

max
ϕ∈Ωa

|〈ϕ,ψk〉|2

= max

{
max
|k|≥N2

max
R∈Z+

ω

2R

∣∣∣∣Ψ̂(−2πωk

2R

)∣∣∣∣2 , ω max
|k|≥N2

∣∣∣Φ̂ (−2πωk)
∣∣∣2}

≤ max
|k|≥N2

max
R∈Z+

ω

2R
C2

Φ,Ψ

(1 + |2πωk2−R|)2α ≤ max
R∈Z+

ω

2R
C2

Φ,Ψ

(1 + |πωN2−R|)2α .

The function f(x) = x−1(1 + πωN/x)−2α on [1,∞) satisfies f ′(πωN(2α− 1)) = 0. Hence

µ(P⊥NU) ≤
C2

Φ,Ψ

πN(2α− 1)(1 + 1/(2α− 1))2α
,

which gives the first part of (ii). For the second part, we first recall the definition of WR for R ∈ N from
(7.103). Then, given any N ∈ N such that N ≥ W1, let R be such that WR ≤ N < WR+1. Then, for each
n ≥ N , there exists some j ≥ R and l ∈ Z such that the nth element via the ordering (7.101) is ϕn = Ψj,l.
Hence

µ(UP⊥N ) = max
n≥N

max
k∈Z
|〈ϕn, ψk〉|2 = max

j≥R
max
k∈Z

ω

2j

∣∣∣∣Ψ̂(−2πωk

2j

)∣∣∣∣2
≤ ‖Ψ̂‖2L∞

ω

2R
≤ 4‖Ψ̂‖2L∞

ωdae
N

,
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where the last line follows because N < WR+1 = 2R+1dae+ (R+ 2)(dae − 1) implies that

2−R <
1

N

(
2dae+ (R+ 2)(dae − 1)2−R

)
≤ 4dae

N
.

This concludes the proof of (ii).
To show (iii), observe that the decay estimate in (7.100) yields

µ(P⊥NUPWR
) ≤ max

|k|≥N2
max
ϕ∈ΩR,a

|〈ϕ,ψk〉|2

= max

{
max
|k|≥N2

max
j<R

ω

2j

∣∣∣∣Ψ̂(−2πωk

2j

)∣∣∣∣2 , max
|k|≥N2

∣∣∣Φ̂ (−2πωk)
∣∣∣2}

≤ max
|k|≥N2

max
j<R

ω

2j
C2

Φ,Ψ

(1 + |2πωk2−j |)2α ≤ max
k≥N2

max
j<R

C2
Φ,Ψ

π2αω2α−1

2j(2α−1)

(2k)2α

=
C2

Φ,Ψ

π2αω2α−1
(2R−1N−1)2α−1N−1.

To show (iv), first note that because R ≥ 1, for all n > WR , ϕn = Ψj,k for some j ≥ 0 and k ∈ Z.
Then, recalling the properties of Daubechies wavelets with v vanishing moments,

µ(PNUP
⊥
WR

) = max
n>WR

max
|k|≤N2

|〈ϕn, ψk〉|2 = max
j≥R

max
|k|≤N2

ω

2j

∣∣∣∣Ψ̂(−2πωk

2j

)∣∣∣∣2
≤ ω

2R
·
(
πωN

2R

)2v

· ‖θΨ‖2L∞ ,

as required.

Corollary 7.16. Let N and M be as in Theorem 6.2 and recall the definition of µN,M(k, j) in (4.2). Then,

µN,M(k, j) ≤ BΦ,Ψ ·


√
ω√

Nk−12Rj−1
·
(
ωNk

2Rj−1

)v
j ≥ k + 1

1
Nk−1

(
2Rj−1

ωNk−1

)α−1/2

j ≤ k − 1

1
Nk−1

j = k

(7.106)

µN,M(k,∞) ≤ BΦ,Ψ ·


√
ω√

Nk−12Rr−1
·
(
ωNk

2Rr−1

)v
k ≤ r − 1

1
Nr−1

k = r.
(7.107)

where BΦ,Ψ is a constant which depends only on Φ and Ψ.

Proof. Throughout this proof, BΦ,Ψ is a constant which depends only on Φ and Ψ, although its value may
change from instance to instance. First note that, for k, j ∈ {1, . . . , r},

µN,M(k, j) =
√
µ(P

Nk−1

Nk
UP

Mj−1

Mj
) · µ(P

Nk−1

Nk
U) ≤ BΦ,ΨN

−1/2
k−1

√
µ(P

Nk−1

Nk
UP

Mj−1

Mj
), (7.108)

because by (ii) of Theorem 7.15, µ(P⊥Nk−1
U) ≤ BΦ,ΨN

−1
k−1. Thus,

µN,M(k, k) ≤ µ(P⊥Nk−1
U) ≤ BΦ,Ψ

1

Nk−1
,

yielding the last part of (7.106). As for the middle part of (7.106), note that if j ≤ k − 1, then by applying
(iii) of Theorem 7.15, we obtain√

µ(P
Nk−1

Nk
UP

Mj−1

Mj
) ≤

√
µ(P⊥Nk−1

UPMj
) ≤ BΦ,Ψ ·

1√
Nk−1

(
2Rj−1

ωNk−1

)α−1/2

,
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and thus, in combination with (7.108), we obtain the j ≤ k−1 part of (7.106). If j ≥ k+1, then by applying
(iv) of Theorem 7.15, we obtain√

µ(P
Nk−1

Nk
UP

Mj−1

Mj
) ≤

√
µ(PNkUP

⊥
Mj−1

) ≤ BΦ,Ψ ·
√
ω√

2Rj−1

·
(
ωNk
2Rj−1

)v
,

and in combination with (7.108), we obtain the j ≥ k + 1 part of (7.106). Finally, recall that

µN,M(k,∞) =
√
µ(P

Nk−1

Nk
UP⊥Mr−1

) · µ(P⊥Nk−1
U)

and similarly to the above, (7.107) is a direct consequence of parts (ii) and (iv) of Theorem 7.15.

