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Abstract

This paper presents a sharp geometric analysis of the recovery performance of sparse regularization.
More specifically, we analyze the BLASSO method which estimates a sparse measure (sum of Dirac
masses) from randomized sub-sampled measurements. This is a “continuous”, often called off-the-grid,
extension of the compressed sensing problem, where the `1 norm is replaced by the total variation of
measures. This extension is appealing from a numerical perspective because it avoids to discretize the
the space by some grid. But more importantly, it makes explicit the geometry of the problem since the
positions of the Diracs can now freely move over the parameter space. On a methodological level, our
contribution is to propose the Fisher geodesic distance on this parameter space as the canonical metric
to analyze super-resolution performances in a way which is invariant to reparameterization of this space.
While previous works express recovery conditions using a flat Euclidean distance, switching to the Fisher
metric allows us to take into account measurement operators which are not translation invariant, which is
crucial for applications such as Laplace inversion in imaging, Gaussian mixtures estimation and training
of multilayer perceptrons with one hidden layer. On a theoretical level, our main contribution shows that
if the Fisher distance between spikes is larger than a Rayleigh separation constant, then the BLASSO
recovers in a stable way a stream of Diracs, provided that the number of measurements is proportional
(up to log factors) to the number of Diracs. We measure the stability using an optimal transport distance
constructed on top of the Fisher geodesic distance. Our result is (up to log factor) sharp and does not
require any randomness assumption on the amplitudes of the underlying measure. Our proof technique
relies on an infinite-dimensional extension of the so-called “golfing scheme” which operates over the space
of measures and is of general interest.

1 Introduction

Sparse regularization, and in particular convex approaches based on `1 minimization, is one of the
workhorses to ill-posed linear inverse models. It finds numerous applications ranging from signal process-
ing [19] to machine learning [55]. In many situations, it makes sense to consider a “continuous” counterpart
to `1 minimization, which avoids gridding the parameter space, thus enabling more efficient solvers and a
sharper theoretical analysis. The most natural continuous extension encodes the positions and amplitudes
of the sought after solution into a Radon measure, so that the `1 norm is replaced by the total variation
(total mass) of the measure. A measure is then naturally said to be “sparse” when it is a sum of Diracs
at the desired positions and amplitudes. The corresponding infinite dimensional optimization problem is
called BLASSO in [27] following theoretical works on spectral extrapolation [7]. This setting of optimiza-
tion on measures has also been considered in the inverse problem community [9]. Successful examples of
applications of such “off-the-grid methods” include single-molecule fluorescent imaging [8], spikes sorting in
neurosciences [35], mixture model estimation [39] and training shallow neural networks [5].
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1.1 Sparse spikes recovery using the BLASSO

Observation model. We consider the general problem of estimating a complex-valued unknown Radon
measure µ0 ∈M(X ) defined over some metric space X from a small number m of randomized linear obser-
vations y ∈ Cm. In this paper, X will either be a connected bounded open subset of Rd or the d-dimensional
torus Td, even though some of our results extend beyond this case. We define the product between a complex-

valued continuous function f ∈ C (X ) and complex-valued measure µ ∈M(X ) as 〈f, µ〉M
def.
=
∫
X f(x)dµ(x).

The (forward) measurement operator Φ :M(X ) 7→ Cm that we consider in this paper is of the form

Φµ
def.
= 1√

m
(〈ϕωk , µ〉M)

m
k=1 (1)

where (ω1, . . . , ωm) are parameters identically and independently distributed according to a probability
distribution Λ(ω) over some space Ω, and ϕω : X → C are smooth functions parameterized by ω. We further

assume that ϕω is normalized, that is Eω∼Λ[|ϕω(x)|2] = 1 for all x ∈ X . Our observations are of the form

y = Φ(µ0 + µ̃0) + w , (2)

where µ0 =
∑s
i=1 aiδxi with (xi, ai) ∈ X × C is the s-sparse measure we are interested in, µ̃0 ∈ M(X )

accounts for modelling error, and w ∈ Cm is measurement noise. In the rest of the paper, we naturally
assume that the support of µ̃0 does not include any of the xi.

BLASSO. An increasingly popular method to estimate such a sparse measure corresponds to solving a
infinite-dimensional analogue of the Lasso regression problem

min
µ∈M(X )

1

2
‖Φµ− y‖22 + λ|µ|(X ). (Pλ(y))

Following [27], we call this method the BLASSO (for Beurling-Lasso). Here |µ|(X ) is the so-called total
variation (or total mass) of the measure µ, and is defined as

|µ|(X )
def.
= sup {Re (〈f, µ〉M) ; f ∈ C (X ), ‖f‖∞ 6 1} .

Note that on unbounded X , one needs to impose that f vanishes at infinity. If X = {xi}i is a finite space, then

this would correspond to the classical finite-dimensional Lasso problem [55], because |µ|(X ) = ‖a‖1
def.
=
∑
i |ai|

where ai = µ({xi}). Similarly, when X is possibly infinite but µ =
∑
i aiδxi , one also has that |µ|(X ) = ‖a‖1.

1.2 Previous works

From a theoretical perspective, understanding the performance of this approach corresponds to estab-
lishing a “Rayleigh criterion”, which is the minimum allowable separation distance between two spikes
mini6=j ‖xi − xj‖ for the method to recover them from linear measurements. The first result in this direction
is due to Candès and Fernandez-Granda [15], who prove that for Fourier measurements, this separation dis-
tance is (almost) equal to the inverse of the maximum sample frequency. This results has been extended to
provide robustness to noise [14, 37, 4, 32] and to cope with more general measurement operators [6]. All these
previous theoretical works however strongly rely on the translation invariance of the linear operator (Fourier
measurements or convolutions) and the underlying domain (either Euclidean space or the periodic torus).
Applying these results to spatially varying operator (such as for instance when imaging with non-stationary
point spread functions) generally leads to overly pessimistic minimum separation condition.

In parallel, it has been shown by Tang et al [54] that the recovery guarantees of Candès and Fernandez-
Granda [15] remain valid with high probability when only a small number of (Fourier) measurements are
randomly selected, of the order (up to log factors) of the sparsity of the underlying measure. However, this
result is only valid under a random signs assumption on the amplitudes of the sought-after Dirac masses,
which is a well-known assumption in classical discrete compressed sensing [17, 31] but appears somewhat
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unrealistic. While more detailed conditions can be derived when the amplitudes ai are all assumed real
and positive [29], in the general case ai ∈ C it was not known until this paper whether the random signs
assumption could be removed.

Although it is not the topic of this paper, let us note that lifting the minimum separation condition
requires to impose positivity of the weights [27, 50] and the price to pay is an explosion of the instabilities
as spikes cluster together [29].

Numerical solvers and alternative approaches. The focus of this paper is on the theoretical analysis
of the performance BLASSO method, not on the development and analysis of efficient numerical solvers.
Although the BLASSO problem is infinite dimensional, there are efficient numerical solvers that use the
fact that the sought-after sparse solution is parameterized by a small number of parameters (positions and
amplitudes of the spikes). This open the door to algorithms which do not scale with some grid size, and hence
can scale beyond 1-D and 2-D problems. Let us mention in particular: (i) discretization on a grid [53, 33],
(ii) semi-definite programming (SDP) relaxation using Lasserre Hierarchy [15, 28], (iii) Frank-Wolfe and its
variants [9, 8], (iv) non-convex particle flows [20]. We also emphasize that the BLASSO is by no means
the only method for estimating sparse measures in an off-the-grid setup. Let us, among other approaches,
cite Prony-type spectral methods such as MUSIC and ESPRIT [51, 48, 42] and non-convex approaches
for instance based on `0 or greedy minimization (see for instance [39, 52] for recent contributions in this
direction). In practice, these methods often surpasses BLASSO in term of performance, in particular when
the noise is small and the spikes tends to cluster so that the minimum separation distance condition does not
hold. A rule of thumb is that `1-regularization is however good baseline, which benefit from both efficient and
stable numerical solvers and an in-depth theoretical analysis which leverage the convexity of the problem.

1.3 Contributions

The goal of this paper is twofold: remove the random signs assumption of Tang et al [54] while still keeping
a sharp number of random measurements, and extend the framework to encompass non-translation invariant
operators in a natural manner with improved separation conditions. The former is achieved by extending
the so-called golfing scheme [41, 16] to the infinite-dimensional setting, while the latter is done through a
particular Riemannian geometric framework, defined by the metric tensor associated to the covariance kernel
of the measurement operator. We will show that, by imposing a minimal separation between Diracs with
respect to the geodesic distance associated to this tensor, previous strategies can be naturally extended.

Informally, our main result reads as follows. Define the limit covariance kernel K(x, x′)
def.
= Eωϕω(x)ϕω(x′),

which measures how much two Diracs at x and x′ interact with each other in the large samples limit as
m→∞, and assume that K is real-valued (primary examples include the Gaussian kernel, or the so-called

Jackson kernel used in [15]). Define the metric tensor gx
def.
= ∇1∇2K(x, x) ∈ Rd×d, where ∇i indicates the

gradient with respect to the ith variable, and assume that for all x ∈ X it is a positive definite matrix.

Finally, define the associated geodesic distance dg(x, x′) = infγ
∫ 1

0

√
γ′(t)>gγ(t)γ′(t)dt, where the infimum

is taken over all continuous path γ : [0, 1] → X such that γ(0) = x and γ(1) = x′ (more details about this
geodesic distance are given in Section 3.1). Denote by Bdg

(x; r) the ball of radius r centered on x, for the
metric dg. The main result of the paper, here stated in an informal way, is the following.

Theorem 1 (Main result, informal). Let RX
def.
= supx,x′ dg(x, x′). Under some assumptions on the kernel K

(see Assumption 1 in Sec. 4) and features ϕω (see Assumption 2 in Sec. 5), there are constants r,∆ > 0,
that only depends on K, and C1, C2 > 0 which depend on K and the regularity of ϕωk (up to 2nd order),
such that the following holds. Suppose that y is of the form (2) with mini 6=j dg(xi, xj) > ∆ and

m > C1 · s · log(s) log((C2RX )d/ρ). (3)
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Then with probability 1− ρ, when ‖w‖ 6 δ and λ ∼ δ√
s
, any solution µ̂ to (Pλ(y)) satisfies

T 2
dg

 s∑
j=1

Âjδxj , |µ̂|

 .
√
sδ + |µ̃0| (X ) and

s
max
j=1
|âj − aj | .

√
sδ + |µ̃0| (X ), (4)

where Âj
def.
= |µ̂| (Bdg

(xj ; r)), âj
def.
= µ̂(Bdg

(xj ; r)), and Tdg
is the partial optimal transport distance associated

to dg (see Def. 1).

Let us comment a bit on this result. On a technical level, the most salient feature of Theorem 1 is that,
up to log factors, the bound (3) is linear in the sparsity of the underlying measure. This improves over the
best known result of Tang et al [54], since in our case we do not require the random signs assumption.

On a methodological level, the assumptions on the kernel K(x, x′) mainly state that it must decrease
sufficiently when x and x′ are far apart, or, in other words, that the coherence between Φδx and Φδx′ must
be low. The main novelty of our approach is that we measure this separation in term of the geodesic metric
dg, which allows to account for non-translation invariant kernels in an intrinsic and natural manner. The
assumptions on the features ϕω, which are more technical in nature, relates to their regularity and the
boundedness of their various derivatives.

Concerning the recovery bound (4), the first part states that the measure µ̂ concentrates around the true
positions of the Diracs, while the second part guarantees that the complex amplitudes of µ̂ around the Diracs
are close to their true values. The discrepancy in the first part is measured in terms of a partial optimal
transport distance associated to dg (Def. 1 in Sec. 3).

Finally, the constants C1, C2 that appear in (3) can depend (generally polynomially) on the dimension
d but not on the sparsity s. As we will see in Section 5 and the detailed version of Theorem 1 (Theorem
3), the bound (3) is actually valid when we suppose the features ϕω and their derivatives to be uniformly
bounded for all x and ω. When this is not the case, we will be able to relax this assumption, similar to the
notion of stochastic incoherence [16] in compressed sensing. As a result, m can actually appear in C1, C2,
generally in a logarithmic form (see examples in Section 2), which only adds logarithmic terms in s and d in
the final number of measurements.

Outline of the paper. The paper is organized as follows. In Section 2 we give example applications of
Theorem 1, including non-translation invariant frameworks such as Laplace measurements used in microscopy
[30]. In Section 3, we introduce our Riemannian geometry framework and prove intermediate recovery results
based on the existence of a so-called non-degenerate dual certificate, which is known in the literature to be
the key object in the analysis of the BLASSO model. In Section 4, we study in more detail the relationship
between the minimal separation condition and the covariance kernel. We prove that, under some conditions
on K, in the limit m → ∞, one can indeed prove the existence of a non-degenerate dual certificate when
minimal separation is imposed with respect to dg. Finally, in Section 5, we state our main result with finite
number of measurements m (Theorem 3, which is a detailed version of Theorem 1). Section 6 is dedicated
to its proof using an infinite-dimensional extension of the celebrated golfing scheme [16], with technical
computations in the appendix.

Relationship to our previous work [45] This article is a substantially extended version of the conference
publication [45]. The results of Section 4 are in most part already published (under slightly more restrictive
assumptions) in this conference paper. The remainder of the paper is however entirely novel. We remove
the random signs assumption of [45] thanks to a new proof technique with the golfing scheme. Furthermore,
the results in [45] are restricted to the small noise setting and focus on exact support stability, while we
study here arbitrary noise levels and establish more general stability bounds in terms of optimal transport
distances.

Notations. Given n ∈ N, we denote by [n]
def.
= {1, 2, . . . , n} the first n integers. We write 1n to denote the

vector of length n whose entries are all 1’s, and 0n to denote the vector of length n whose entries are all 0’s.
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Given two matrices A and B, we write A ≺ B to mean that B − A is positive definite and A � B to mean
that B−A is semi-positive definite. Given two positive numbers a, b, we write a . b to mean that there exists
some universal constant C > 0 so that a 6 Cb. Given (X , d) a metric space, x ∈ X and r > 0, we define

Bd(x; r)
def.
= {z ∈ X ; d(x, z) < r} the ball centered on x of radius r, or just B‖·‖(r) = {z ∈ X ; ‖z‖ < r} the

ball centered on 0 for a norm ‖·‖.
We write ‖·‖p to denote the `p norm, and ‖·‖ without any subscript denotes the spectral norm for matrices

or `2 norm for vectors. For any norm ‖·‖X on vectors, the corresponding matrix norm is ‖A‖X→Y =
sup‖x‖X=1 ‖Ax‖Y and ‖A‖X = ‖A‖X→X for short. Given a vector x ∈ Csd decomposed in blocks x =

[x>1 , . . . , x
>
s ]> with xi ∈ Cd, where s and d will always be defined without ambiguity, we define the block

norm ‖x‖block
def.
= max16i6s ‖xi‖. Given a vector x ∈ Cs(d+1) decomposed as x = [x>0 , X

>
1 , . . . , X

>
s ]> where

x0 ∈ Cs and Xj ∈ Cd, we define ‖x‖Block
def.
= max

(
‖x0‖∞ ,maxsj=1 ‖Xj‖2

)
.

For a complex number a, its sign is denoted by sign(a) = a
|a| . Given a complex-valued measure µ ∈M(X )

and complex-valued continuous function f ∈ C (X ), we recall that 〈f, µ〉M
def.
=
∫
X f(x)dµ(x). For two

complex vectors v and w, 〈v, w〉2
def.
= v∗w, where v∗ = v> denotes conjugate transpose.

2 Examples

In this section, we illustrate Theorem 1 for some special cases of practical interest in imaging and machine
learning. The following statements are obtained by bounding the constants in Theorem 3 in Section 5 (the
detailed version of Theorem 1). These computations, which can be somewhat verbose, are delayed to
Appendices C, D and E.

Off-the-grid Compressed Sensing. Off-the-grid Compressed sensing, initially introduced in the special
case of 1-D Fourier measurements on X = T = R/Z by [54], corresponds to Fourier measurements of the
form (1). This is a “continuous” analogous of the celebrated compressed sensing line of works [17, 31]. We
give a multi-dimensional version below.