Lemma 7.17 ([60]). The following holds:

(i) If there exists C > 0 and α ≥ 1 such that∣∣∣Φ̂(ξ)
∣∣∣ ≤ C

(1 + |ξ|)α
, ξ ∈ R, (7.109)

thenN ,K satisfy the strong balancing property with respect toU ,M and swheneverN &M1+1/(2α−1)·
(log2(4MK

√
s))

1/(2α−1)
.

(ii) If, for some C > 0 and α ≥ 1.5,∣∣∣Φ̂(k)(ξ)
∣∣∣ ≤ C

(1 + |ξ|)α
,
∣∣∣Ψ̂(k)(ξ)

∣∣∣ ≤ C

(1 + |ξ|)α
, ξ ∈ R, k = 0, 1, 2, (7.110)

then N , K satisfy the strong balancing property with respect to U , M and s whenever N & M ·
(log2(4MK

√
s))

1/(2α−1)
.

The following lemma informs us of the range of Fourier samples required for accurate reconstruction of
wavelet coefficients.

Lemma 7.18 ([6, 60]). Let ϕk denote the kth wavelet the ordering in (7.101). Let M ≤ WR be such that
{ϕj : j ≤M} ⊂ ΩR,a. Then

∥∥P⊥NUPM∥∥ ≤ min

{
γΦ,

√
2

2α− 1
· CΦ ·

1

(2π)α
· 1

Lα−1/2

}
< 1

where N is such that N ≥ Lω−12R for some L ∈ N and γΦ =

√
1− inf |ξ|≤π

∣∣∣Φ̂(ξ)
∣∣∣2 < 1.

Lemma 7.19. Let ϕk denote the kth wavelet the ordering in (7.101). Let R1, R2 ∈ N \ {0} with R2 > R1,
and let M1, M2 be such that

{ϕj : M2 ≥ j > M1} ⊂ ΩR2,a \ ΩR1,a.

Then for any γ ∈ (0, 1)

∥∥∥PNUPM1

M2

∥∥∥ ≤ π2

4
‖θΨ‖L∞ · (2πγ)v ·

√
1− 22v(R1−R2)

1− 2−2v

whenever N is such that N ≤ γω−12R1 .

Proof. Let η ∈ l2(N) be such that ‖η‖ = 1 and let ∆l ⊂ N be such that {ϕj : j ∈ ∆l} = {j ∈ Z : Ψl,j ∈
Ωa}. First observe that given l ∈ N, k, j ∈ Z, 〈ψk,Ψl,j〉 =

√
ω
2l

Ψ̂
(
− 2πωk

2l

)
e2πiωjk. So,

‖PNUPM1

M2
η‖2 ≤

∑
|k|≤N/2

∣∣∣∣∣∣〈ψk,
R2−1∑
l=R1

∑
j∈∆l

ηjϕj〉

∣∣∣∣∣∣
2

∑
|k|≤N/2

∣∣∣∣∣∣
R2−1∑
l=R1

√
ω√
2l

∑
j∈∆l

ηjΨ̂

(
−2πωk

2l

)
e2πiωjk/2l

∣∣∣∣∣∣
2

,
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yielding that

‖PNUPM1

M2
η‖2 =

∑
|k|≤N/2

∣∣∣∣∣
R2−1∑
l=R1

√
ω√
2l

Ψ̂

(
−2πωk

2l

)
f [l]

(
ωk

2l

)∣∣∣∣∣
2

≤
R2−1∑
l=R1

max
|k|≤N/2

∣∣∣∣Ψ̂(−2πωk

2l

)∣∣∣∣2 · R2−1∑
l=R1

∑
|k|≤N/2

ω

2l

∣∣∣∣f [l]

(
ωk

2l

)∣∣∣∣2 ,
where f [l] =

∑
j∈∆l

ηje
2πizj . If we let H = χ[0,1), then it is known that inf |x|≤π

∣∣∣Ĥ(x)
∣∣∣ ≥ 2/π, and since

N ≤ 2R1/ω, for each l ≥ R1, we have that

∑
|k|≤N/2

ω

2l

∣∣∣∣f [l]

(
ωk

2l

)∣∣∣∣2 ≤ ( inf
|x|≤π

∣∣∣Ĥ(x)
∣∣∣2)−1 ∑

|k|≤N/2

∣∣∣∣∣∣〈
∑
j∈∆l

ηjHl,j , ψk〉

∣∣∣∣∣∣
2

≤ π2

4

∥∥∥∥∥∥
∑
j∈∆l

ηjHl,j

∥∥∥∥∥∥
2

≤ π2

4
‖P∆l

η‖2

which yields
R2−1∑
l=R1

∑
|k|≤N/2

ω

2l

∣∣∣∣f [l]

(
ωk

2l

)∣∣∣∣2 ≤ π2

4

R2−1∑
l=R1

‖P∆l
η‖2 ≤ π2

4
‖η‖2 ≤ π2

4
.

Also, since Ψ has v vanishing moments, we have that Ψ̂(z) = (−iz)vθ(z) for some bounded function θ.
Thus, since N ≤ γ · 2R1/ω, we have

R2−1∑
l=R1

max
|k|≤N/2

∣∣∣∣Ψ̂(2πωk

2l

)∣∣∣∣2 ≤ π2

4
‖θΨ‖2L∞

R2−1∑
l=R1

(
2πγ2R1−l

)2v
≤ π2

4
(2πγ)2v‖θΨ‖2L∞

1− 22v(R1−R2)

1− 2−2v
.