Let fc ∈ N with fc > 128 (for simplicity) and X = Td the d-dimensional torus. Let ϕω(x)
def.
= ei2πω>x,

Ω
def.
=
{
ω ∈ Zd ; ‖ω‖∞ 6 fc

}
, and Λ(ω) =

∏d
j=1 g(ωj) where g(j) = 1

fc

∑min(j+fc,fc)
k=max(j−fc,−fc)(1 − |k/fc|)(1 −

|(j − k)/fc|). The Fisher metric is, up to a constant C, the Euclidean metric dg(x, x′) = Cfc ‖x− x′‖.
Provided that mini 6=j ‖xi − xj‖ & d

1
2 s

1
4

fc
, stable recovery is guaranteed with

m & d2s

(
log(s) log

(
s

ρ

)
+ log

(
(sfcd)d

ρ

))
.

Note that, compared to the uni-dimensional case, the minimal separation ∆ depends on s: this could actually
be replaced by a bound exponential in the dimension d, which we prefer not to do here. Indeed, during the
proof, one must bound a quantity of the form

∑s
i=2 ‖x1 − xi‖−4

, for ∆-separated Diracs. Since in one
dimension only 2 Diracs can be situated at distance k∆ from x1 for each integer k > 0, this can be easily
bounded by a global bound ∆−4

∑∞
k=1 k

−4 that does not depend on s. In the multidimensional case however,
an exponential number of Diracs can be packed around x1, and applying the same strategy would lead to a
bound on ∆ which is exponential in the dimension.

Continuous sampling Fourier transform A variant of the previous framework is continuous Fourier
sampling, for instance with frequencies distributed according to a Gaussian distribution. Let X ⊂ Rd be a

bounded open subset of Rd. The space of frequencies is Ω = Rd, ϕω(x)
def.
= eiω>x, and Λ(ω) = N (0,Σ−1)

for some known symmetric positive definite matrix Σ. Note that, for simplicity, the frequencies are drawn
according to a Gaussian with precision matrix Σ (the inverse of the covariance matrix), such that the kernel K

is the classical Gaussian kernel K(x, x′) = e
− 1

2

∥∥∥Σ−
1
2 (x−x′)

∥∥∥2

. The Fisher metric is dg(x, x′) =
∥∥∥Σ−

1
2 (x− x′)

∥∥∥.
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In this case, provided that mini 6=j dg(xi, xj) &
√

log(s), stable recovery is guaranteed with

m & s

(
L log(s) log

(
s

ρ

)
+ L2 log

(
(sLRX )d

ρ

))
.

where L = d+ log2
(
dm
ρ

)
. Note that log(m) appears in L in the r.h.s. of the expression above, which only

incurs additional logarithmic terms in the bound on m, as mentioned in the introduction.

Learning of Gaussian mixtures with fixed covariances An original framework for continuous sparsity
is sketched learning of mixture models [39], and in particular Gaussian mixture models (GMM), for which
we can exploit the computations of the previous case of Fourier measurements sampled in accordance to a
Gaussian distribution. Assume that we have data samples z1, . . . , zn ∈ Rd drawn i.i.d. from a mixture of

Gaussians ξ
def.
=
∑s
i=1 aiN (xi,Σ) with known covariance Σ. The means x1, . . . , xs ∈ X ⊂ Rd and weights

a1, . . . , as > 0 are the objects which we want to estimate. Sample frequencies ω1, . . . , ωm ∈ Rd i.i.d. from a
Gaussian Λ = N (0,Σ−1/d), and construct the following linear sketch [24] of the data:

y =
C

n

n∑
i=1

(e−iω>k zi)mk=1 (5)

where the constant C = (1+ 2
d )

d
4 6 e

1
2 is here for normalization purpose. Linear sketches are mainly used for

computational gain: they are easy to compute in a streaming of distributed context, and are much smaller
to store in memory than the whole database [24, 39]. It is easy to see that the sketch can be reformulated
as (1), by writing

y ≈ Ez(Ce−iω>k z)mk=1 = Φµ0 (6)

where µ0 =
∑
i aiδxi , and Φ is defined using the feature functions

ϕω(x) = Ez∼N (x,Σ)Ce
iω>z = Ceiω>xe−

1
2ω
>Σω.

The “noise” w
def.
= y−Ez(Ce−iω>k z)mk=1 is simply the difference between empirical and true expectations, and

using simple concentration inequalities that we skip here for simplicity, it is possible to show that with high

probability, ‖w‖ 6 O
(
n−

1
2

)
. Applying the previous computations we obtain the following result: provided

that mini 6=j

∥∥∥Σ−
1
2 (xi − xj)

∥∥∥
2
&
√
d log(s), stable recovery of µ0 is guaranteed when

m & s

(
d log(s) log

(
s

ρ

)
+ d2 log

(
(sdRX )d

ρ

))
and the concentration in the recovery bound (4) is given by δ = ‖w‖ = O

(
n−

1
2

)
.

Gaussian mixtures with varying covariances The case of simultaneously recovering both the means
and covariance matrices is an interesting venue for future research. We simply describe here the asso-
ciated metric and distance in the univariate case. The geodesic distance between univariate Gaussian
distributions is well known [25]: Given x = (m,u) and x′ = (n, v) with m,n ∈ R and u, v ∈ R+, let

ϕ(x)
def.
= 1

4
√
π
√
u
e−(m−·)/(2u2), then the covariance kernel is

K0(x, x′) = 〈ϕ(x), ϕ(x′)〉L2 =

√
2uv√

u2 + v2
e
− (m−n)2

2(u2+v2) .

The associated metric at x = (m,u) is gx = 1
2u2 Id2 and the Fisher-Rao distance is the Poincaré half plane

distance

d0(x, x′) = 2arsinh

(
‖x− x′‖

2
√
uv

)
, where arsinh(x)

def.
= ln

(
x+

√
x2 − 1

)
. (7)
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Consider now the case of Gaussian mixture ξ
def.
=
∑s
i=1 aiN (xi, v

2
i ), where the unknowns are ai > 0, xi ∈ R

and vi > 0, and we are given data {zi}ni=1 drawn iid from ξ and we construct the linear sketch (5) as before,
where ωk ∈ R are iid from N (0, σ2). This corresponds to the normalised random features

ϕω(m,u) =
(
2u2σ2 + 1

) 1
4 e−imωe−

1
2u

2ω2

,

and

K((m,u), (n, v)) =

√
2uσvσ√
u2
σ + vσ2

e
− (m−n)2

2(u2
σ+vσ2) (8)

where u2
σ = 1

2σ2 + u2 and v2
σ = 1

2σ2 + v2. The metric at x = (m,u) is gx = 1
2u2
σ

Id2. Note that since

(8) also corresponds the the kernel between Gaussian distributions with mean and standard deviation as

xσ
def.
= (m,uσ) and x′σ

def.
= (n, vσ), the associated geodesic distance is therefore d0(xσ, x

′
σ) where d0 is the

Poincaré half plane distance described in (7) (as mentioned in (16), geodesic distances on random features
and parameter space are equivalent).

Sampling the Laplace transform. In some fluorescence microscopy applications (see [30] and the ref-
erences therein), depth measurements are obtained from the Laplace transform of the signal. Contrary to
Fourier measurements, this gives rise to a non-translation invariant kernel K, and was therefore not covered
by existing theory. Using the proposed Riemannian geometry framework, we can cover this setting.

Let X = (0, 1)d ⊂ Rd+. Let Ω = Rd+. Define for x ∈ X and ω ∈ Ω,

ϕω(x)
def.
= exp

(
−x>ω

) d∏
i=1

√
xi + αi
αi

and Λ(ω) = exp(−2α>ω)

d∏
i=1

(2αi).

where αi ∼ d are positive and distinct real numbers. The Fisher metric is

dg(x, x′) =

√√√√ d∑
i=1

∣∣∣∣log

(
xi + αi
x′i + αi

)∣∣∣∣2,
and provided that mini 6=j dg(xi, xj) & d+ log(d3/2s), stable recovery is guaranteed with

m & s

(
C log(s) log

(
s

ρ

)
+ C2 log

(
Cd

ρ

))
where C

def.
= d2

(
d+ log2(m) + log2

(
d
ρ

))
. Similar to the Gaussian example, log(m) appears in C.

Training a two-layers neural network Following [5], in the large number of neurons limit, regression
using a neural network with a single hidden layer can be formulated using our framework. Given a set
of m training samples (ωk, yk)mk=1, one aims to predicts the values yk ∈ R from the features ωk ∈ Ω
using a continuous dictionary of functions ω 7→ ϕω(x) (here x ∈ X parameterizes the dictionary), as yk ≈∫
X ϕωk(x)dµ0(x) =

∑s
i=1 aiϕωk(xi). In the context of neural networks, one uses ridge functions of the form

ϕω(x) = ξ(〈x, ω〉), For instance, one can consider ξ(u)
def.
= ξn(u)

def.
= max(u, 0)n, where n = 1 is the ReLu

non-linearity. Detailed treatment of this example will be left for future work, however, we simply mention
that the associated kernel and metric was studied in [22, 23]. We recall their results here. Suppose that
ωk ∼ N (0, Idd), then the associated kernel is

kn(x, y) = 2

∫
e−‖ω‖

2/2

(2π)d/2
ξn(〈ω, x〉)ξn(〈ω, y〉)dω =

1

π
‖x‖n ‖y‖n Jn(θ),
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where θ = cos−1

(
x>y

‖x‖ ‖y‖

)
and Jn(θ) = (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n(
π − θ
sin θ

)
.

Since Jn(0) = π(2n− 1)!!, the normalised random features the normalised kernel are therefore

ϕω(x) =
π√
Jn(0)

ξn

(
〈ω, x〉
‖x‖

)
and Kn(x, y) =

Jn(θ)

Jn(0)
,

and the associated metric is

gx = ∇1∇2Kn(x, x) =
n2

‖x‖2 (2n− 1)

(
Idd + (4n− 3)

xx>

‖x‖2

)
.

Note that since ϕω(x) = ϕω(x/ ‖x‖) for all x, the geodesic path between any x and y must lie on the unit
sphere, moreover, given any γ : [0, 1]→ X with ‖γ(t)‖ = 1 for all t ∈ [0, 1], we have∫ 1

0

√
〈gγ(t)γ′(t), γ′(t)〉dt =

∫ 1

0

√
n2

(2n− 1)

(
‖γ′(t)‖2 + (4n− 3) |〈γ′(t), γ(t)〉|2

)
dt =

√
n2

2n− 1

∫ 1

0

‖γ′(t)‖ dt,

therefore, dg(x, y) =
√

n2

2n−1dS

(
x
‖x‖ ,

y
‖y‖

)
, where dS is the geodesic distance on the sphere.

3 Stability and the Fisher information metric

In this section, we introduce the proposed Riemmanian geometry framework, and give intermediate
recovery guarantees which constitute the first building block of our main result. Namely, we introduce so-
called dual certificates, which are known to be key objects in the study of the BLASSO, and show how they
lead to sparse recovery guarantees in our Riemannian framework.

3.1 Fisher and Optimal Transport Distances

Let us first introduce the proposed Riemannian geometry framework, and define objects related to it.

3.1.1 The covariance kernel and the Fubini-Study metric

A natural property to analyse in our problem is the way two Diracs interact with each other, which is
linked to the well-known notion of coherence (or, rather, incoherence) between measurements in compressive
sensing [38]. This is done through what we refer to as the covariance kernel K̂ : X × X → C, defined as

K̂(x, x′)
def.
= 〈Φδx, Φδx′〉2 =

1

m

m∑
j=1

ϕωk(x)ϕωk(x′), ∀x, x′ ∈ X . (9)

In the limit case m → ∞, the law of large number states that K̂ converges almost surely to the limit
covariance kernel:

K(x, x′)
def.
= Eωϕω(x)ϕω(x′) (10)

where we recall that ω ∼ Λ. This object naturally governs the geometry of the space, and we use it to define
our Riemmanian metric, which as we will see is linked to a notion of Fisher information metric. In the rest
of the paper, we assume throughout that K is real-valued, even though K̂ may be complex-valued.

Given the normalisation Eω |ϕω(x)|2 = 1 for all x ∈ X , ϕω(x) can be interpreted as a complex-valued
probability amplitude with respect to ω (parameterized by x), a classical notion in quantum mechanics
(see [40]). When x varies, a natural metric between probability amplitudes is the so-called Fubini-Study
metric, which is the complex equivalent of the well-known Fisher information metric. Writing ϕω(x) =
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√
p(ω, x)eiα(ω,x) where p(ω, x)

def.
= |ϕω(x)|2 and α(ω, x)

def.
= arg(ϕω(x)), the Fubini-Study metric is defined by

the following metric tensor in Cd×d [36]:

gx
def.
=

1

4
Ep[∇x log(p)∇x log(p)>] + Ep[∇xα∇xα>]− Ep[∇xα]Ep[∇xα]>

− i

2
Ep[∇x log(p)∇xα−∇xα∇x log(p)>].

(11)

where we use the notation Ep[f ] =
∫
f(ω)p(ω, x)dΛ(ω). If ϕω is real-valued, then α = 0 and this is indeed

the Fisher metric up to a factor of 1
4 . The following simple Lemma shows the link between this metric and

the derivatives of the covariance kernel K.

Lemma 1. For any kernel K(x, x′)
def.
= Eωϕω(x)ϕω(x′), the Fubini-Study metric defined in (11) satisfies

gx = ∇1∇2K(x, x)− Ep[∇xα]Ep[∇xα]> (12)

If furthermore K(x, x′) is assumed real-valued, then Ep[∇xα] = 0, and gx = ∇1∇2K(x, x).

Proof. Using p = |ϕω|2 and ∇ϕω =
(
∇p
2p + i∇α

)
ϕω, a direct computation shows that

∇x log(p) =
2

p
Re (ϕω∇ϕω) and ∇xα =

1

p
Im (ϕω∇ϕω) (13)

Therefore,

1

4
Ep[∇x log(p)∇x log(p)>] + Ep[∇xα∇xα>]

=

∫
1

p2

(
Re (ϕω∇ϕω) Re (ϕω∇ϕω)

>
+ Im (ϕω∇ϕω) Im (ϕω∇ϕω)

>
)
pdΛ

=

∫
1

p
Re
(
|ϕω|2∇ϕω∇ϕ>ω

)
dΛ =

∫
Re
(
∇ϕω∇ϕ>ω

)
dΛ = Re (∇1∇2K(x, x))

Similarly,

− i

2
Ep[∇x log(p)∇xα−∇xα∇x log(p)>]

= −i

∫
1

p2

(
Re (ϕω∇ϕω) Im (ϕω∇ϕω)

>
+ Im (ϕω∇ϕω) Re (ϕω∇ϕω)

>
)
pdΛ

= −i

∫
1

p
Im
(
|ϕω|2∇ϕω∇ϕ>ω

)
dΛ = i

∫
Im
(
∇ϕω∇ϕ>ω

)
dΛ = i · Im (∇1∇2K(x, x))

which proves the first claim. The second claim is immediate by noticing from (13) that∇pα = Im (∇2K(x, x)),
which cancels when K(x, x′) is real (in particular in a neighborhood around x = x′).

Since in this paper the limit covariance kernel (10) is assumed real-valued, the previous Lemma justifies
the definition gx = ∇1∇2K(x, x) that we adopt in the rest of the paper. For two vectors u, v ∈ Cd, we define
the corresponding inner product

〈u, v〉x
def.
= u∗gxv and ‖u‖x

def.
=
√
〈u, u〉x (14)

As described in the introduction, this induces a geodesic distance on X :

dg(x, x′)
def.
= inf

{∫ 1

0

‖γ′(t)‖γ(t) dt ; γ : [0, 1]→ X smooth, γ(0) = x, γ(1) = x′
}

(15)

and in the case where ϕω(x) is real-valued, this coincides with the “Fisher-Rao” geodesic distance [47] which
is used extensively in information geometry for estimation and learning problems on parametric families of
distributions [3].
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Remark 1 (As a distance on the feature space). The geodesic distance induced by g is the natural distance
between the random features ϕ·(x). Indeed, as discussed in [11], the manifold (X , g) as an embedded
submanifold of the sphere in Hilbert space L2(dΛ) with embedding x 7→ ϕ·(x), and given any x, x′ ∈ X , we
have

inf
γ∈Γx,x′

∫ 1

0

‖γ′(t)‖L2(dΛ) dt = dg(x, x′), (16)

where Γx,x′ consists of all piecewise smooth paths γ : [0, 1] → {ϕ(x) ; x ∈ X} with γ(0) = ϕ(x) and
γ(1) = ϕ(x′).

Remark 2 (Fisher metric and invariances). The Fisher-Rao metric dg is “canonical” in the sense that it is the
only (up to scalar multiples) geodesic distance which satisfies the natural invariances of the BLASSO problem.
Indeed, the solutions to (Pλ(y)), in the large sample limit m→ +∞, are (i) invariant by the multiplication

of ϕ(x)
def.
= (ϕω(x))ω∈Ω by an arbitrary orthogonal transform U (orthogonality on L2(dΛ)), i.e. invariance to

ϕ(x) 7→ Uϕ(x), (ii) covariance under any change of variable ϕ 7→ ϕ ◦ h where h is a diffeomorphism between
two d-dimensional parameter spaces. The covariance (ii) means that if µ =

∑
i aiδxi is a solution associated

to ϕ, then the push-forward measure (h−1)]µ
def.
=
∑
i aiδh−1(xi) is a solution associated to ϕ◦h. Note that the

invariance (i) is different from the usual invariance under “Markov morphisms” considered in information
theory [18, 13]. When considering dg = dgϕ as a Riemannian distance depending solely on ϕ, the invariance
under any diffeomorphism h reads

dgϕ(x, x′) = dgϕ◦h(h−1(x), h−1(x′)). (17)

Assuming for simplicity that ϕ is injective, this invariance (17) is equivalent to the fact that the formula

∀ (q, q′) ∈M2, dM(q, q′)
def.
= dgϕ(ϕ−1(q), ϕ−1(q′))

defines a proper (i.e. parameterization-independent) Riemannian distance dM on the embedded manifold

M def.
= (ϕ(x))x ⊂ L2(dΛ). Among all possible such Riemannian metrics onM, the only ones being invariant

by orthogonal transforms ϕ 7→ Uϕ are scalar multiples of the hermitian positive tensor ∂ϕ(x)∗∂ϕ(x) ∈ Cd×d,
which is equal to gϕ (here ∂ϕ(x)∗ refers to the adjoint in L2(dΛ) for the inner product defined by the measure
Λ(ω)).

Remark 3 (Tangent spaces). Formally, in Riemannian geometry, one would use the notion of tangent space
Tx, and for instance the inner product 〈·, ·〉x would only be defined between vectors belonging to Tx. However,
in our case, since the considered ambient “manifold” is just Rd, in the sense that X is not a low-dimensional
sub-manifold of Rd but an open set of Rd, each tangent space can be identified with Rd, and we extend the
definitions to complex vectors for our needs.

3.1.2 Optimal Transport metric

In order to state quantitative performance bounds, one needs to consider a geometric distance between
measures. The canonical way to “lift” a ground distance dg(x, x′) between parameter to a distance between
measure is to use optimal transport distances [49].

Definition 1 (Wasserstein distance). Given µ, ν ∈M+(X ) with |µ| (X ) = |ν| (X ), the Wasserstein distance
between µ and ν, relative to the metric d on X is defined by

W 2
d (µ, ν)

def.
= inf

γ∈Π(µ,ν)

∫
X 2

d(x, x′)dγ(x, x′),

where Γ(µ, ν) ⊂M+(X 2) is the set of all transport plans with marginals µ and ν. Given µ, ν ∈M+(X ) (not
necessarily of equal total mass), the optimal partial distance between µ and ν is defined as

T 2
d (µ, ν)

def.
= inf

µ̃,ν̃
{W 2

d (µ̃, ν̃) + |µ− µ̃| (X ) + |ν̃ − ν| (X )}.
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Note that the distance Wd(µ, ν) is actually an hybridation (an inf-convolution) between the classical
Wasserstein distance between probability distributions and the total variation norm. It is often called “partial
optimal transport” in the literature (see for instance [12]), and belongs to the larger class of unbalanced
optimal transport distances [43, 21].

3.2 Nondegenerate certificates, uniqueness and stability for sparse measures

We now introduce the notion of a dual certificate and prove recovery guarantees under certain non-
degeneracy conditions, which is the first step toward our main result.

3.2.1 Dual certificates

The minimisation problem (Pλ(y)) is a convex optimisation problem and a natural way of studying their
solutions are via their corresponding Fenchel-dual problems. It is well known that, in the limit as λ→ 0, its
solutions cluster in a weak-* sense around minimisers of

min
µ∈M(X )

|µ| (X ) subject to Φµ = y , (P0(y))

and that properties of the dual solutions to (P0(y)) with y = Φµ0 can be used to derive stability estimates
for (Pλ(y)) under noisy measurements. In this section, we recall some of these results (see [9, 32] for further
details). The (pre)dual of (Pλ(y)) is

sup

{
〈p, y〉2 −

λ

2
‖p‖22 ; p ∈ Cm, ‖Φ∗p‖∞ 6 1

}
(Dλ(y))

where we remark that the adjoint operator Φ∗ : Cm → C (X ) is defined by (Φ∗p)(x) = 1√
m

∑m
i=1 piϕωi(x).

Note that for λ > 0, this is the projection of y/λ onto the closed convex set {p ; ‖Φ∗p‖∞ 6 1} and the
solution pλ is hence unique. The dual solution pλ is related to any primal solution µλ of (Pλ(y)) by the
condition

Φ∗pλ ∈ ∂ |µλ| (X ) and pλ =
1

λ
(y − Φµλ) . (18)

Conversely, any pair pλ and µλ which satisfy this equation (18) are necessarily dual and primal solutions of
(Dλ(y)) and (Pλ(y)) respectively. In the case where λ = 0, a dual solution need not be unique, although
existence is guaranteed (since in our setting, the dual variable belongs to a finite dimensional space). In this
case, p0 and µ0 solve (Dλ(y)) with λ = 0 and (P0(y)), respectively, if and only if

Φµ0 = y and Φ∗p0 ∈ ∂ |µ0| (X ). (19)

Following the literature, we call any element η ∈ Im(Φ∗) ∩ ∂ |µ0| (X ) a dual certificate for µ0. For µ0 =∑s
j=1 ajδxj , the condition η ∈ ∂ |µ0| (X ) imposes that η(xj) = sign(aj) and ‖η‖∞ 6 1. Furthermore, it is

known that in the noiseless case, µ0 is the unique solution to (P0(y)) if: the operator Φx : Cs → Cm defined
by Φxb =

∑s
j=1 bjΦδxj is injective, and there exists η ∈ Im(Φ∗) ∩ ∂ |µ0| (X ) such that |η(x)| < 1 for all

x 6∈ {xj}. In order to quantify the latter constraint and provide quantitative stability bounds, we impose
even stronger conditions on η and make the following definition.

Definition 2 (Non-degenerate dual certificate). Given (ai, xi)
s
i=1, we say that η ∈ Im(Φ∗) is an (ε0, ε2, r)-

nondegenerate dual certificate if:

(i) η(xi) = sign(ai) for all i = 1, . . . , s,

(ii) |η(x)| 6 1− ε0 for all x ∈ X far,

(iii) |η(x)| 6 1− ε2dg(x, xi)
2 for all x ∈ X near

i ,

where X near
i

def.
= Bdg

(xi; r) and X far def.
= X \

⋃
i X near

i .
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In other words, there are neighborhoods of the xj such that, outside of these neighborhoods, η is strictly
bounded away from 1, and inside, |η| has quadratic decay. In the next section we prove stable recovery
results from the existence of non-degenerate dual certificates.

3.2.2 Stable recovery bounds

The following two propositions describe stability guarantees under the nondegeneracy condition. Propo-
sition 1 quantifies how the recovered measure is approximated by a sparse measure supported on {xj}j , and
Proposition 2 describes the error in measure around small neighbourhoods of the points {xj}j .

Proposition 1 (Stability away from the sparse support). Suppose that there exists ε0, ε2 > 0, η
def.
= Φ∗p for

some p ∈ Cm such that η is (ε0, ε2, r)-nondegenerate. Assuming the measurement model (1), any minimiser
µ̂ of (Pλ(y)), with ‖w‖ 6 δ and λ ∼ δ/ ‖p‖ is approximately sparse: by defining Âj = |µ̂| (X near

j ), we have

T 2
dg

|µ̂| , s∑
j=1

Âjδxj

 .
1

min (ε0, ε2)
(|µ̃0| (X ) + δ ‖p‖) . (20)

Proof. To prove this proposition, we first establish the following bound

ε0 |µ̂| (X far) + ε2

s∑
i=1

∫
Xnear
i

dg(x, xi)
2d |µ̂| (x) . δ ‖p‖+ |µ̃0| (X ). (21)

As we will see, the optimal partial transport bound above is then a consequence of this bound.
For i = 1, . . . , s, let X near

i ⊂ X and X far = X \
⋃s
j=1 X near

j be as in Definition 2. Recall the measurement
model y = Φ(µ0 + µ̃0) +w, and define µ̄0 = µ0 + µ̃0 for simplicity. We first adapt the proof of [10, Thm. 2]
to derive an upper bound for |µ̂| − |µ̄0| − Re (〈η, µ̂− µ̄0〉M). By minimality of µ̂ and since ‖w‖ 6 δ,

λ |µ̂| (X ) +
1

2
‖Φµ̂− y‖2 6 λ |µ̄0| (X ) +

1

2
‖Φµ̄0 − y‖2 6 λ |µ̄0| (X ) +

δ2

2

Using η = Φ∗p, and by adding and subtracting Re (〈η, µ̂− µ̄0〉M) = Re (〈p, Φµ̂− y〉2) + Re (〈p, w〉2), we
obtain

λ (|µ̂| (X )− |µ̄0| (X )− Re (〈η, µ̂− µ̄0〉M)) + Re (〈λp, Φ(µ̂− µ̄0)〉2) +
1

2
‖Φµ̂− y‖2 6

δ2

2

=⇒ λ (|µ̂| (X )− |µ̄0| (X )− Re (〈η, µ̂− µ̄0〉M)) +
1

2
‖Φµ̂− y + λp‖2 6

δ2

2
+
λ2 ‖p‖2

2
− Re (〈λp, w〉2)

=⇒ |µ̂| (X )− |µ̄0| (X )− Re (〈η, µ̂− µ̄0〉M) 6
1

2λ
(δ + λ ‖p‖)2 . δ ‖p‖

(22)

using λ ∼ δ/ ‖p‖. We now derive a lower bound for |µ̂|−|µ0|−Re (〈η, µ̂− µ̄0〉M). Since η is a dual certificate,
we have 〈η, µ̄0〉M = |µ0| (X ) and |〈η, µ〉M| 6 |µ| (X ). By further exploiting the nondegeneracy assumptions
(ii) and (iii) on η, we have

|µ̂| (X )− |µ̄0| (X )− Re (〈η, µ̂− µ̄0〉) > |µ̂| (X )− Re (〈η, µ̂〉)− 2 |µ̃0| (X )

> |µ̂| (X )−
∑
i

∫
Xnear
i

|η|d |µ̂| −
∫
X far

|η|d |µ̂| − 2 |µ̃0| (X )

> |µ̂| (X )−
∑
i

∫
Xnear
i

(
1− ε2dg(x, xi)

2
)

d |µ̂| (x)− (1− ε0) |µ̂|
(
X far

)
− 2 |µ̃0| (X )

= ε0 |µ̂|
(
X far

)
+ ε2

∑
i

∫
Xnear
i

dg(x, xi)
2d |µ̂| (x)− 2 |µ̃0| (X )
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which proves (21). Note also that by combining this with (22), we obtain the following bound that we will
use later:

‖Φµ̂− y + λp‖2 6 (δ + λ ‖p‖)2 + 4λ |µ̃0| (X ) =⇒ ‖Φµ̂− y‖ 6 δ + 2λ ‖p‖+ 2
√
λ |µ̃0| (X ) (23)

It remains to show that the bound (21) yields an upper bound on the partial optimal transport distance

between the recovered measure |µ̂| and ρ
def.
=
∑
i |µ̂| (X near

i )δxi , its “projection” onto the positions {xj}j . To
see this, first note that the Kantorovich dual formulation [49] of the Wasserstein distance in Def. 1 is

sup

{∫
X
ϕdµ+

∫
X
ψdν ; ϕ,ψ ∈ Cb(X ), ∀x, y ∈ X , ϕ(x) + ψ(y) 6 dg(x, y)2

}
Given any ϕ,ψ ∈ Cb(X ) satisfying ϕ(x) + ψ(y) 6 dg(x, y)2 for all x, y ∈ X , we have

W 2
g (ρ, |µ̂|Xnear) 6

∫
ϕd |µ̂|Xnear +

∫
ψdρ

=
∑
j

(∫
Xnear
j

(ϕ(x) + ψ(xj))d |µ̂| (x)− ψ(xj)

∫
Xnear
j

d |µ̂| (x) + ψ(xj) |µ̂| (X near
j )

)

=
∑
j

∫
Xnear
j

(ϕ(x) + ψ(xj))d |µ̂| (x) 6
∑
j

∫
Xnear
j

dg(x, xj)
2d |µ̂| (x)

So,
ε2W

2
g (ρ, |µ̂|Xnear) . |µ̃0| (X ) + δ ‖p‖

So, since ε0 |µ̂|X far (X ) . |µ̃0| (X ) + δ ‖p‖, we have

T 2
g (|µ̂| , ρ) .

1

min (ε0, ε2)
(|µ̃0| (X ) + δ ‖p‖) .

We now give stability bounds around the sparse support, under some additional assumptions.

Proposition 2 (Stability around the sparse support). Under the assumptions of Proposition 1, let µ̂ be
a solution of (Pλ(y)), and let â = (µ̂(X near

j ))sj=1. Suppose in addition that for j = 1, . . . , s, there exists
ηj = Φ∗pj which satisfies

(i) ηj(xj) = 1 and ηj(x`) = 0 for all ` 6= j

(ii) |1− ηj(x)| 6 ε2dg(x, xj)
2 for all x ∈ X near

j ,

(iii) |ηj(x)| 6 ε2dg(x, x`)
2 for all x ∈ X near

` and ` 6= j,

(iv) |ηj(x)| 6 1− ε0 for all x ∈ X far.

Then
∀j = 1, . . . , s, |âj − aj | . ‖pj‖ (δ + λ ‖pj‖) + ε−1

0 (δ ‖p‖+ |µ̃0| (X )) (24)

where p is as in Proposition 1.