Thus,

‖PNUPM1

M2
η‖2 ≤ π2

4
‖θΨ‖2L∞ · (2πγ)2v 1− 22v(R1−R2)

1− 2−2v
.

7.4.3 The proof

Proof of Theorem 6.2. In this proof, we will let BΦ,Ψ be some constant which depends only on Φ and Ψ,
although its value may change from instance to instance. The assertions of the theorem will follow if we
can show that the conditions in Theorem 5.3 are satisfied. We will begin with condition (i). Note that by
Lemma 7.17 (i) we have that for α ≥ 1, if N & M1+1/(2α−1) · (log2(4MK

√
s))

1/(2α−1) then N , K
satisfy the strong balancing property with respect to U , M , s. Also, the same is true if (6.1) holds and
N &M · (log2(4KM

√
s))

1/(2α−1). In particular, condition (i) implies condition (i) of Theorem 5.3.
To show that (ii) in Theorem 5.3 is satisfied we need to demonstrate that

1 &
Nk −Nk−1

mk
· log(ε−1) ·

(
r∑
l=1

µN,M(k, l) · sl

)
· log

(
KM̃

√
s
)
, (7.111)

(with µN,M(k, r) replaced by µN,M(k,∞)) and

mk & m̂k · log(ε−1) · log
(
KM̃

√
s
)
,

1 &
r∑

k=1

(
Nk −Nk−1

m̂k
− 1

)
· µN,M(k, l) · s̃k, ∀ l = 1, . . . , r.

(7.112)
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We will first consider (7.111). By applying the bounds on the local coherences derived in Corollary 7.16, we
have that (7.111) is implied by

mk

(Nk −Nk−1)
& BΦ,Ψ ·

(
k−1∑
j=1

sj
Nk−1

(
2Rj−1

ωNk−1

)α−1/2

+
sk

Nk−1

+

r∑
j=k+1

sj ·
√
ω√

Nk−12Rj−1

·
(
ωNk
2Rj−1

)v )
log(ε−1) · log

(
KM̃

√
s
)
.

To obtain a bound on the value of M̃ , observe that by Lemma 7.19,
∥∥PNUP{j}∥∥ ≤ 1/(32K

√
s) whenever

j = 2J such that 2J ≥ (32K
√
s)1/v · N · ω. Thus, M̃ ≤ d(32K

√
s)1/v · N · ωe, and by recalling that

Nk = 2Rkω−1, we have that (7.111) is implied by

mk ·Nk−1

Nk −Nk−1
&BΦ,Ψ · (log(ε−1) + 1) · log

(
(K
√
s)1+1/vN

)
·

(
k−1∑
j=1

sj ·
(

2α−1/2
)−(Rk−1−Rj−1)

+ sk

+ sk+1 · 2−(Rk−Rk−1)/2 +

r∑
j=k+2

sj · 2−(Rj−1−Rk−1)/2
(

2v−1/2
)−(Rj−1−Rk)

)
.

and we have derived condition (6.2).
As for condition (7.112), we will first derive upper bounds for the s̃k values: By Lemma 7.18,

‖P⊥Nk−1
UPMl

‖ < min

{
1,

√
2

2α− 1
· CΦ

(2π)α
·
(

2Rl

2Rk−1

)α−1/2
}
, l ≤ k − 1.

Also, by Lemma 7.19,

‖PNkUP
Ml−1

Ml
η‖ < min

{
1, (2π)v · ‖θΨ‖L∞ ·

(
2Rk

2Rl−1

)v}
, l ≥ k + 1.

Consequently, for k = 1, . . . , r

√
s̃k ≤

√
Sk = max

η∈Θ
‖PNk−1

Nk
Uη‖ ≤

r∑
l=1

‖PNk−1

Nk
UP

Ml−1

Ml
‖
√
sl

≤ BΦ,Ψ ·

(
k−2∑
l=1

√
sl ·
(

2Rl

2Rk−1

)α−1/2

+
√
sk−1 +

√
sk +

√
sk+1 +

r∑
l=k+2

√
sl ·
(

2Rk

2Rl−1

)v )
.

Thus, for Aα = 2α−1/2 and Av = 2v

s̃k ≤ BΦ,Ψ ·

(
√
sk−1 +

√
sk +

√
sk+1 +

k−2∑
l=1

√
sl ·A−(Rk−1−Rl)

α +

r∑
l=k+2

√
sl ·A−(Rl−1−Rk)

v

)2

≤ BΦ,Ψ ·

(
3 +

k−2∑
l=1

A−(Rk−1−Rl)
α +

r∑
l=k+2

A−(Rl−1−Rk)
v

)

·

(
Sk +

k−2∑
l=1

sl ·A−(Rk−1−Rl)
α +

r∑
l=k+2

sl ·A−(Rl−1−Rk)
v

)

≤ BΦ,Ψ ·

(
Sk +

k−2∑
l=1

sl ·A−(Rk−1−Rl)
α +

r∑
l=k+2

sl ·A−(Rl−1−Rk)
v

)

where the second inequality is due to the Cauchy-Schwarz inequality and Sk = sk + sk−1 + sk+1. Finally,
we will show that condition (6.2) implies (4.5): By our coherence estimates in (7.106) and (7.107), we see

44



that (4.5) holds if mk & m̂k · (log(ε−1) + 1) · log
(
(K
√
s)1+1/vN

)
and for each l = 1, . . . , r,

1 &BΦ,Ψ ·

(
l−1∑
k=1

(
Nl −Nl−1

m̂l
− 1

)
· s̃k ·

√
ω

Nk−12Rl−1
·
(
ωNk
2Rl−1

)v
+

(
Nl −Nl−1

m̂l
− 1

)
· s̃l ·

1

Nl−1

+

r∑
k=l+1

(
Nk −Nk−1

m̂k
− 1

)
· s̃k ·

1

Nk−1

(
2Rl−1

ωNk−1

)α−1/2
)
.