Proof. First observe that writing ν = µ̂− µ0, we have

|âj − aj | =

∣∣∣∣∣
∫
Xnear
j

dν(x)

∣∣∣∣∣ =

∣∣∣∣∣∣
∫
X
ηj(x)dν(x) +

∫
Xnear
j

(1− ηj(x))dν(x)−
∑
` 6=j

∫
Xnear
`

ηj(x)dν(x)−
∫
X far

ηj(x)dν(x)

∣∣∣∣∣∣
6

∣∣∣∣∫
X
ηj(x)dν(x)

∣∣∣∣+ ε2

s∑
j=1

∣∣∣∣∣
∫
Xnear
j

dg(x, xj)
2dν(x)

∣∣∣∣∣+ (1− ε0) |ν| (X far).
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Using (21), we have |ν| (X far) = |µ̂| (X far) . ε−1
0 (δ ‖p‖+ |µ̃0| (X )) and

ε2

s∑
j=1

∣∣∣∣∣
∫
Xnear
j

dg(x, xj)
2dν(x)

∣∣∣∣∣ = ε2

s∑
j=1

∣∣∣∣∣
∫
Xnear
j

dg(x, xj)
2dµ̂(x)

∣∣∣∣∣ 6 δ ‖p‖+ |µ̃0| (X )

Finally, by (23),∣∣∣∣∫
X
ηj(x)dν(x)

∣∣∣∣ 6 |〈ηj , µ̂− µ̄0〉M|+ |µ̃0| (X ) 6 ‖pj‖ ‖Φ(µ̂− µ̄0)‖+ |µ̃0| (X )

6 ‖pj‖ (δ + ‖Φµ̂− y‖) + |µ̃0| (X ) 6 ‖pj‖
(

2δ + 2λ ‖p‖+ 2
√
λ |µ̃0| (X )

)
+ |µ̃0| (X )

6 2δ ‖pj‖+ 2λ ‖p‖ ‖pj‖+ λ ‖pj‖2 + 2 |µ̃0| (X )

using
√
ab 6 (a+ b)/2. Therefore, we obtain

|âj − aj | . ‖pj‖ (δ + λ ‖pj‖) + ε−1
0 (δ ‖p‖+ |µ̃0| (X ))

Additional certificates. Proposition 2 assumes the construction of additional functions ηj ∈ Im(Φ∗),
which are essentially similar to non-degenerate certificates but with all “signs” to interpolate put to 0 except
for one. As we will see, they are even simpler to construct than η: indeed, the reason one has to resort to
the random signs assumption (as in [54]) or to the golfing scheme (as in this paper) is that the Euclidean
norm of the vector of signs (sign(ai))

s
i=1 appears in the proof, which results in a spurious term

√
s. When

constructing the ηj , this problem does not occur, since only one sign is non-zero.

Relation to previous works. Note that (21) and (24), without the inexact sparsity term |µ̃0| (X ), were
previously presented in [37] in the context of sampling Fourier coefficients and in a more general setting in
[4]. However, the statement in [4] is given in terms of orthonormal systems, and the so-called Bernstein
Isolation Property which imposes that |P ′(x)| 6 Cm2 ‖P‖∞ for all P ∈ Im(Φ∗). These conditions can
be difficult to check in our setting of random sampling and were imposed only to ensure the existence of
nondegenerate dual certificates, and to have explicit control on the constant C. For completeness, we still
present the proof of (21) under nondegeneracy assumptions, and we later establish that these nondegeneracy
assumptions hold, under appropriate separation conditions imposed via dg.

In [14], one could also obtain bounds
∑s
j=1 |âj − aj | . δ in the case of Fourier sampling, however, to prove

such a statement, one is required to construct a trigonometric function (a dual certificate) which interpolates
arbitrary sign patterns. In the case of subsampling, such an approach cannot lead to sharp dependency on s,
since in the real setting, one is then required to show the existence of 2s random polynomials corresponding
to all possible sign patterns. We therefore settle for the bound (24) in this paper. We remark that being able
to construct dual functions which interpolate arbitrary signs patterns lead to Wasserstein-1 error bounds, as
opposed to Wasserstein-2 error bounds presented here.

Finally, we mention the more recent work of [34] which presents stability bounds for the sparse spikes
problem where one restricts to positive measures and where the sampling functions form a T-systems. Under
a positivity constraint (rather than total variation penalisation), they derive stability bounds in terms of op-
timal partial transport distances. We stress that since we consider more general measurement operators than
T-systems in this work, we consider transport distances under the Fisher metric as opposed to the Euclidean
metric. Moreover, another difference is that our error bounds use the Wasserstein-2 distance, whereas they
use the Wasserstein-1 distance – the reason is that since they do not consider random subsampling, their
proofs in fact follow the work of [14] to construct dual certificates which interpolate arbitrary sign patterns.
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4 Nondegenerate limit certificates

In this section, we provide the second building block of our main theorem: a generic way to ensure the
existence and construct non-degenerates dual certificates, when m→∞ and the sought-after Diracs satisfy
a minimal separation condition with respect to the metric dg.

4.1 Notions of differential geometry

We start with additional definitions in differential Riemannian geometry. All these notions can be found
in the textbook [1], to which we refer the reader for further details. In many instances, we extend classical
definitions to the complex case in a natural way.

Riemannian gradient and Hessian. Let f : Rd → C be a smooth function. The Riemannian gradient
gradf(x) ∈ Cd and Riemannian Hessian Hessf(x) : Cd → Cd, which is a linear mapping, can be defined as:

gradf(x) = g−1
x ∇f(x)

〈Hessf(x)[ei], ej〉x = ∂i∂jf(x)− Γij(x)>∇f(x)

where ∇, ∂i are the classical Euclidean gradient and partial derivatives, and the {ei} are the canonical basis
of Rd. The Γij(x) = [Γkij(x)]k ∈ Rd are the Christoffel symbols, here equal to:

Γkij(x) =
1

2

∑
`

gk`(x) (∂ig`j(x) + ∂jg`i(x)− ∂`gij(x)) ,

where gij(x) = [gx]ij and gij(x) = [g−1
x ]ij . Finally we denote by Hf(x) ∈ Cd×d the matrix that contains

these terms: Hf(x)
def.
=
(
〈Hessf(x)[ei], ej〉x

)
ij

.

For r = 0, 1, 2, the “covariant derivative” Dr [f ] (x) : (Cd)r → C are mappings (or scalar in the case
r = 0) defined as:

D0 [f ] (x)
def.
= f(x)

D1 [f ] (x)[v]
def.
= 〈v, gradf(x)〉x = v∗∇f(x)

D2 [f ] (x)[v, v′]
def.
= 〈Hessf(x)[v], v′〉x = v∗Hf(x)v′

We define associated operator norms

‖D1 [f ] (x)‖x
def.
= sup
‖v‖x=1

D1 [f ] (x)[v] =
∥∥∥g− 1

2
x ∇f(x)

∥∥∥
2

‖D2 [f ] (x)‖x
def.
= sup
‖v‖x=1,‖v′‖x=1

D2 [f ] (x)[v, v′] =
∥∥∥g− 1

2
x Hf(x)g

− 1
2

x

∥∥∥
2

where we recall that ‖·‖x is defined by (14).

Covariant derivatives of the kernel. Recall the definition of the limit covariance kernel (10). Given
0 6 i, j 6 2, let K(ij)(x, x′) be a “bi”-multilinear map, defined for Q ∈ (Cd)i and V ∈ (Cd)j as

[Q]K(ij)(x, x′)[V ]
def.
= E[Di [ϕω] (x)[Q]Dj [ϕω] (x′)[V ]]. (25)

In the case i, j 6 1, note that these admits simplified expressions: K(00)(x, x′) = K(x, x′), [v]K(10)(x, x′) =
v>∇1K(x, x′) and [v]K(11)(x, x′)[v′] = v>∇1∇2K(x, x′)v′. Define the operator norm of K(ij)(x, x′) as∥∥∥K(ij)(x, x′)

∥∥∥
x,x′

def.
= sup

Q,V

∣∣∣[Q]K(ij)(x, x′)[V ]
∣∣∣ (26)
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where the supremum is over all V = [v1, . . . , vi] with ‖v`‖x 6 1 for all ` ∈ [i], and all Q = [q1, . . . , qj ] with
‖q`‖x′ 6 1 for all ` ∈ [j]. We will sometimes overload the notations and write ‖·‖x when the dependence is
only on x, i.e. for K(ij) where j = 0. Note that, in particular,∥∥∥K(10)(x, x′)

∥∥∥
x

=
∥∥∥g− 1

2
x ∇1K(x, x′)

∥∥∥
2
,
∥∥∥K(11)(x, x′)

∥∥∥
x,x′

=
∥∥∥g− 1

2
x ∇1∇2K(x, x′)g

− 1
2

x′

∥∥∥
2

and
∥∥∥K(20)(x, x′)

∥∥∥
x

=
∥∥∥g− 1

2
x H[K(·, x′)](x)g

− 1
2

x

∥∥∥
2

(27)

All these definitions are naturally extended to the covariance kernel K̂ by replacing the expectation E in
(25) by an empirical expectation over ω1, . . . , ωm.

4.2 Non-degenerate dual certificate with m→∞
Recall the definition of the covariance kernel (9). Following [15], a natural approach towards constructing

a dual certificate is by interpolating the sign vector sign(aj) using the functions K̂(xj , ·) and K̂(10)(xj , ·),
since we haveη def.

=

s∑
j=1

α1,jK̂(xj , ·) +

s∑
j=1

[α2,j ]K̂
(10)(xj , ·) ; α1,j ∈ C, α2,j ∈ Cd

 ⊂ Im(Φ∗) .

Using the gradients of the kernel allows to additionally impose that ∇η(xi) = 0, which is a necessary (but
not sufficient) condition for the dual certificate to reach its maximum amplitude in xi. Usual proofs then
show that, under minimal separation, applying this strategy indeed yields a non-degenerate dual certificate.

We first consider the case where one has access to arbitrarily many measurements (m → ∞), and to
this end, we consider the limit covariance kernel K defined in (10). Let us introduce some handy notations
that will be particularly useful in later proofs (Section 6). Our aim is to find coefficients (α1,j)

s
j=1 ∈ Cs and

(α2,j)
s
j=1 ∈ (Cd)s such that

η
def.
=

s∑
j=1

α1,jK(xj , ·) +

s∑
j=1

[α2,j ]K
(10)(xj , ·) (28)

satisfies η(xj) = sign(aj) and ∇η(xj) = 0 for all j = 1, . . . , s. Note that these s(d + 1) constraints can be
written as the linear system

Υ

(
α1

α2

)
=

(
(sign(ai))

s
i=1

0sd

)
def.
= us , (29)

where Υ ∈ Rs(d+1)×s(d+1) is a real symmetric matrix defined as

Υ
def.
= Eω[γ(ω)γ(ω)∗] ∈ Cs(d+1)×s(d+1), (30)

with the vector γ(ω) ∈ Cs(d+1) defined as

γ(ω)
def.
=
(

(ϕω(xi))
s
i=1 ,

(
∇ϕω(xi)

>)s
i=1

)>
. (31)

Assuming that Υ is invertible, we can therefore rewrite (28) as η(x) = (Υ−1us)
>f(x), where

f(x)
def.
= Eω[γ(ω)ϕω(x)] =

(
(K(xi, x))

s
i=1 ,

(
∇1K(xi, x)>

)s
i=1

)>
∈ Rs(d+1) . (32)

We also define the block diagonal normalisation matrix Dg ∈ Rs(d+1)×s(d+1) as

Dg
def.
=


Ids

g
− 1

2
x1

. . .

g
− 1

2
xs

 (33)
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so that Υ̃ = DgΥDg has constant value 1 along its diagonal.
We will prove in Theorem 2 below that η of the form (28) is indeed nondegenerate, provided that there

is sufficient curvature on K(x, ·) in a small neighbourhood around x and mink 6=j dg(xj , xk) > ∆ where ∆ is
the distance at which the kernel and its partial derivatives are sufficiently small (to allow for interpolation
with K(·, xj) with minimal inference between the point sources). To do so we need the following definition.

Definition 3. Given r > 0, the local curvature constants ε̄0(r) and ε̄2(r) of K are defined as

ε̄0(r)
def.
= sup {ε ; K(x, x′) 6 1− ε, ∀x, x′ ∈ X s.t. dg(x, x′) > r}

ε̄2(r)
def.
= sup

{
ε ; −K(02)(x′, x)[v, v] > ε ‖v‖2x , ∀x, x

′ ∈ X s.t. dg(x, x′) < r,∀v ∈ Rd
}

Given h > 0 and s ∈ N, the kernel width of K is defined as

∆(h, s)
def.
= inf

{
∆ ;

s∑
k=2

∥∥∥K(ij)(x1, xk)
∥∥∥
x1,xk

6 h, (i, j) ∈ {0, 1} × {0, 2}, {xk}sk=1 ∈ S∆

}

where S∆
def.
= {(xk)sk=1 ∈ X s ; d(xk, x`) > ∆, ∀k 6= `} is the set of k-tuples of ∆-separated points. We define

inf ∅ def.
= +∞.

Intuitively, these notions are similar to those appearing in the definition of non-degenerate dual certificates
(and will ultimately serve in the proof of existence of such certificates): r is a neighborhood size, ε̄0 represents
the distance to 1 of the kernel away from x = x′, and ε̄2 is the “curvature” of the kernel when x ≈ x′. Finally,
∆ is the “minimal separation” under which s Diracs have minimal interference between them, or, in other
words, the covariance kernel and its derivatives have low value. We formalize this in the following assumption.

Assumption 1 (Assumptions on the kernel.). Suppose that K is a real-valued kernel. For i, j 6 2 and

i + j 6 3, assume that Bij
def.
= supx,x′∈X

∥∥K(ij)(x, x′)
∥∥
x,x′

< ∞ and denote Bi
def.
= B0i + B1i + 1. Assume

that K has positive curvature constants ε̄0 and ε̄2 at radius 0 < rnear < B
− 1

2
02 . Let s ∈ N be such that

∆
def.
= ∆(h, s) <∞ with h 6 1

64 min
(
ε̄0
B0
, ε̄2B2

)
.

Under this assumption, the following theorem, which is the main result of this section, proves that a limit
non-degenerate dual certificate can be constructed under minimal separation.

Theorem 2. Under Assumption 1, for all {xk}sk=1 with mink 6=` dg(xk, x`) > ∆, there exists a unique function
η of the form (28) which is ( ε̄02 ,

ε̄2
4 , rnear)-nondegenerate. Moreover,∥∥∥sign(aj)D2 [η] (x)−K(02)(xj , x)

∥∥∥
x
6
ε̄2

16
∀x ∈ Bdg

(xj ; rnear).

We delay the (slightly lengthy) proof of this result to the next subsection. Before that, we make a few
comments.

Dependency on s. As we have seen in the examples of Section 2, for a constant h we generally let the
minimal separation ∆ = W (h, s) depend on s. Indeed, in dimension d, it is well known one can pack Cd

∆-separated points in a ball of radius 2∆ for some constant C (this is known as the kissing number). Hence,
there exist s ∆-separated points such that

s∑
k=2

∥∥∥K(ij)(x1, xk)
∥∥∥
x1,xk

> min
(
Cd, s

)
sup

d(x,x′)>∆

∥∥∥K(ij)(x, x′)
∥∥∥
x,x′

.

Therefore, while the kernel width can be independent of s in low dimensions (and the trick is then to upper
bound this by a constant bound s → ∞, assuming the sum on the l.h.s. converges), as d increases, the
dependence on s will become inevitable, otherwise ∆ generally depends exponentially on d.
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Babel function. The attentative reader might recognise the similarity of definition of kernel width W (h, s)
with the Babel function from compressed sensing [56], if we restrict the definition to (i, j) = (0, 0) and recall
that K(x, x′) = Eω[ϕω(x)ϕω(x′)]. The Babel function of a m×N matrix A with columns aj is defined as

µ(s) = max
i∈[N ]

max

∑
j∈S
|〈ai, aj〉| ; S ⊂ [N ], |S| = s, i 6= S

 ,

and small value of µ(s) ensure that the sub-matrix A∗SAS , where AS is the matrix A restricted to index
set S with |S| 6 s, is well conditioned and invertible. Furthermore, recovery guarantees for Basis Pursuit
and Orthogonal Matching Pursuit can be stated in terms of µ(s). In Theorem 2, sufficient kernel width also
ensures that Φ∗xΦx is well conditioned and thereby provide performance guarantees for the BLASSO.

4.3 Proof of Theorem 2

Before proving Theorem 2, we illustrate the link between curvature of the kernel as represented by ε̄2 in
Def. 3 and the quadratic decay condition |η| 6 1−εdg(xi, ·)2 that we used in the definition of non-degenerate
certificates (Def. 2). The resulting condition (35) is the one that we are actually going to prove in practice.
The following Lemma is based on a generalized second-order Taylor expansion.

Lemma 2. Let x0 ∈ X and a ∈ C with |a| = 1. Suppose that for some ε > 0, B > 0 and 0 < r 6 B−
1
2 we

have: for all x ∈ Bdg
(x0; r) and v ∈ Cd, it holds that −K(02)(x0, x)[v, v] > ε ‖v‖2x and

∥∥K(02)(x0, x)
∥∥
x
6 B.

Let η : X → C be a smooth function.

(i) If η(x0) = 0,∇η(x0) = 0 and

‖D2 [η] (x)‖x 6 δ ∀x ∈ Bdg
(x0; r) (34)

then |η(x)| 6 δdg(x0, x)2 for all x ∈ Bdg
(x0; r).

(ii) If η(x0) = a, ∇η(x0) = 0 and∥∥∥aD2 [η] (x)−K(02)(x0, x)
∥∥∥
x
6 δ ∀x ∈ Bdg

(x0; r) (35)

for some δ < ε
2 , then, for all x ∈ Bdg

(x0; r) we have |η(x)| 6 1− ε′dg(x0, x)2 with ε′ = ε−2δ
2 .

Proof. We prove (ii), the proof for (i) is similar and simpler. Using (35) and the assumption on K(02), we
can deduce that for all v ∈ Rd we have

Re (aD2 [η] (x)[v, v]) 6 −(ε− δ) ‖v‖2x and |Im (aD2 [η] (x)[v, v])| 6 δ ‖v‖2x

Given a geodesic γ : [0, 1] → Rd, it is a well-known property that γ̈ +
∑
i,j Γij(γ)γ̇iγ̇j = 0 where we recall

that Γij ∈ Rd are the Christoffel symbols. Therefore, we have

d2

dt2
η(γ(t)) = γ̇(t)>∇2η(γ(t))γ̇(t) +∇η(t)>γ̈(t)

= γ̇(t)>∇2η(γ(t))γ̇(t)−∇η(t)>

∑
ij

Γij(γ(t))γ̇j(t)γ̇k(t)


= γ̇(t)>Hη(γ(t))γ̇(t) = D2 [η] (γ(t))[γ̇(t), γ̇(t)]
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So, given any geodesic path with γ(0) = x0 and γ(1) = x, since of course we have dg(x0, γ(t)) 6 dg(x0, x) 6 r,
by applying the inequalities above:

Re (aη(x)) = Re

(
a

(
η(x0) +∇η(x0)>γ̇(0) +

1

2

∫ 1

0

(1− t) d2

dt2
η(γ(t))dt

))
= 1 +

1

2

∫ 1

0

(1− t)Re (aD2 [η] (γ(t))[γ̇(t), γ̇(t)]) dt

6 1− (ε− δ)
∫ 1

0

(1− t) ‖γ̇(t)‖2γ(t) dt = 1− (ε− δ)
2

dg(x0, x)2.

(36)

where the last line follows because ‖γ̇(t)‖γ(t) is constant for all t ∈ [0, 1]. Similarly, we can show that

Re (aη(x)) > 1 − B+δ
2 dg(x0, x)2 > 0 since r 6 B−

1
2 , and |Im (aη(x))| 6 δ

2dg(x0, x)2, from which we got

|η(x)| 6 Re (aη(x)) + |Im (aη(x))| 6 1− ε−2δ
2 dg(x0, x)2.

We can now proceed with the proof of Theorem 2.

Proof of Theorem 2. Recall the block diagonal matric Dg from (33). The system (29) is equivalent to

Υ̃

(
α̃1

α̃2

)
= us. (37)

where Υ̃ = DgΥDg and α̃ = D−1
g α. So, if Υ̃ is invertible, then we can write η =

(
Υ̃−1us

)>
Dgf =(

Υ−1us
)>

f . Therefore, we will proceed as follows: First, prove that Υ̃ is invertible. Second, bound the
coefficients α1 and α2. Third, prove that η is nondegenerate.

We first prove that the matrix Υ̃ is invertible. To this end, we decompose it into blocks

Υ̃ =

(
Υ0 Υ>1
Υ1 Υ2

)
(38)

where Υ0 ∈ Cs×s, Υ1 ∈ Csd×s and Υ2 ∈ Csd×sd are defined as

Υ0
def.
= (K(xi, xj))

s
i,j=1, Υ1

def.
= (g

− 1
2

xi ∇1K(xi, xj))
s
i,j=1, Υ2

def.
= (g

− 1
2

xi ∇1∇2K(xi, xj)g
− 1

2
xj )si,j=1.

To prove the invertibility of Υ̃, it suffices to prove that Υ2 and its Schur complement ΥS
def.
= Υ0−Υ1Υ−1

2 Υ>1

are both invertible. To show that Υ2 is invertible, we define Aij = g
− 1

2
xi ∇1∇2K(xi, xj)g

− 1
2

xj , such that Υ2 has
the form:

Υ2 =


Id A12 . . . A1s

A21 Id
. . .

...
...

. . .
. . .

...
As1 . . . . . . Id


and by Lemma 5 in Appendix A.1, Assumption 1 and (27), we have

‖Id−Υ2‖block 6 max
i

∑
j 6=i

‖Aij‖2 = max
i

∑
j 6=i

∥∥∥K(11)(xi, xj)
∥∥∥
xi,xj

6 h 6 1/32.

Since ‖Id−Υ2‖block < 1, Υ2 is invertible, and we have
∥∥Υ−1

2

∥∥
block

6 1
1−‖Id−Υ2‖block

6 4
3 . Next, again with

Lemma 5, we can bound

‖Id−Υ0‖∞ = max
i

∑
j 6=i

|K(xi, xj)| 6 h

‖Υ1‖∞→block 6 max
i

∑
j

∥∥∥g− 1
2

xi ∇1K(xi, xj)
∥∥∥

2
= max

i

∑
j

∥∥∥K(10)(xi, xj)
∥∥∥
xi

6 h
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since K(10)(x, x) = 0. Hence, we have

‖Id−ΥS‖∞ 6 ‖Id−Υ0‖∞ +
∥∥Υ>1

∥∥
block→∞

∥∥Υ−1
2

∥∥
block

‖Υ1‖∞→block 6 h+
4

3
h2 6 2h

def.
= h′ < 1. (39)

Therefore the Schur complement of Υ̃ is invertible and so is Υ̃. Moreover,
∥∥Υ−1

S

∥∥
∞ 6 1

1−h′ .
We can now define:

α̃ = Υ̃−1us =

(
α̃1

α̃2

)
and, as described above, α = D−1

g α̃. The Schur’s complement of Υ̃ allows us to express α1 and α2 as(
α̃1

α̃2

)
=

(
Υ−1
S sign(a)

−Υ−1
2 Υ1Υ−1

S sign(a)

)
(40)

and therefore we can bound

‖α1‖∞ 6
∥∥Υ−1

S

∥∥
∞ 6

1

1− h′
max
i
‖α2,i‖xi = ‖α̃2‖block 6

∥∥Υ−1
2

∥∥
block

‖Υ1‖∞→block

∥∥Υ−1
S

∥∥
∞ 6 4h

Moreover, we have

‖α1 − sign(a)‖∞ 6
∥∥Id−Υ−1

S

∥∥
∞ 6

∥∥Υ−1
S

∥∥
∞ ‖Id−ΥS‖∞ 6

h′

1− h′
(41)

We can now prove that η is non-degenerate. For any x such that dg(x, xi) > rnear for all xi’s, there exists
at most one index i such that dg(x, xi) < ∆/2 and so, for all j 6= i, we have dg(x, xj) > ∆/2. Therefore,

|η(x)| =

∣∣∣∣∣α1,iK(xi, x) +
∑
j 6=i

α1,jK(xj , x) + [α2,i]K
(10)(xi, x) +

∑
j 6=i

[α2,j ]K
(10)(xj , x)

∣∣∣∣∣
6 ‖α1‖∞

|K(xi, x)|+
∑
j 6=i

|K(xj , x)|

+ max
i
‖α2,i‖xi

∥∥∥K(10)(xi, x)
∥∥∥
xi

+
∑
j 6=i

∥∥∥K(10)(xj , x)
∥∥∥
xj


6

1

1− h′
(1− ε̄0 + h) + 4h (B10 + h) 6 1− ε̄0

2
.

Now, let x be such that dg(xi, x) 6 rnear. Similarly, for all j 6= i we have dg(x, xj) > ∆/2. Observe that

sign(ai)D2 [η] (x) = K(02)(xi, x) +
(

sign(ai)α1,i − 1
)
K(02)(xi, x)

+ sign(ai)

[∑
j 6=i

α1,jK
(02)(xj , x) + [α2,i]K

(12)(xi, x) +
∑
j 6=i

[α2,j ]K
(12)(xj , x)

]

So,∥∥∥sign(ai)D2 [η] (x)−K(02)(xi, x)
∥∥∥
x

6

∥∥∥∥∥∥
(

sign(ai)α1,i − 1
)
K(02)(xi, x) + sign(ai)

[∑
j 6=i

α1,jK
(02)(xj , x) + [α2,i]K

(12)(xi, x) +
∑
j 6=i

[α2,j ]K
(12)(xj , x)

]∥∥∥∥∥∥
x

6
h′

1− h′
B02 + h ‖α1‖∞ + max

i
‖α2,i‖xi (B12 + h) 6

h′

1− h′
B02 +

h

1− h′
+ 4hB12 + 4h2 6

ε̄2

16

We conclude using Lemma 2 and ε̄2−2ε̄2/16
2 > ε̄2/4.
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5 Sparse recovery

In this section, we formulate our main contribution, Theorem 3, which is a detailed version of Theorem 1.
In previous sections, we have shown that the existence of a non-degenerate dual certificates implies sparse
recovery guarantees, and that in the limit case m → ∞, a minimal separation assumption implies the
existence of a dual certificate. Our main theorem is obtained by bounding the deviations from the limit case
when m is finite. We do so by extending the celebrated golfing scheme [41] to the infinite-dimensional case.
We first begin by our assumptions on the feature functions ϕω.

5.1 Almost bounded random features

In order to bound the variation between K and K̂, we would ideally like the features ϕω and their

derivatives to be uniformly bounded for all ω. However this may not be the case: think of eiω
>x, which

does not have a uniformly bounded gradient when the support of the distribution Λ is not bounded. On the
other hand, if Λ(ω) has sufficient decay as ‖ω‖ increases, one could argue that the selected random features
and their derivatives are uniformly bounded with high probability. For r ∈ {0, 1, 2}, we define the random
variables

Lr(ω)
def.
= sup

x∈X
‖Dr [ϕω] (x)‖x . (42)

Note that Lr(ω) <∞ for each ω since X is a bounded domain and ϕω is smooth.

Since |ϕω(x)− ϕω(x′)| =
∣∣∣∫ 1

0
d
dtϕω(γ(t))dt

∣∣∣ =
∣∣∣∫ 1

0
D1 [ϕω] (γ(t))[γ̇(t)]dt

∣∣∣ for a smooth path from x to x′,

it is easy to see that
|ϕω(x)− ϕω(x′)| 6 L1(ω)dg(x, x′) (43)

We will also require D2 [ϕω] (x) to be Lipschitz, to this end, we assume that for all x, x′ ∈ X , there exists
τx→x′ : Cd → Cd an isometric isomorphism with respect to gx, that is, such that 〈u, v〉x = 〈τx→x′u, τx→x′v〉x′ ,
such that for all ω:

L3(ω)
def.
= inf

{
L > 0 ; sup

dg(x,x′)6rnear

‖D2 [ϕω] (x)−D2 [ϕω] (x′)[τx→x′ ·, τx→x′ ·]‖x
dg(x, x′)

6 L

}
<∞.

where naturally

‖D2 [ϕω] (x)−D2 [ϕω] (x′)[τx→x′ ·, τx→x′ ·]‖x = sup
‖u‖x61,‖v‖x61

D2 [ϕω] (x)[u, v]−D2 [ϕω] (x′)[τx→x′u, τx→x′v]

and rnear comes from Assumption 1. One possible choice of τx→x′ is to choose the parallel transport along

the unique geodesic connecting x and x′. Another possible choice is to simply choose τx→x′ : v 7→ g
− 1

2

x′ g
1
2
x v.

The latter choice implies

‖D2 [ϕω] (x)−D2 [ϕω] (x′)[τx→x′ ·, τx→x′ ·]‖x =
∥∥∥g− 1

2

x′ Hϕω(x′)g
− 1

2

x′ − g
− 1

2
x Hϕω(x)g

− 1
2

x

∥∥∥ . (44)

which is a more convenient expression that we will use in the examples.
Finally, we let Fr : [0,∞)→ [0, 1] be decaying tail functions such that

Pω (Lr(ω) > t) 6 Fr(t). (45)

Our sampling complexity will depend on the decay of these tail distributions so that the derivatives of the
selected random features are bounded with high probability. A similar idea of stochastic incoherence was
exploited in [16] for deriving compressed sensing bounds.
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5.2 Main result

Our main result is valid under the following assumption, which links the tail probabilities of the bounds
on the feature functions and the final number of measurements m.

Assumption 2 (Assumption on the features and the sample complexity). For ρ > 0, suppose that m ∈ N
and some constant {L̄i}3i=0 ∈ R4

+ are chosen such that

3∑
j=0

Fj(L̄j) 6
min(ε̄0, ε̄2, ρ)

m
and

3
max
j=0

(
L̄2
j

3∑
i=0

Fi(L̄i) + 6

∫ ∞
L̄j

tFj(t)dt

)
6

min (ε̄0, ε̄2)

m
(46)

and

m & s

(
C1 log(s) log

(
s

ρ

)
+ C2 log

(
(sN)d

ρ

))
(47)

where N
def.
= RX L̄1

ε̄0
+ rnearL̄3L̄0+L̄2

ε̄2
, C1

def.
= (L̄2

0 + L̄2
1)
∑
r=0,2

B2
r

ε̄2r
, and C2

def.
=

B22L̄
2
01

B2
2

+
∑
r=0,2

(
L̄2
r

ε̄2r
+ L̄01L̄r

ε̄r

)
with L̄ij =

√
L̄2
i + L̄2

j .

The constants L̄r play the role of “stochastic” Lipschitz constant: for r = 0, 1, 2, with high probability
on ωj , Dr [ϕω] (x) will be L̄r-bounded and L̄r+1-Lipschitz. The condition (46) ensures that this is true
with probability 1 − ρ, that is, with the same desired probability of failure. Then, the entire proof is done
conditionally on these bounds to hold.

Note also that, generally, {L̄r} depend on m, through (46). However, all our examples fall under two
categories (see Sec. 2):

(i) either ‖Dr [ϕω] (x)‖x is already uniformly bounded, in which case L̄r can be chosen independently of
ρ and m, this is for instance the case of discrete Fourier sampling;

(ii) or the Fr(t) are exponentially decaying, in which case we can show that L̄r = O
(

log
(
m
ρ

)p)
for

some p > 0, which only incurs additional logarithmic terms in the bound (47). This occurs in the
case of sampling the Laplace transform or sampling the Fourier transform with respect to a Gaussian
distribution.

We are now ready to state the detailed version of Theorem 1, which is the main result of this paper.

Theorem 3. Suppose that Assumptions 1 and 2 hold. Let y be as in (2) with mini 6=j dg(xi, xj) > ∆ and
‖w‖ 6 δ. Then, with probability at least 1− ρ, any solution µ̂ of (Pλ(y)) with λ ∼ δ√

s
satisfies

T 2
dg

|µ̂| , s∑
j=1

Âiδxj

 6 e and
s

max
i=1
|âi − ai| 6 e

where Âi = |µ̂|
(
Bdg

(xi; rnear)
)
, âi = µ̂

(
Bdg

(xi; rnear)
)

and e . 1
min(ε̄0,ε̄2) (|µ̃0| (X ) + δ ·

√
s).

The next section is dedicated to the proof of Theorem 3 using an infinite-dimensional golfing scheme.
Appendix A is dedicated to the proof of some technical Lemmas. Appendix B gathers all the concentration
inequalities that we use in the golfing scheme, which are essentially many variants of Bernstein’s inequality.
Finally, Appendices C, D and E are dedicated to the computation of all the constants in Assumptions 1 and
2 for the examples described in Section 2, which can be quite verbose.
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6 Proof of Theorem 3

The main step towards proving Theorem 3 is to prove the existence of a dual certificate satisfying the
properties described in Proposition 1. More precisely, we are going to prove the following theorem.