(7.113)

Recalling that Nk = ω−12Rk , (7.113) becomes

1 &BΦ,Ψ ·

(
l−1∑
k=1

(
Nl −Nl−1

m̂l
− 1

)
· s̃k
Nk−1

· (2v)−(Rl−1−Rk)

+

(
Nl −Nl−1

m̂l
− 1

)
· s̃l
Nl−1

+

r∑
k=l+1

(
Nk −Nk−1

m̂k
− 1

)
· s̃k
Nk−1

·
(

2α−1/2
)−(Rk−1−Rl−1)

)
.

Observe that

1 +

l−1∑
k=1

(2v)
−(Rl−1−Rk)

+

r∑
k=l+1

(
2α−1/2

)−(Rk−1−Rl−1)

≤ BΦ,Ψ.

Thus, (4.5) holds provided that for each k = 1, . . . , r,

m̂k ≥ BΦ,Ψ ·
Nk −Nk−1

Nk−1
· s̃k,

and combining with our estimates of s̃k, we may deduce that (6.2) implies (4.5).

8 Numerical examples
We present here examples of the new theoretical concepts introduced in this paper, discuss implications for
traditional compressed sensing concepts and showcase a series of real-world phenomena and applications
that can benefit from the new theory. This section attempts to provide an insight into real-world conditions
and phenomena, which often exhibit asymptotic sparsity and asymptotic incoherence, into the markedly
improved results one can obtain by exploiting this structure, and into how to do it. For those purposes,
the section investigates a variety of different sampling and sparsifying bases, sampling techniques and ap-
plications. We used the SPGL1 solver [73, 74] for all the compressed sensing experiments. This section
concentrates on 2D signals, but the new theory is completely general.

8.1 Multi-level subsampling scheme
As already explained, the optimum sampling strategy is highly dependent on the signal structure and on the
incoherence between the sampling and sparsifying bases. Tangible benefits can be obtained by exploiting
(i) the asymptotic nature of the sparsity of most real-world signals and (ii) any asymptotic nature of the
incoherence of the sampling and sparsifying bases. Whilst all sampling strategies will inherently exploit
these asymptotic properties to some extent whenever they exist, a multilevel sampling scheme is particularly
well suited, as introduced earlier in §3.2.

We devised such a sampling scheme, however we do not claim that it is optimal. It does however provide
a good and flexible support for testing the theory. Assuming the coefficients f ∈ CN×N of a sampling
orthobasis, such as the DFT, our multilevel sampling scheme divides f into n regions delimited by n − 1
equispaced concentric circles plus the full square, an example being shown in Figure 5. Normalizing the
support of f to [−1, 1]2, the circles have radius rk with k = 0, . . . , n − 1, which are given by r0 = m and
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Figure 5: Examples of subsampling maps at 2048×2048 that subsample p = 15% of Fourier coefficients.
Left: 10 levels, right: 100 levels. The color intensity denotes the fraction pk of random samples taken
uniformly, i.e. white: 100% samples, black: 0% samples.

rk = k · 1−m
n−1 for k > 0, where 0 ≤ m < 1 is a parameter. In each of the n regions, the fraction pk of

sampling coefficients taken with uniform probability is given by:

pk = exp

(
−
(
b · k
n

)a)
, (8.1)

where k = 0, . . . , n and a > 0 and b > 0 are parameters. This is similar to the generalized Gaussian density
function. The total fraction of subsampled coefficients is p =

∑
k pkSk, where Sk is the normalized area of

the kth region. Since p0 = 1 and pk > pk+1, the first region will sample all coefficients and the remaining
regions will sample a decreasing fraction.

This sampling scheme is extensible to other orthonormal bases provided that the coefficients f are re-
ordered accordingly. For Hadamard with sequency ordering [70] or DCT, a quadrant of the above sampling
scheme can be used without other modifications, as seen earlier in Figure 2, and also later in this section.

8.2 Resolution dependence: Fixed fraction p of samples
One of the main effects of asymptotic sparsity and asymptotic incoherence is that the success of compressed
sensing is resolution dependent. We explain what this means below.

In some real-world applications, such as MRI, the underlying model is a continuous one, where the
coefficients f are samples of the continuous (integral) Fourier transform. This is the correct model to use
as it avoids the inverse crime which results from using the discrete Fourier transform (see §5) and it is an
excellent fit for the new asymptotic sparsity and asymptotic incoherence theory.

Discrete models, however, e.g. those based on Hadamard sampling in fluorescence microscopy [67] or
compressive imaging [45], also exhibit asymptotic sparsity and asymptotic incoherence since the sparsity ba-
sis arises as a discretization of a countable basis on a Hilbert space and, as shown in the following examples,
greatly benefit from techniques that exploit the asymptotic behaviour.

For the MRI scenario, we use the novel GLPU phantom invented by Guerquin–Kern, Lejeune, Pruess-
mann and Unser [41] in favour of discretized models (e.g. the Shepp-Logan Phantom from MATLAB). The
GLPU phantom is a so-called analytic phantom, in that it is not a rasterized image but a continuous (or
infinite-resolution) object defined by analytic curves, e.g. Bezier curves. The code offered by the authors
allows one to compute the continuous (integral) Fourier transform (as in a real life MRI scenario) of the
GLPU phantom, for any spectral point and hence any resolution, to avoid the inverse crime.