Theorem 4. Suppose that Assumptions 1 and 2 hold. Let {xj}sj=1 be such that mini6=j dg(xi, xj) > ∆.

Then, with probability at least 1− ρ, there exists p ∈ Cm with ‖p‖ .
√
s such that η̂ = Φ∗p is ( ε̄08 ,

3ε̄2
8 , rnear)-

nondegenerate.

Outline of the proof. The construction of the non-degenerate certificate includes several intermediate
steps. As usual in this type of proof, we will first prove these properties on a finite ε-net that covers X , then
extend them to the whole space by regularity. Here we work with several nets Gnear

j ⊂ X near
j and Gfar ⊂ X far

whose precision will be adjusted later. The principle of the golfing scheme is to work with an “approximate”
dual certificate ηapp (which is actually not a dual certificate at all), then “correct” it to obtain the desired
true certificate. In details, we will go through the following steps:

1. First, show that with probability at least 1− ρ, there is an approximate certificate ηapp ∈ Im(Φ∗) such
that, for some constant c0 that will be adjusted later,

s∑
j=1

|ηapp(xj)− sign(aj)|2 + ‖D1 [ηapp] (xj)‖2xj 6 c20 for all j = 1, . . . , s

|ηapp(x)| 6 1− ε̄0

4
for all x ∈ Gfar∥∥∥sign(aj)D2 [ηapp] (x)−K(02)(xj , x)

∥∥∥
x
6

7ε̄2

64
for all j = 1, . . . , s, x ∈ Gnear

j

(48)

In other words, we relax the condition η(xj) = sign(aj), ∇η(xj) = 0, and replace it with the first
equation above.

2. Second, correct the approximate certificate to obtain a function1 η̂ ∈ Im(Φ∗) such that:
η̂(xj) = sign(aj) and ∇η̂(xj) = 0 for all j = 1, . . . , s

|η̂(x)| 6 1− 3ε̄0

16
for all x ∈ Gfar∥∥∥sign(aj)D2 [η̂] (x)−K(02)(xj , x)

∥∥∥
x
6

15ε̄2

128
for all j = 1, . . . , s, x ∈ Gnear

j

(49)

That is, η̂ satisfy all the properties we want, but on the finite nets Gfar,Gnear
j .

3. Third, bound the norm of the p ∈ Cm corresponding to η̂ = Φ∗p.

4. Then, use Assumption 2 on the feature functions and the bound on ‖p‖ to show that actually, the η̂
constructed above satisfy:

η̂(xj) = sign(aj) and ∇η̂(xj) = 0 for all j = 1, . . . , s

|η̂(x)| 6 1− ε̄0

8
for all x ∈ X far∥∥∥sign(aj)D2 [η̂] (x)−K(02)(xj , x)

∥∥∥
x
6
ε̄2

8
for all j = 1, . . . , s, x ∈ X near

j

(50)

which, by Lemma 2, will imply that η̂ is non-degenerate with the desired constants and conclude the
proof of Theorem 4.

1Here we write η̂ to distinguish from the “limit” certificate η that we built in the case m→∞.
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5. In a fifth and final step, prove the existence of s additional certificates η̂j as appear in Prop. 2.
Combined with the existence of η̂ and Prop. 1 and 2, it concludes the proof of Theorem 3.

We dedicate a subsection to each step of the proof. Before that, we start in the next subsection with
some technical preliminaries and notations.

6.1 Preliminaries

Let us introduce some notations and show some technical bounds that will be handy. Recall the definitions
of the sign vector us from (29), γ, Υ and f from (31), (30) and (32), and Dg from (33). We have the following
additional bounds, whose proof, in Appendix A.2, follows similar arguments to that of Theorem 2.

Lemma 3. Under Assumption 1, Υ and f defined as in (30) and (32) satisfy the following.

(i) Υ is invertible and satisfies

‖Id−DgΥDg‖2 6
1

2
and ‖Id−DgΥDg‖Block 6

1

2
. (51)

(ii) For any vector q ∈ Cs(d+1) and any x ∈ X far, we have

‖Dgf(x)‖2 6 B0 and
∣∣q>f(x)

∣∣ 6 B0

∥∥D−1
g q

∥∥
Block

(52)

(iii) For any vector q ∈ Cs(d+1) and any x ∈ X near we have the bound:∥∥D2

[
q>f(.)

]
(x)
∥∥
x
6
∥∥D−1

g q
∥∥B2 and

∥∥D2

[
q>f(.)

]
(x)
∥∥
x
6
∥∥D−1

g q
∥∥

Block
B2 (53)

Now, for ω1, . . . , ωm, denote the empirical versions of Υ and f by:

Υ̂
def.
=

1

m

m∑
k=1

γ(ωk)γ(ωk)∗ and f̂(x)
def.
=

1

m

m∑
k=1

γ(ωk)ϕωk(x). (54)

Recall the definition of Lj(ω) and L̄j in Assumption 2. Let the event Ē be defined by

Ē
def.
=

m⋂
k=1

Eωk where Eω
def.
=
{
Lj(ω) 6 L̄j ; j = 0, 1, 2, 3

}
. (55)

Since by Assumption 2, eq. (46), we have P(Ēc) 6 ρ, a nondegenerate dual certificate can be constructed
with probability at least (1 − ρ)2 > 1 − 2ρ provided that, conditional on event Ē, a nondegenerate dual
certificate can be constructed with probability at least 1− ρ.

We therefore assume for the rest of this proof that event Ē holds and establish the probability conditional
on Ē that a nondegenerate dual certificate exists. To control this probability, we will need to control the

deviation of f̂ and Υ̂ from their conditional expectations fĒ = EĒ [f̂ ] and ΥĒ
def.
= EĒ [Υ̂], where we denote

EĒ [·] def.
= E[·|Ē]. The following Lemma, proved in Appendix A.3, bounds the deviations between these.

Lemma 4. Under Assumption 1 and 2, we have:

(i) ‖Dg(Υ−ΥĒ)Dg‖2 6 4 (s+1) min(ε̄0,ε̄2)
m and ‖Dg(Υ−ΥĒ)Dg‖Block 6 8 (s+1) min(ε̄0,ε̄2)

m

(ii) for all x ∈ X far, ‖Dg(f(x)− fĒ(x))‖2 6 (B0+2
√
s) min(ε̄0,ε̄2)
m

(iii) for all x ∈ X near, sup‖q‖261

∥∥D2

[
(f − fĒ)>Dgq

]
(x)
∥∥
x
6 (B2+2

√
s) min(ε̄0,ε̄2)
m
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6.2 Step 1: construction of an approximate certificate with the golfing scheme

The first step is to construct an approximate certificate ηapp using the so-called “golfing scheme”. The
golfing scheme was introduced in [41] and successfully used in compressed sensing for instance in [16]. It can
be intuitively explained as follows. Recall that the certificate constructed in Theorem 2 in the case m→∞
is of the form η = (Υ−1u)>f . It is therefore natural to try to show directly that η̂

def.
= (Υ̂−1u)>f̂ is also

nondegenerate by bounding the variation between η and η̂. This is the strategy adopted by Tang et al [54]
and in our previous work [45]. However, as mentioned before, this proof technique requires the random signs
assumption, otherwise a sub-optimal bound on m is obtained. To solve this, the golfing scheme starts by
writing the following Neumann expansion: assuming that Υ̂ is invertible, we have

η̂ = (Υ̂−1u)>f̂ = (Υ−1(Υ̂Υ−1)−1u)>f̂

=

∞∑
`=1

(
Υ−1

(
Id− Υ̂Υ−1

)`−1

u

)>
f̂ =

∞∑
`=1

(Υ−1q`−1)>f̂
(56)

where q`
def.
=
(

Id− Υ̂Υ−1
)
q`−1, q0

def.
= u. By cutting the sum above to a finite number of terms, one effectively

obtains an approximate certificate that must be later corrected. However, there is an additional difficulty in
analysing the sum, which comes from the fact that for each summand, f̂ and Υ−1q`−1 are random variables
which are not mutually independent. The idea of [41, 16] is to decouple the random variables by partitioning

the indices {1, . . . ,m} into J disjoint blocks B` of size m` with
∑J
`=1m` = m, for some J and m` that

are adjusted below. Denote by Υ̂` and f̂` the empirical versions of Υ and f over the m` random variables
included in B`, that is:

Υ̂`
def.
=

1

m`

∑
k∈B`

γ(ωk)γ(ωk)∗ and f̂`(x)
def.
=

1

m`

∑
k∈B`

γ(ωk)ϕωk(x).

Then, instead of (56), we consider

ηapp =

J∑
`=1

(Υ−1q`−1)>f̂`

where q`
def.
=
(

Id− Υ̂`Υ
−1
)
q`−1, q0

def.
= u. Note that this can be rewritten as:

q` = us −
∑̀
p=1

Υ̂pΥ
−1qp−1 (57)

Now, the idea is that one can control each term q>`−1f̂` conditional on q`−1 and for appropriate choices of the
blocksizes m`, η

app can be shown to be approximately nondegenerate with high probability. Each additional
term in the sum brings the certificate “closer” to its desired properties, hence the term “golfing” scheme.

Parameters and intermediate assumptions. We set the error c0 that appears in (48) as

c0 = C0 min

(
ε̄0

B0
,
ε̄2

B2
, 1

)
for some universal constant C0. We define the parameters of our golfing scheme as follows:

J = dlog(s)e+ 2 ,

c1 = c2 =
c0

4
√

log(s)
and ∀` = 3, . . . , J, c` = c0 ,

t1 = 1− ε̄0

2
+
ε̄0

8
t2 = 4B0

√
log(s), and ∀` = 3, . . . , J, t` = 4B0 log(s) ,

b1 =
3ε̄2

32
, b2 = 4B2

√
log(s), and ∀` = 3, . . . , J, b` = 4B2 log(s) .
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We now formulate an intermediate set of assumptions, and proceed to show that: first, they imply the desired
properties on ηapp, and second, they are valid with high probability. For 1 6 ` 6 J , we define:

(I`) ‖Dgq`‖Block 6 c` ‖Dgq`−1‖Block,

(II`) For all x ∈ Gfar,
∣∣∣(Υ−1q`−1)>f̂`(x)

∣∣∣ 6 t` ‖Dgq`−1‖Block,

(III`) If ` = 1: for all j = 1, . . . , s, x ∈ Gnear
j ,

∥∥∥sign(aj)D2

[
(Υ−1us)

>f̂1

]
(x)−K(02)(xj , x)

∥∥∥
x
6 b1; and if

` > 2: for all x ∈ Gnear,
∥∥∥D2

[
(Υ−1q`−1)>f̂`

]
(x)
∥∥∥
x
6 b` ‖Dgq`−1‖Block.

Let us now assume that (I`), (II`) and (III`) are true for all `, and show that ηapp satisfy the desired
properties. We define Ψ : C (X )→ Cs(d+1) by

Ψf
def.
=
[
f(x1), . . . , f(xs),∇f(x1)>, . . . ,∇f(xs)

>]> . (58)

In words, Ψ evaluates a function and its first derivative at the points {xj}sj=1. Note that for any vector

v ∈ Cs(d+1), by definition we have Ψ(v>f̂`) = Υ̂`v. Using this, we have√√√√ s∑
j=1

|ηapp(xj)− sign(aj)|2 + ‖D1 [ηapp] (xj)‖2xj

= ‖us −DgΨηapp‖ 6
√

2s ‖Dg (us −Ψηapp)‖Block =
√

2s

∥∥∥∥∥Dg

(
us −Ψ

(
J∑
`=1

(Υ−1q`−1)>f̂`

))∥∥∥∥∥
Block

=
√

2s

∥∥∥∥∥Dg

(
us −

J∑
`=1

Υ̂`Υ
−1q`−1

)∥∥∥∥∥
Block

(57)
=
√

2s ‖DgqJ‖Block 6
√
s

J∏
`=1

c`
(I)

6

√
2scJ0

16 log(s)
6 c0 ,

since by adjusting C0 we can have c0 6
(

1√
6

) 1
log(3)−1

6
(

1√
2s

) 1
log(s)−1

where the last inequality is valid for

all s and results from a simple function study. It proves the first part of (48). Next, for all x ∈ Gfar,

|ηapp(x)| 6
J∑
`=1

∣∣∣(Υ−1q`−1)>f̂`(x)
∣∣∣ (II)

6
J∑
`=1

t` ‖Dgq`−1‖Block

(I)

6
J∑
`=1

t`

`−1∏
p=1

cp

6 1− ε̄0

2
+
ε̄0

8
+B0c0 +

B0

4

J−1∑
`=2

c`0 6 1− ε̄0

2
+
ε̄0

8
+B0c0 +

B0c
2
0

4(1− c0)
6 1− ε̄0

4
.

since by our choice of c0 and adjusting C0, B0c0 +
B0c

2
0

4(1−c0) 6 ε̄0
8 . Similarly, for all x ∈ Gnear

j ,∥∥∥sign(aj)D2 [ηapp] (x)−K(02)(xj , x)
∥∥∥
x

6
∥∥∥sign(aj)D2

[
(Υ−1us)

>f̂1

]
(x)−K(02)(xj , x)

∥∥∥
x

+

J∑
`=1

∥∥∥D2

[
(Υ−1q`−1)>f̂`

]
(x)
∥∥∥
x

6
3ε̄2

32
+

J∑
`=2

b`

`−1∏
p=1

cp =
3ε̄2

32
+B2c0 +

B2

4

J−1∑
`=2

c`0 6
3ε̄2

32
+B2c0 +

B2c
2
0

4(1− c0)
6

7ε̄2

64

since similarly, B2c0 +
B2c

2
0

4(1−c0) 6 ε̄2
64 . Hence (I`), (II`), (III`) indeed implies (48). Next we derive a condition

on m under which they are true with probability 1− ρ (conditional on event Ē).
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Probability of successful construction. Let us now prove that (I`), (II`) and (III`) are indeed valid
with the desired probability. Let p1(`), p2(`) and p3(`) be the probabilities conditional on event Ē that
(I`), (II`) and (III`) fail, respectively. By a union bound, our goal is to derive a bound on m such that∑3
k=1

∑J
`=1 pk(`) 6 ρ. We do so by applying variants of Bernstein’s concentration inequality, that are all

detailed in Appendix B. As we mentioned before, a crucial construction of the golfing scheme is that, at each
step, q`−1 and f̂` are mutually independent, such that we can reason conditionally on q`−1 and treat it as a
fixed vector when bounding the probabilities w.r.t. f̂` and Υ̂`.

We define q̄`
def.
= D−1

g Υ−1q` for short. To bound p1(`), we first observe the recurrence relation Dgq` =

Dg(Id − Υ̂`Υ
−1)q`−1 = Dg(Υ − Υ̂`)Dgq̄`−1. Moreover, by Lemma 3 we have

∥∥D−1
g Υ−1D−1

g

∥∥
Block

6
1

1−‖DgΥDg‖Block
6 2, and therefore ‖Dgq`−1‖Block > 1

‖D−1
g Υ−1D−1

g ‖Block

‖q̄`−1‖Block > 1
2 ‖q̄`−1‖Block. Finally,

by Lemma 4 and our assumptions we have in particular that ‖Dg(ΥĒ −Υ)Dg‖Block 6 min` c`/4. Therefore,

p1(`) = PĒ
(
‖Dgq`‖Block > c` ‖Dgq`−1‖Block

)
6 PĒ

(∥∥∥Dg(Υ− Υ̂`)Dgq̄`−1

∥∥∥
Block

>
c`
2
‖q̄`−1‖Block

)
6 PĒ

(∥∥∥Dg(ΥĒ − Υ̂`)Dgq̄`−1

∥∥∥
Block

>
c`
4
‖q̄`−1‖Block

)
Finally, applying Lemma 14, for some ρ` that we adjust later we obtain that

PĒ
(∥∥∥Dg(ΥĒ − Υ̂`)Dgq̄`−1

∥∥∥
Block

>
c`
4
‖q̄`−1‖Block

)
6 ρ`

if m` &
sL̄2

01

c2`
log
(
s
ρ`

)
.

For p2(`), we have∣∣∣(Υ−1q`−1)>f̂`(x)
∣∣∣ =

∣∣∣(q̄`−1)>Dgf̂`(x)
∣∣∣ 6 ∣∣∣(q̄`−1)>Dg(f̂`(x)− f(x))

∣∣∣+
∣∣(q̄`−1)>Dgf(x)

∣∣
6
∣∣∣(q̄`−1)>Dg(f̂`(x)− f(x))

∣∣∣+

{
B0 ‖q̄`−1‖Block ` > 2

1− ε̄0
2 ` = 1

by Lemma 3 for the case ` > 2 and Theorem 2 for the case ` = 1. Hence,

p2(`) = PĒ
(
∃x ∈ Gfar,

∣∣∣(Υ−1q`−1)>f̂`(x)
∣∣∣ > t` ‖Dgq`−1‖Block

)
6 PĒ

(
∃x ∈ Gfar,

∣∣∣(Υ−1q`−1)>f̂`(x)
∣∣∣ > t`

2
‖q̄`−1‖Block

)
6 PĒ

(
∃x ∈ Gfar,

∣∣∣(q̄`−1)>Dg(f̂`(x)− f(x))
∣∣∣ > t̃` ‖q̄`−1‖Block

)
where t̃`

def.
=

{(
t`
2 −B0

)
` > 2

ε̄0
16 ` = 1

.

Since by Lemma 4 we have in particular∣∣(q̄`−1)>Dg(fĒ(x)− f(x))
∣∣ 6 √2s ‖q̄`−1‖Block ‖Dg(fĒ(x)− f(x))‖ 6 t̃`

2
‖q̄`−1‖Block ,

by Lemma 8 and a union bound we have

p2(`) 6 PĒ
(
∃x ∈ Gfar,

∣∣∣(q̄`−1)>Dg(f̂`(x)− fĒ(x))
∣∣∣ > t̃`

2
‖q̄`−1‖Block

)
6 ρ`

provided that m` & s
(
L̄2

0

t̃2`
+ L̄01L̄0

t̃`

)
log

(
|Gfar|
ρ`

)
.

For p3(`), fix j, for any x ∈ Gnear
j : in the case ` > 2, by Lemma 3,∥∥∥D2

[
(Dgq̄`−1)>f̂`

]
(x)
∥∥∥
x
6
∥∥∥(D2

[
(Dgq̄`−1)>(f̂` − f)

]
(x)
)∥∥∥

x
+
∥∥D2

[
(Dgq̄`−1)>f

]
(x)
∥∥
x

6
∥∥∥D2

[
(Dgq̄`−1)>(f̂` − f)

]
(x)
∥∥∥
x

+B2 ‖q̄`−1‖Block
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and for ` = 1, by Theorem 2,∥∥∥sign(aj)D2

[
(Dgq̄0)>f̂1

]
(x)−K(02)(xj , x)

∥∥∥
x

6
∥∥∥sign(aj)D2

[
(Dgq̄0)>f

]
(x)−K(02)(xj , x)

∥∥∥
x

+
∥∥∥D2

[
(Dgq̄0)>(f̂1 − f)

]
(x)
∥∥∥
x

6
ε̄2

16
+
∥∥∥D2

[
(Dgq̄0)>(f̂1 − f)

]
(x)
∥∥∥
x
.

Therefore, by the same computation as before,

p3(`) 6 PĒ
(
∃x ∈ Gnear,

∥∥∥D2

[
(Dgq̄`−1)>(f̂` − f)

]
(x)
∥∥∥
x
> b̃` ‖q̄`−1‖Block

)
, where b̃`

def.
=

{(
b`
2 −B2

)
` > 2

ε̄2
64 ` = 1.

Again using Lemma 4 we bound
∥∥D2

[
(Dgq̄`−1)>(fĒ − f)

]
(x)
∥∥
x
6 b̃`

2 ‖q̄`−1‖Block and

p3(`) 6 PĒ

(
∃x ∈ Gnear,

∥∥∥D2

[
(Dgq̄`−1)>(f̂` − fĒ)

]
(x)
∥∥∥
x
>
b̃`
2
‖q̄`−1‖Block

)
6 ρ`

by Lemma 10 and a union bound, provided that m` & s
(
L̄2

2

b̃2`
+ L̄2L̄01

b̃`

)
log
(
|Gnear|
ρ`

)
.

Choosing ρ1 = ρ2 = ρ/9 and ρ` = ρ/(9J) for ` > 3, recalling that obviously ε̄r 6 Br for r = 1, 2 and

denoting N0 =
∣∣Gfar

∣∣ and N2 = |Gnear| for short, we have
∑3
k=1

∑J
`=1 pk(`) 6 ρ provided that

m1 = m2 & s
∑
r=0,2

(
L̄2

01

B2
r

ε̄2
r

log(s) log

(
s

ρ

)
+

(
L̄2
r

ε̄2
r

+
L̄01L̄r
ε̄r

)
log

(
Nr
ρ

))
and for ` > 3,

m` & s
∑
r=0,2

(
L̄2

01

B2
r

ε̄2
r

log

(
s log(s)

ρ

)
+

(
L̄2
r

B2
r log2(s)

+
L̄01L̄r
Br log(s)

)
log

(
Nr log(s)

ρ

))

Therefore, conditionally on Ē, ηapp can be constructed with probability at least 1−ρ if m & m1 +m2 +Jm3,
for which it is sufficient that

m & s
∑
r=0,2

(
L̄2

01

B2
r

ε̄2
r

log(s) log

(
s

ρ

)
+

(
L̄2
r

ε̄2
r

+
L̄01L̄r
ε̄r

)
log

(
Nr log(s)

ρ

))
(59)

6.3 Step 2: correcting the approximate certificate

The second step of our proof is to “correct” the previously constructed approximate certificate ηapp to

obtain a certificate η ∈ Im(Φ∗) satisfying (49). Recalling the definition (58) of Ψ, let e
def.
= Ψηapp−us be the

error made by ηapp and define

η̂
def.
= ηapp − ηe, where ηe def.

= (Υ̂−1e)>f̂ .

Then,
Ψη̂ = Ψηapp − e = us ,

and we have indeed that η̂(xi) = sign(ai) and ∇η̂(xi) = 0. We will now bound the deviations of η̂ on the
grids Gfar and Gnear, using the fact that e has a small norm. Note that there is a subtlety here: e itself is
random, and not independent of f̂ or Υ̂. So we must use “uniform” concentration bounds.
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Using Lemma 3 in combination with Lemma 4 and Lemma 12, we have that with probability at least
1− ρ:∥∥∥Id−DgΥ̂Dg

∥∥∥ 6 ‖Id−DgΥDg‖+ ‖Dg(Υ−ΥĒ)Dg‖+
∥∥∥Dg(ΥĒ − Υ̂)Dg

∥∥∥ 6
1

2
+

1

8
+

1

8
=

3

4
(60)

and therefore ∥∥∥D−1
g Υ̂−1D−1

g

∥∥∥ 6 4 . (61)

By Lemma 3, 4, 9 and a union bound to respectively bound each term in the following triangular inequality,
with probability 1− ρ we have

∀x ∈ Gfar,
∥∥∥Dgf̂(x)

∥∥∥ 6 ‖Dgf(x)‖+ ‖Dg(fĒ(x)− f(x))‖+
∥∥∥Dg(f̂(x)− fĒ(x))

∥∥∥ 6 2B0

if m & B−2
0 log

(
|Gfar|
ρ

)
(sL̄2

01 +
√
sL̄01L̄0). Then, for all x ∈ Gfar, since by adjusting C0 we can have in

particular ‖Dge‖ 6 c0√
s
6 c0 6 1

128 min
(
ε̄2
B2
, ε̄0B0

)
, we have

|η̂(x)| 6 |ηapp(x)|+
∥∥∥Dgf̂(x)

∥∥∥∥∥∥D−1
g Υ̂−1D−1

g

∥∥∥ ‖Dge‖ 6 1− 3ε̄0

16
,

Similarly, by Lemma 3, 4, with probability 1− ρ we have for all x ∈ Gnear and q ∈ Cs(d+1),∥∥∥D2

[
f̂>Dgq

]
(x)
∥∥∥
x
6
∥∥D2

[
f>Dgq

]
(x)
∥∥
x

+
∥∥D2

[
(fĒ − f)>Dgq

]
(x)
∥∥
x

+
∥∥∥D2

[
(fĒ − f̂)>Dgq

]
(x)
∥∥∥
x

6 (B2 +B2/2) ‖q‖+ ‖q‖ sup
‖v‖x61

∥∥∥∥∥ 1

m

m∑
k=1

Dgγ(ωk)gωk(v)− EĒDgγ(ω)gω(v)

∥∥∥∥∥
where gω(v)

def.
= D2 [ϕω] (x)[v, v]. By Lemma 11 and and a union bound, for all x ∈ Gnear,

sup
‖v‖x61

∥∥∥∥∥ 1

m

m∑
k=1

Dgγ(ωk)gωk(v)− EĒDgγ(ω)gω(v)

∥∥∥∥∥ 6 B2

if m & sB22L̄
2
01+
√
sL̄01L̄2B2

B2
2

(
log
(
|Gnear|
ρ

)
+ d log

(
sL̄01L̄2

B2

))
. Using this property with q

def.
= D−1

g Υ̂−1e such

that ‖q‖ 6 4c0, and by adjusting C0, we obtain: for all x ∈ Gnear
j ,∥∥∥sign(aj)D2 [η̂] (x)−K(02)(xj , x)

∥∥∥
x
6
∥∥∥sign(aj)D2 [ηapp] (x)−K(02)(xj , x)

∥∥∥
x

+
∥∥∥D2

[
f̂>Dgq

]
(x)
∥∥∥
x

6
7ε̄2

64
+

ε̄2

128
=

15ε̄2

128

which concludes the second step of our proof. By combining the bounds on m that we obtained with (59),
after simplification we still obtain

m & s
∑
r=0,2

(
L̄2

01

B2
r

ε̄2
r

log(s) log

(
s

ρ

)
+

(
L̄2
r

ε̄2
r

+
L̄01L̄r
ε̄r

+
B22

B2
2

L̄2
01

)
log

(
N ′r log(s)

ρ

))
(62)

with N ′0 = N0 =
∣∣Gfar

∣∣ but N ′2 = |Gnear|+ (sL̄01L̄2/B2)d.
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6.4 Step 3: Bounding the norm ‖p‖
In this section we upper bound ‖p‖ where Φ∗p = η̂, for the η̂ that we have constructed in the previous

section. We recall that Φ∗p = 1√
m

∑m
k=1 pkϕωk(·), and

ηapp =

J∑
`=1

(Υ−1q`−1)>f̂` =
1√
m

∑
`

√
m

m`

∑
k∈B`

(Υ−1q`−1)>γ(ωk)ϕωk = Φ∗papp,

where papp def.
= (p`)

J
`=1 ∈ Cm and p`

def.
=
√
m
m`

(
γ(ωk)∗Υ−1q`−1

)
k∈Bj

∈ Cm` . So, ‖papp‖2 =
∑J
`=1 ‖p`‖

2
2. To

upper bound this, for each ` = 1, . . . , J ,

m`

m
‖p`‖22 =

1

m`

∑
k∈B`

q∗`−1Υ−1γ(ωk)γ(ωk)∗Υ−1q`−1 = q∗`−1Υ−1Υ̂`Υ
−1q`−1

= q∗`−1Υ−1(Υ̂`Υ
−1 − Id)q`−1 + q∗`−1Υ−1q`−1 = q∗`−1Υ−1q` + q∗`−1Υ−1q`−1

6
∥∥D−1

g Υ−1D−1
g

∥∥ ‖Dgq`−1‖ (‖Dgq`−1‖+ ‖Dgq`‖)

6 4s ‖Dgq`−1‖Block

(
‖Dgq`‖Block + ‖Dgq`−1‖Block

)
6 4s (c` + 1)

`−1∏
i=1

c2i .

where we have used
∥∥D−1

g Υ−1D−1
g

∥∥ 6 2 by Lemma 3, ‖·‖ 6
√

2s ‖·‖Block, and the computation that precedes
for ‖Dgq`‖Block. For ` = 1, 2 m

m`
= O(1) and m

m3
= O(log(s)). Also, for ` > 3,

(c` + 1)

`−1∏
i=1

c2i = (1 + c0)
c`−1
0

16 log(s)

Therefore,

‖papp‖2 . 4s

(
1 +

c0

4
√

log(s)
+

c20
16 log(s)

+ (1 + c0)
c20

16(1− c0)

)
. s.

On the other hand, ηe = Φ∗pe where pe =
(
γ(ωk)∗Υ−1e

)m
k=1

. So,

‖pe‖2 = e∗Υ−1Υ̂Υ−1e 6 8 ‖Dge‖2 . 1.

Therefore, η̂ = Φ∗p with ‖p‖2 . s.

6.5 Step 4: Nondegeneracy on the entire domain

We conclude by showing that the η̂ constructed in the previous sections is indeed nondegenerate on the
entire domain. For this we simply need to control the Lipschitz constants of η̂ and its Hessian, which are in
fact directly related to ‖p‖. Let any x ∈ X far, and x′ ∈ Gfar be the point in the grid closest to it. Under Ē,
we have

|η̂(x)| 6 1− 3ε̄0

16
+ |η̂(x)− η̂(x′)| = 1− 3ε̄0

16
+ |(Φ∗p)(x)− (Φ∗p)(x′)|

6 1− 3ε̄0

16
+ ‖p‖

√√√√ 1

m

m∑
k=1

|ϕωk(x)− ϕωk(x′)|2 6 1− 3ε̄0

16
+ L̄1 ‖p‖ dg(x, x′)

Hence we prove the first part of (50) by choosing Gfar such that dg(x, x′) 6 ε̄0
16L̄1‖p‖

, which results in

∣∣Gfar
∣∣ =

(
CRX L̄1 ‖p‖

ε̄0

)d
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for an appropriate constant C.
Now, for any x ∈ X near

j , and x′ ∈ Gnear
j closest to it, we write∥∥∥sign(aj)D2 [η̂] (x)−K(02)(xj , x)

∥∥∥
x
6 ‖D2 [η̂] (x)−D2 [η̂] (x′)[τx→x′ ·, τx→x′ ·]‖x

+
∥∥∥sign(aj)D2 [η̂] (x′)[τx→x′ ·, τx→x′ ·]−K(02)(xj , x

′)[τx→x′ ·, τx→x′ ·]
∥∥∥
x

+
∥∥∥K(02)(xj , x

′)[τx→x′ ·, τx→x′ ·]−K(02)(xj , x)
∥∥∥
x

(63)

We bound each of these terms. For the first, under Ē we have

‖D2 [η̂] (x)−D2 [η̂] (x′)[τx→x′ ·, τx→x′ ·]‖x

6 ‖p‖

√√√√ 1

m

m∑
k=1

‖D2 [ϕωk ] (x)−D2 [ϕωk ] (x′)[τx→x′ ·, τx→x′ ·]‖2x 6 L̄3 ‖p‖ dg(x, x′)

For the second term in (63), we have∥∥∥sign(aj)D2 [η̂] (x′)[τx→x′ ·, τx→x′ ·]−K(02)(xj , x
′)[τx→x′ ·, τx→x′ ·]

∥∥∥
x

=
∥∥∥sign(aj)D2 [η̂] (x′)−K(02)(xj , x

′)
∥∥∥
x′

6
15ε̄2

128

from what we have proved in the previous section.