Fixed subsampling fraction. The first important resolution dependence effect is that regardless of
the sampling basis and subsampling scheme used, when maintaining the same fraction of samples and the
same subsampling scheme, the quality of the reconstruction will increase as the resolution increases when
compared to the full sampled version. This is because signals are typically increasingly sparse at high
resolution levels. If the incoherence also increases asymptotically, e.g. owing to a pertinent choice of the
sampling basis, then additional quality gains can be obtained by using a multilevel sampling scheme. This
incoherence aspect will be investigated in more detail in §8.6.
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Figure 6: Multi-level subsampling of 5% Fourier coefficients using (8.1) with fixed n = 100, a = 1.75,
b = 4.125. The left column (full sampled) and center column (subsampled) are crops of 256×256 pixels.
The right column shows the uncropped subsampling map. The error shown is the relative error between the
subsampled and full sampled versions.
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Figure 7: Multi-level subsampling of 6.25% Hadamard coefficients using (8.1) with fixed n = 50, a = 2,
b = 4.55. The left column (full sampled) and center column (subsampled) are crops of 256×256 pixels.
The right column shows the uncropped subsampling map. The error shown is the relative error between the
subsampled and full sampled versions.

This effect can be seen in Figure 6 where we used the continuous GLPU phantom model. Here we
fixed the parameters m, a, b in (8.1) and subsampled a constant fraction p = 5% of Fourier coefficients at
increasing image resolutions from 256×256 to 4096×4096, reconstructing in the Daubechies 4 wavelet basis.
The asymptotic sparsity of the wavelet coefficients allows a markedly better quality of reconstruction as the
resolution increases when compared to the full sampled version.

The same effect can be observed in Figure 7, a real-life fluorescence microscope image and a discrete
Hadamard model. Here we sample a constant fraction p = 6.25% of Hadamard coefficients and reconstruct
in the Daubechies 6 basis. We observe the same effect, the quality of reconstruction getting substantially
better as the resolution doubles.

The last example shown in Figure 8 takes a constant fraction of 6.25% using a random Bernoulli sensing
matrix instead of an orthonormal basis. As stated above, this too exploits the asymptotic behaviour, and an
improved reconstruction is observed as the resolution doubles. However, while the image is asymptotically
sparse in wavelets, the incoherence in this case is no longer asymptotic due to the uniformly random nature
of the sensing matrix – random Bernoulli is known to provide universality and uniform incoherence [36].
The lack of asymptotic incoherence, as explained later in §8.6, yields an obvious decrease in reconstruction
quality in this case when compared to multilevel Hadamard from Figure 7.
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Figure 8: Random Bernoulli with 6.25% subsampling. The left column (full sampled) and center column
(subsampled) are crops of 256×256 pixels. The error shown is the relative error between the subsampled
and full sampled versions.

8.3 Resolution dependence: Fixed number of samples
The previous result of resolution dependence with a fixed fraction p is primarily due to asymptotic spar-
sity and asymptotic incoherence, but is partly also due to the fact that a fixed fraction p does mean more
coefficients being sampled as the resolution increases.

A more spectacular result of asymptotic sparsity and asymptotic incoherence is obtained, this time, by
fixing the number of coefficients being sampled, instead of the fraction p. This was done in Figure 9,
where the same number of 5122 = 262144 Fourier coefficients was sampled in all of the following five
reconstructions: (a) full sampled version of 512×512 pixels, (b) linear reconstruction of the subsampled
2048×2048 version by zero-padding the first 512×512 coefficients, (c) nonlinear reconstruction (i.e. l1

minimization) into Daubechies 4 wavelets from the first 512×512 coefficients, (d) linear reconstruction from
5122 Fourier coefficients at 2048×2048 taken using (8.1), and (e) nonlinear reconstruction into Daubechies
4 wavelets from the same multilevel subsampled coefficients from (d).

The higher resolution opens up higher-order regions of wavelet coefficients which are mostly sparse, and
higher-order regions of incoherence between sinosoids and wavelets (see Figure 4). When using a nonlinear
reconstruction, this asymptotic effect can be fruitfully exploited with a multilevel sampling scheme, which
spreads the same number of samples across a wider range to sample from coherent regions and reconstruct
finer details to a much clearer extent even in the presence of noise. Other sampling strategies (e.g. half-half)
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Figure 9: Subsampling a fixed number of 5122 = 262144 Fourier coefficients in five scenarios. (a) 512×512
full sampled reconstruction. (b) 2048×2048 linear reconstruction from the first 512×512 = 262144 Fourier
coefficients (zero padded). (c) 2048×2048 reconstruction into Daubechies 4 from the first 512×512 = 262144
Fourier coefficients (zero padded). (d) 2048× 2048 linear reconstruction from 5122 = 262144 Fourier
coefficients taken with the multilevel scheme (8.1) with n = 100, m = 0.05, a = 1.25, b = 4.2539. (e)
2048×2048 reconstructed into Daubechies 4 from the same 5122 = 262144 Fourier coefficients from (d).

will also benefit from sampling at higher resolutions, provided measurements are sufficiently spread out, but
a multilevel sampling strategy will provide near optimal results.

Figure 10 shows the same effect when using Hadamard as the sampling basis, subsampling the same
fixed number of 5122 = 262144 Hadamard coefficients.

Effectively, by simply going higher in resolution (in these examples, further in the Fourier or Hadamard
spectra), one can recover a signal much closer to the exact one, yet taking the same amount of measurements.
Similarly, by simply going higher in the resolution one can obtain the same quality of reconstruction, yet
taking less measurements.

8.4 Storage and speed
Much of the CS literature relies on the usage of random sensing matrices, typically of Bernoulli or Gaussian
type, with one important reason being that these matrices provide universality (see next section §8.5). Some
real-world applications proposed their use as well, e.g. the single pixel camera [68].

The Achilles’ heel of these random matrices is the need for (large) storage and implicitly the lack of fast
transforms. This limits the maximum image size that can be used and yield slow recovery. For example,
a 1024×1024 experiment involving subsampling 12.5% of the rows of a random Gaussian matrix would
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Figure 10: Subsampling a fixed number of 5122 = 262144 Hadamard coefficients. (left) 2048×2048 linear
reconstruction from the first 262144 Hadamard coefficients (zero padding). (right) 2048×2048 reconstruction
into Daubechies 12 from 262144 Hadamard coefficients taken with the multilevel scheme (8.1) with n = 50,
m = 0.05, a = 1.25, b = 4.5458.

require 2 TB of free memory to store it (assuming 8 byte floating point representation), which will be read
and multiplied many times during the recovery process, severely slowing it down.

A low maximum resolution is an important limiting factor not only for computations. At low resolutions,
as we have seen in §8.2 and particularly in §8.3, the asymptotic sparsity of natural images in standard spar-
sifying transformations such as wavelets has usually not kicked in. Thus, compressed sensing can yield only
marginal benefits over more classical reconstructions.

Some solutions to the storage and speed problems which typically try to preserve universality exist,
such as pseudo-random permutations of the columns of Hadamard or block Hadamard matrices [37, 45],
Kronecker products of random matrix stencils [32], or even orthogonal transforms such as the Sum-To-One
(STOne) matrix [38]. The STOne matrix has a fast transform and does not need to be stored, whereas
solutions that employ randomization address the storage and speed problems only to an extent.

It is known that for sufficiently large problem sizes, continuous random matrices (e.g. Gaussian) and
discrete random matrices (e.g. Bernoulli) share the same statistics. With the new theory in this paper, a
solution to the storage and speed problems is to replace random sensing matrices with an orthogonal matrix,
like the Hadamard matrix, and then subsample it using a multilevel scheme such as (8.1). Other matrices
also work, e.g. DCT, DFT etc, but the Hadamard matrix can be more easily implemented in certain physical
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devices, due to its binary structure (see §8.5). These provide asymptotic incoherence with wavelets and other
common sparsifying transformations, and haveO(N log(N)) fast transforms. However, they do not provide
universality. But is universality actually a desirable feature in a sensing matrix given that the signal to be
recovered is highly structured?

8.5 Structure vs. Universality and RIP
Traditionally, random matrices have been considered convenient in CS, since, amongst other properties, they
provide universality. A random matrix A ∈ Cm×N is universal if for any isometry U ∈ CN×N , the matrix
AU satisfies the RIP with high probability. Random Bernoulli or Gaussian matrices have such a property,
and for this reason, they have become popular choices as sensing matrices. A common choice for 2D signals
is U = V −1

dwt, the inverse wavelet transform.
Compressive imaging [68, 45] is an important example where universal sensing matrices have frequently

been used. The idea behind the sensing device is that measurements are taken using a sensing matrix with
only 1 and −1 as values, i.e. y = Ax, where x ∈ CN is the signal to be recovered, y ∈ Cm with m ≤ N is
the vector of measurements and A ∈ {−1, 1}m×N is the sensing matrix1. All matrices with only two values
({−1, 1} can be obtained from a simple transformation) fit this setup: random Bernoulli matrices, Hadamard
matrices and derivations, the STOne matrix etc.

Figure 11 shows the result of an interesting experiment. As sensing matrices we used a random Bernoulli,
a random Gaussian and STOne. As sparsifying bases we used wavelets, discrete cosine, and Hadamard. We
then performed the flip test (§2.3). We tested a variety of different images, resolutions and subsampled
fractions, the result being the same as in Figure 11: the three sensing matrices all behave extremely similarly
and the RIP holds almost exactly, being a strong indicator that the STOne matrix also provides universality
like the random Bernoulli and Gaussian matrices.

But is universality a feature one wants in a sensing matrix when the signal of interest is structured?
With universal sensing matrices, there is no room to exploit any extra structure the signal may have. The
underlying reason is explained in the next subsection §8.6.

An alternative to A is to use a non-universal sensing matrix such as the Hadamard matrix, UHad. Note
that UHadV

−1
dwt is completely coherent (regardless of the wavelet used), but is asymptotically incoherent (see

Figure 4) and thus perfectly suitable for a multilevel sampling scheme which can exploit any asymptotic
sparsity typically prevalent in real world signals.

This is precisely what we see in Figure 12 (the top first two images are repeated from Figure 11), which
shows a comparison between two universal sensing matrices, random Bernoulli and STOne, subsampled
uniformly at random (STOne was also subsampled semi-randomly as specified in [38] which gave very
similar results), and Hadamard subsampled using the multilevel scheme (8.1).

Given that most real world signals have an asymptotic sparsity structure in some basis, at least as far as
imaging is concerned, then it is desirable to use a sensing matrix which provides asymptotic incoherence,
which in turn allows the asymptotic sparsity of the signal to be exploited using structured sampling strategies
such as multilevel sampling.

An important aspect is that, unlike compressive imaging where one has significant freedom to design
the sensing matrix (usually having binary entries, typically -1,1), many real-world problems such as MRI,
CT and others will impose the sensing matrix, i.e. there is no freedom design or choose sensing matrices;
random matrices are simply not applicable. Luckily, in many such applications the imposed sensing opera-
tors are highly non-universal and asymptotically incoherent with popular sparsifying bases, and thus easily
exploitable using multilevel sampling, as shown in our previous experiments.

8.6 Asymptotic incoherence vs. Uniform incoherence
The reasons behind the previous results are deeply rooted in the incoherence structure. Universal sensing
matrices and those that are close to universal typically provide a relatively low and uniform incoherence
pattern. This allows sparsity to be exploited by sampling uniformly at random. Yet, by definition, universal
sensing matrices cannot exploit the distinct asymptotic sparsity structure of real-world signals when using a
typical (`1 minimization) compressed sensing reconstruction.

1In a practical implementation, {0, 1}may be used instead of {−1, 1}, as it corresponds to open/closed states of hardware elements.
A post-measurement transformation is applied to provide an equivalence to using a {−1, 1}N×m matrix.
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Random Bernoulli STOne Random Gaussian

to
Daubechies 4

Err=17.60% Err=17.61% Err=17.63%

to
Daubechies 4

flipped

Err=17.58% Err=17.63% Err=17.58%

to
DCT

Err=19.23% Err=19.37% Err=19.33%

to
DCT
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Err=19.36% Err=19.39% Err=19.31%

to
Hadamard
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to
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Err=21.94% Err=22.02% Err=21.81%

Figure 11: A 25% subsampling experiment at 256×256 with Barnoulli, Gaussian and STOne to various
orthobases. See §2.3 for recovery using flipped coefficients. It is obvious that images in each row have very
similar quality, and the same holds for the flipped vs. non-flipped recovery. This strongly indicates that
Bernoulli, Gaussian and STOne matrices behave the same, and that universality and RIP hold for all three.
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25% 256×256 Bernoulli to DB4 25% 256×256 STOne to DB4 25% 256×256 Multi-level Hadamard
Error = 17.60% Error = 17.61% to DB4, Error = 11.98%

12.5% 1024×1024 Bernoulli 12.5% 1024×1024 STOne to DB4 12.5% 1024×1024 Multi-level
to DB4, Error = 17.00% Error = 16.96% Hadamard to DB4, Error = 10.40%

Figure 12: Random Bernoulli and STOne, and Multi-level Hadamard reconstructed in Daubechies 4. The
images on the bottom row are 256×256 crops of the original 1024×1024 reconstructions.

Conversely, when a sensing matrix is designed so that the coherence behaviour aligns with the sparsity
pattern of the signal, one can indeed exploit such structure. In particular, a multilevel sampling scheme is
likely to give good results by sampling more in the coherent regions where the signal is also typically less
sparse. We remark, however, that the optimum sampling strategy is also highly dependent on the signal
structure. Therefore if a particular image does not have its important coefficients in the coherent regions, one
may witness an inferior reconstruction. Yet most images share a reasonably common structure, and thus we
can find good all-round multilevel sampling strategies.

As seen in the previous subsection (in the case of STOne), in order to provide asymptotic incoherence,
the sensing matrix should contain additional structure besides simply being non-random. Typically, sensing
and sparsifying matrices that are discrete versions of integral transforms, e.g. Fourier, wavelets, etc. will
provide asymptotic incoherence, but others like Hadamard will do so too. As discussed earlier, this scenario
also matches many real-world applications where the sensing operators are imposed, e.g. MRI or CT.

Note on the usage of the STOne matrix. We used the STOne matrix in the examples above purely
as an example of a matrix that provides a low and relatively uniform incoherence like random matrices, but
which is a not a random matrix. However, it is worth noting that the STOne matrix was invented for different
primary purposes than universality or performance in compressed sensing recovery of 2D images. It has a
fast O(N logN) transform and allows multi-scale image recovery from compressive measurements: low-
resolution previews can be instantly generated by applying the fast transform on the measurements directly,
and high resolution recovery is possible from the same measurements via compressed sensing solvers. In
addition, it was also designed to allow efficient, real-time recovery of compressive videos when sampling in
a particular manner semi-randomly. These features make the STOne matrix a versatile sensing operator.
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Original image Random Bernoulli to DB4 Random Bernoulli to DB4
via SPGL1, Err = 16.0% via Model-based CS, Err = 21.2%

Random Bernoulli to DB4 Multi-level Hadamard to DB4, Multi-level Hadamard to Curvelets
via TurboAMP, Err = 17.5% via SPGL1, Err = 7.1% via SPGL1, Err = 6.5%

Figure 13: Subsampling 12.5% coefficients at 256×256. The error shown is the relative error to the fully
sampled image.

8.7 Structured sampling vs. Structured recovery
Until now, we discussed taking into account sparsity structure in the sampling procedure via multilevel sam-
pling of non-universal sensing matrices. Sparsity structure can also be taken into account in the recovery
algorithm. An example of such an approach is model-based compressed sensing [8], which assumes the
signal is piecewise smooth and exploits the connected tree structure of its wavelet coefficients to reduce the
search space of the matching pursuit algorithm [58]. Another approach is the class of message passing and
approximate message passing algorithms (AMP) [9, 29], which exploit the persistence across scales structure
[56] of wavelet coefficients by a modification to iterative thresholding algorithms inspired by belief propaga-
tion from graph models. This can be coupled with hidden Markov trees to model the wavelet structure, such
as in the Turbo AMP algorithm [65]. For earlier work in this direction, see [42, 43].

Another approach is to assume that the actual signal – not its representation in some sparsifying basis –
is sparse and random, or randomly indexed, and from a known probability distribution [76], which allows
probabilistic reconstruction via spatially coupled sensing matrices (random matrices with band diagonal
structure) provided their structure is linked to the signal’s sparsity [49, 48, 27]. If all these assumptions are
met, robust reconstruction is possible at subsampling rates close to the signal’s sparsity (this subsampling
bound is however sharp, the recovery failing beyond it; algorithms based on convex optimization do not
exhibit this sharp effect). However, we omit this approach from our experiment, since it is not clear how it
can be effectively modified to work for problems where the image – the object being sampled – is sparse in
a transform domain, such is the case in many applications.

The main difference between multilevel sampling of asymptotically incoherent matrices and the ap-
proaches mentioned above is that the former incorporates the sparsity structure in the sampling strategy and

55



uses an unmodified CS recovery algorithm (l1 minimization), whereas the latter use standard CS sampling
strategies (universal sensing matrices, e.g. random Gaussian/Bernoulli) and exploit structure by modifying
the recovery algorithm. In particular, the latter are based on universal sensing matrices with corresponding
uniform incoherence patterns, an aspect discussed earlier in §8.6 and §8.5. It is thus of interest to compare
the approaches.

Figure 13 shows a representative experiment from a large set of experiments that we ran. As can be seen,
it points to the same conclusion: that asymptotic incoherence combined with multilevel sampling of highly
non-universal sensing matrices (e.g. Hadamard, Fourier) allows structured sparsity to be better exploited
than universal sensing matrices with structure being incorporated into the recovery algorithm. It is also
worth restating that in many applications (e.g. MRI, CT and others) where the sensing matrix is imposed and
non-universal, one cannot use the sensing matrices needed by these algorithms. Conversely, as shown in this
paper, multilevel subsampling of the imposed matrix provides near-optimal recovery guarantees.

8.8 Orthobases vs. Frames
The previous subsection in Figure 13 included two results of an image reconstructed in a frame, rather
than an orthonormal basis. Although it is not the purpose of this paper to investigate the usage of frames
as sparsifying matrices in compressed sensing, we provide nonetheless some further results obtained using
frames.

Without going into any detail, the main differences of interest to us for 2D signals between orthonormal
basis and frames are that many images are known to be relatively sparser in frames such as curvelets [11, 13],
shearlets [20, 21, 50] or contourlets [26, 59] than in orthonormal basis such as wavelets or DCT. Note that our
results provide clear experimental verifications of the improvements offered by the aforementioned frames –
in particular, the recently-introduced shearlets – at practical resolution levels.

Figure 14 shows the recovery of a high resolution image with fine details, and one can observe that indeed
the frames manage to yield a higher reconstruction quality than wavelets. This is an encouraging result and
an avenue worth investigating further theoretically and practically.

9 Conclusions
In this paper we have introduced a new framework for compressed sensing. This generalizes the existing the-
ory and shows that compressed sensing is possible under greatly relaxed conditions. The importance of this
is threefold. First, we have given previously-lacking mathematical credence to the abundance of numerical
studies showing the success of compressed sensing in inverse problems such as MRI. Second, in showing
that compressed sensing is possible in the presence of only asymptotic incoherence, our theory raises the
possibility of substantially greater flexibility in the future design of sensing mechanisms. Third, we have
shown the importance of exploiting not just sparsity but also structure so as to get as high quality reconstruc-
tions as possible. In particular, this can be achieved in a computationally efficient (and physically realizable)
manner using Hadamard matrices with multilevel subsampling, for example, in compressive imaging.

Note that structure in compressed sensing has been discussed in many previous works; see, for exam-
ple [28, 72] for considering the wavelet structure in the sampling strategy, [17, 75] for design of sensing
matrices given known structure of the signal to be recovered, and [33] for general discussions on structure
in compressed sensing. As discussed, however, existing structure-exploiting algorithms are typically based
on universal sensing matrices, and leverage structure in the recovery algorithm. Conversely, our approach
exploits structure in the sampling strategy using highly non-universal operators, and, as we have shown,
this leads to substantial improvements. This begs the question: are universality and RIP what we want in
practice? This is an interesting topic for future consideration.

As discussed, an important application of our work lies in MRI. Our main result has provided the first
comprehensive explanation for the success of compressed sensing in MRI. We note that there have been
several prior works on this topic. These include [47], which analyzed the case of bivariate Haar wavelets
with an inverse power law sampling density, and [10] where block sampling strategies were analyzed, and
in particular, Shannon wavelets with horizontal line sampling. Both works differ from ours in that they
consider only sparsity, and thus do not adhere to the conclusions of the flip test. Having said this, the results
of [10] are closer to the types of sampling strategies that can be implemented in actual MRI problems, where
one must sample along continuous curves, due to the physics of the scanner. A objective of future work is
to extend our results to incorporate both structured sparsity and realistic contours. We note also that [47]
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Subsampling map Original image

Wavelets (DB4) Curvelets

Contourlets Shearlets

Figure 14: Multi-level subsampling of 6.25% of DFT coefficients at 2048×2048 of the same image used in
Figure 10. All images are crops of 256×256 of the full 2048×2048 version, except the subsampling map.
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provides recovery guarantees for TV minimization; an important and popular strategy in imaging. This is
another direction for future investigations.

We have concluded in our work that the optimal sampling strategy is dependent on the signal structure.
Further work is required to determine such strategies in a rigorous empirical manner for important classes
of images. We expect our main theorems to give important insights into these investigations, such as how
many levels to choose, how to choose their relative sizes, etc. One conclusion of our work, however, is
that approaches to design optimal sampling densities based solely on minimizing coherences (i.e. not taking
into account asymptotic sparsity) may be of little use in practice unless they are trained on large families of
images having similar structures (e.g. brain images).

As discussed and highlighted in our numerics, asymptotic sparsity is not only relevant for wavelets. Any
approximation system whose power lies in nonlinear, as opposed to linear, approximation will give rise
to asymptotically sparse representations. Such systems include curvelets [11, 13], contourlets [26, 59] or
shearlets [20, 21, 50], all of which find application in inverse problems and, as we have shown experimentally,
carry advantages in compressive imaging over wavelet-based approaches. An immediate objective of future
work is to extend our analysis for the Fourier/wavelets case to these more exotic function systems.
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[76] Y. Wu and S. Verdu. Rényi information dimension: Fundamental limits of almost lossless analog compression.
IEEE Transactions on Information Theory, 56(8):3721–3748, 2010.

61