Finally, for the third term in (63) we naturally introduce K
(ij)

Ē
defined as K(ij) in (25), but by replacing

E with the conditional EĒ . From Lemma 4 the deviation between K(02) and K
(02)

Ē
can be bounded by

∀x ∈ X near,
∥∥∥K(02)

Ē
(xj , x)−K(02)(xj , x)

∥∥∥
x

=
∥∥D2

[
(fĒ − f)>Dguj

]
(x)
∥∥
x
6

ε̄2

512

where uj is the jth canonical vector of Cs(d+1). Moreover, by Assumption 2 it is easy to see that∥∥∥K(02)

Ē
(xj , x

′)[τx→x′ ·, τx→x′ ·]−K(02)

Ē
(xj , x)

∥∥∥
x
6 L̄0L̄3dg(x, x′)

Hence by a triangular inequality we have∥∥∥K(02)(xj , x
′)[τx→x′ ·, τx→x′ ·]−K(02)(xj , x)

∥∥∥
x
6
∥∥∥K(02)(xj , x

′)[τx→x′ ·, τx→x′ ·]−K(02)

Ē
(xj , x

′)[τx→x′ ·, τx→x′ ·]
∥∥∥
x

+
∥∥∥K(02)

Ē
(xj , x

′)[τx→x′ ·, τx→x′ ·]−K(02)

Ē
(xj , x)

∥∥∥
x

+
∥∥∥K(02)

Ē
(xj , x)−K(02)(xj , x)

∥∥∥
x
6

ε̄2

256
+ L̄0L̄3dg(x, x′)

Therefore, (63) becomes∥∥∥sign(aj)D2 [η̂] (x)−K(02)(xj , x)
∥∥∥
x
6 L̄3(L̄0 + ‖p‖)dg(x, x′) +

15ε̄2

128
+

ε̄2

256
(64)

We prove the desired property on D2 [η̂] by choosing dg(x, x′) 6 ε̄2
256L̄3(L̄0+‖p‖) , which yields

|Gnear| = s
∣∣Gnear
j

∣∣ = s

(
CrnearL̄0L̄3 ‖p‖

ε̄2

)d
for an appropriate constant C. Gathering everything with (62), we finally obtain

m & s
∑
r=0,2

(
L̄2

01

B2
r

ε̄2
r

log(s) log

(
s

ρ

)
+

(
L̄2
r

ε̄2
r

+
L̄01L̄r
ε̄r

)
log

(
N̄d
r

ρ

))
(65)

with N̄0 = sRX L̄1

ε̄0
, N̄2 = s(rnearL̄0L̄3+L̄2)

ε̄2
.
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6.6 Step 5: additional certificates

Nondegeneracy of η̂ directly allows us to apply Proposition 1 to deduce stability away from the sparse
support in the reconstructed measure. In order to apply Proposition 2, we need to construct an additional s
certificates ηj , which are however “simpler” to construct since they need to interpolate a “sign vector” that
has only one non-zero coordinate, and do not require the golfing scheme to do so.

For each j = 1, . . . , s, let uj be the vector of length s(d+ 1) whose jth entry is one and all other entries
are zero. Define the functions

η+
j

def.
=

(
Υ−1

(
1s
0sd

))>
f(x) and η−j

def.
=

(
Υ−1

(
2uj −

(
1s
0sd

)))>
f(x),

and

ηj
def.
=

1

2
(η+
j + η−j ) =

(
Υ−1uj

)>
f(x).

By Theorem 2, η+
j and η−j are nondegenerate (limit) dual certificates with respect to signs 1s and −1s + 2uj

respectively, and ηj satisfies, for all ` 6= j:

ηj(xj) = 1, ∇ηj(xj) = 0 and ηj(x`) = 0, ∇ηj(x`) = 0

|ηj(x)| 6 1

2

(∣∣η+
j (x)

∣∣+
∣∣η−j (x)

∣∣) 6 1− ε̄0

4
, ∀x ∈ X far∥∥∥D2 [ηj ] (x)−K(02)(xj , x)

∥∥∥
x
6
ε̄2

16
, ∀x ∈ X near

j

‖D2 [ηj ] (x)‖x

6
1

2

(∥∥∥D2

[
η+
j

]
(x)−K(02)(x`, x)

∥∥∥
x

+
∥∥∥−D2

[
η−j
]

(x)−K(02)(x`, x)
∥∥∥
x

)
6
ε̄2

16
, ∀x ∈ X near

`

(66)

Thus, using Lemma 2 to translate the last two conditions into quadratic decay, we conclude that ηj satisfies
the conditions of Proposition 2.

To conclude, we will show that

η̂j
def.
=
(

Υ̂−1uj

)>
f̂ ∈ Im Φ∗

does not deviate too much from ηj and satisfies the conditions of Proposition 2. Note that by construction,
η̂j(xj) = 1, η̂j(x`) = 0 for all ` 6= j, and ∇η̂j(x`) = 0 for all `. It therefore remains to control the deviation
of η̂j from ηj on X far and D2 [η̂j ] from D2 [ηj ] on X near.

Proposition 3. Under Assumption 1 and 2, suppose that mini 6=j dg(xi, xj) > ∆. Then, with probability at
least 1− ρ, for all j = 1, . . . , s, there exists η̂j = Φ∗pj where ‖pj‖ 6 4 which satisfies, for all ` 6= j:

η̂j(xj) = 1, ∇η̂j(xj) = 0 and η̂j(x`) = 0, ∇η̂j(x`) = 0

|η̂j(x)| 6 1− ε̄0

8
, ∀x ∈ X far∥∥∥D2 [ηj ] (x)−K(02)(xj , x)

∥∥∥
x
6
ε̄2

8
, ∀x ∈ X near

j , ‖D2 [ηj ] (x)‖x 6
ε̄2

8
, ∀x ∈ X near

`

(67)

The proof controls the deviation between η̂j and ηj on a fine grid using Bernstein’s concentration in-
equalities, and extend the bound to the entire domain using Lipschitz properties of η̂j . As we mentioned
above, the proof of this result is conceptually simpler than the deviation bounds on ηapp since ‖uj‖ = 1.
We therefore defer its proof to Appendix B.5. Using Lemma 2, we have therefore constructed the additional
certificates to apply Proposition 2 and conclude the proof of Theorem 3.
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7 Conclusion and outlooks

In this paper, we have presented an unifying geometric view on the problem of sparse measures recov-
ery from random measurements. This theoretical analysis highlights the key role played by the invariant
Fisher metric to define a precise notion of Rayleigh limit in the case of possibly non-translation invariant
measurement kernels. We analyzed several examples including Laplace measurements in imaging, and left
partially open some other important examples such as one-hidden-layer neural networks. Analyzing the
super-resolution regime (going below the Rayleigh limit) requires stringent assumptions, such as positivity
of the measures. Beyond the 1-D case, this is still mostly an open question, and we refer to [46] for some
partial results.
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A Preliminaries

In this Appendix, we provide the proofs to some technical lemmas in the paper, and give useful tools.

A.1 Linear algebra tools

We give the following simple lemma.

Lemma 5. For 1 6 i, j 6 s, take any scalars aij ∈ C, vectors Qij , Rij ∈ Cd and square matrices Aij ∈ Cd×d.

(i) For q ∈ Csd and M ∈ Csd×sd, we have ‖q‖block 6 ‖q‖ 6
√
s ‖q‖block, and as a consequence ‖M‖ 6√

s ‖M‖block and ‖M‖block 6
√
s ‖M‖. Similarly, for q ∈ Cs(d+1) and M ∈ Cs(d+1)×s(d+1), we have

‖q‖Block 6 ‖q‖ 6
√

2s ‖q‖Block, and as a consequence ‖M‖ 6
√

2s ‖M‖Block and ‖M‖Block 6
√

2s ‖M‖.

(ii) Let M ∈ Csd×sd be a matrix formed by blocks :

M =

A11 . . . A1s

...
. . .

...
As1 . . . Ass


Then we have

‖M‖block = sup
‖x‖block=1

‖Mx‖block 6 max
16i6s

s∑
j=1

‖Aij‖ (68)

Now, let M ∈ Rsd×s be a rectangular matrix formed by stacking vectors Qij ∈ Rd:

M =

Q11 . . . Q1s

...
. . .

...
Qs1 . . . Qss


Then,

‖M‖∞→block 6 max
16i6s

s∑
j=1

‖Qij‖2 ,
∥∥M>∥∥

block→∞ 6 max
16i6s

s∑
j=1

‖Qji‖2 (69)

(iii) Consider M ∈ Cs(d+1)×s(d+1) decomposed as

M =



a11 . . . a1s Q>11 . . . Q>1s
...

. . .
...

...
. . .

...
as1 . . . ass Q>s1 . . . Q>ss
R11 . . . R1s A11 . . . A1s

...
. . .

...
...

. . .
...

Rs1 . . . Rss As1 . . . Ass


.

Then,

‖M‖2 6 max
i

 s∑
j=1

|aij |+ ‖Qij‖

 ·max
j

(
s∑
i=1

|aij |+ ‖Qij‖

)

+ max
i

 s∑
j=1

‖Rij‖+ ‖Aij‖

 · s
max
j=1

(
s∑
i=1

‖Rij‖+ ‖Aij‖

)
.

and

‖M‖Block 6 max
i
{
∑
j

|aij |+ ‖Qij‖,
∑
j

‖Rij‖+ ‖Aij‖}
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Proof. The proof is simple linear algebra.

(i) This is immediate by writing the definitions.

(ii) Let x be a vector with ‖x‖block 6 1 decomposed into blocks x = [x1, . . . , xs] with xi ∈ Cd, we have

‖Mx‖block = max
16i6s

∥∥∥∥∥∥
s∑
j=1

Aijxj

∥∥∥∥∥∥ 6 max
i

∑
j

‖Aij‖ ‖xj‖ 6 max
i

∑
j

‖Aij‖

Similarly, ∥∥M>x∥∥∞ = max
16i6s

∥∥∥∥∥∥
s∑
j=1

Q>jixj

∥∥∥∥∥∥ 6 max
i

∑
j

‖Qji‖ ‖xj‖ 6 max
i

∑
j

‖Qji‖

Then, taking x ∈ Cs such that ‖x‖∞ 6 1, we have

‖Mx‖block = max
16i6s

∥∥∥∥∥∥
s∑
j=1

xjQij

∥∥∥∥∥∥ 6 max
i

∑
j

‖Qij‖

(iii) Taking x = [x1, . . . , xs, X1, . . . , Xs] ∈ Cs(d+1) with ‖x‖ = 1, we have

‖Mx‖2 =

s∑
i=1

 s∑
j=1

aijxj +Q>ijXj

2

+

∥∥∥∥∥∥
s∑
j=1

Rijxj +AijXj

∥∥∥∥∥∥
2

6
s∑
i=1

 s∑
j=1

|aij |x2
j + ‖Qij‖ ‖Xj‖2

 s∑
j=1

|aij |+ ‖Qij‖


+

s∑
i=1

 s∑
j=1

‖Rij‖x2
j + ‖Aij‖ ‖Xj‖2

 s∑
j=1

‖Rij‖+ ‖Aij‖


= max

i

 s∑
j=1

|aij |+ ‖Qij‖

 ·max

(
max
j

s∑
i=1

|aij | ,max
j

s∑
i=1

‖Qij‖

)
‖x‖2

+ max
i

 s∑
j=1

‖Rij‖+ ‖Aij‖

 ·max

(
s

max
j=1

s∑
i=1

‖Rij‖ ,max
j

s∑
i=1

‖Aij‖

)
‖x‖2 .

Now, if ‖x‖Block = 1, we have

‖Mx‖Block = max
i

∣∣∣∣∣∣
s∑
j=1

aijxj +Q>ijXj

∣∣∣∣∣∣ ,
∥∥∥∥∥∥

s∑
j=1

Rijxj +AijXj

∥∥∥∥∥∥


6 max
i

 s∑
j=1

|aij |+ ‖Qij‖ ,
s∑
j=1

‖Rij‖+ ‖Aij‖
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A.2 Proof of Lemma 3

The proof is similar to that of Theorem 2.

(i) We bound the spectral norm of Id−DgΥDg. By Lemma 5,

‖(Id−DgΥDg)‖2 6 max
i

 s∑
j=1
j 6=i

|K(xi, xj)|+
s∑
j=1

∥∥∥K(10)(xi, xj)
∥∥∥
xi


2

+ max
i

 s∑
j=1j 6=i

∥∥∥K(10)(xj , xi)
∥∥∥
xj

+

s∑
j=1

∥∥∥K(11)(xi, xj)
∥∥∥
xi,xj

2

6 8h2

by assumption on the kernel widths. Hence Υ is invertible. Similarly, by again applying Lemma 5,
‖DgΥDg − Id‖Block 6 2h.

(ii) Let x ∈ X far, then we have

‖Dgf(x)‖ 6

(
s∑
i=1

|K(xi, x)|2 +
∥∥∥K(10)(xi, x)

∥∥∥2

xi

) 1
2

6 B00 +B10 + 2h 6 B0

for which, similar to the proof above, we have used the fact that x is ∆/2-separated from at least s− 1
points xi. Similarly, for any vector q = [q1, . . . , qs, Q1, . . . , Qs] ∈ Cs(d+1) and any x ∈ X far, we have

∥∥q>f(x)
∥∥ 6

s∑
i=1

|qi| |K(xi, x)|+ ‖Qi‖xi
∥∥∥K(10)(xi, x)

∥∥∥
xi

6
∥∥D−1

g q
∥∥

Block
(B00 +B10 + 2h) 6 B0

∥∥D−1
g q

∥∥
Block

.

(iii) For any x ∈ X near we have the bound:

∥∥D2

[
q>f

]
(x)
∥∥
x

=

∥∥∥∥∥
s∑
i=1

qiK
(02)(xi, x) + [Qi]K

(12)(xi, x)

∥∥∥∥∥
x

6
∥∥D−1

g q
∥∥( s∑

i=1

∥∥∥K(02)(xi, x)
∥∥∥2

x
+
∥∥∥K(12)(xi, x)

∥∥∥2

xi,x

) 1
2

6
∥∥D−1

g q
∥∥B2

and

∥∥D2

[
q>f

]
(x)
∥∥
x

=

∥∥∥∥∥
s∑
i=1

qiK
(02)(xi, x) + [Qi]K

(12)(xi, x)

∥∥∥∥∥
x

6
∥∥D−1

g q
∥∥

Block

(
s∑
i=1

∥∥∥K(02)(xi, x)
∥∥∥
x

+
∥∥∥K(12)(xi, x)

∥∥∥
xi,x

)
6
∥∥D−1

g q
∥∥

Block
B2

which concludes the proof.

A.3 Proof of Lemma 4

First note that, for X = n−1
∑m
k=1 f(ωk) any empirical average, since the ωk are iid, we have EĒ [X] =

EEω [f(ω)], and therefore fĒ = EEω [γ(ω)γ(ω)∗], and so on.
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We now prove a general bound, that we then implement for each item. Let A = Aω be a random matrix
that depends on ω, such that ‖E[A]‖ 6 B and ‖A‖ 6 L(ω), for any matrix norm ‖·‖. We have

E[A] = E[A1Eω ] + E[A1Ecω ] = EĒ [A]P(Eω) + E[A1Ecω ]

by Bayes’ rule, and therefore,

‖E[A]− EĒ [A]‖ 6
‖E[A]‖P(Ecω) + E[‖A‖ 1Ecω ]

P(Eω)
6
BP(Ecω) + E[L(ω)1Ecω ]

P(Eω)
(70)

Then, if we let Eω,q be the event that Lq(ω) 6 L̄q, so Eω = ∩3
q=0Eω,q, by the union bound we get P(Ecω) 6∑

q P(Ecω,q) 6
∑
q Fq(L̄q) 6 min(ε̄0,ε̄2)

mmaxj(L̄2
j )

6 1
2 , and in particular P(Eω) > 1

2 . In the following L(ω) will be a

sum of some of the Lq(ω)2, so we bound E[Lq(ω)21Ecω ] 6
∑
j E[Lq(ω)21Ecω,j ] and we have

E[Lq(ω)21Ecω,j ] =

∫ ∞
0

P(Lq(ω)21Ecω,j > t)dt =

∫ ∞
0

P
(
(Lq(ω)2 > t) ∩ (Lj(ω) > L̄j)

)
dt

6 L̄2
qFj(L̄j) +

∫ ∞
L̄2
q

Fq(
√
t)dt = L̄2

qFj(L̄j) + 2

∫ ∞
L̄q

tFq(t)dt

where we have bounded P
(
(Lq(ω)2 > t) ∩ (Lj(ω) > L̄j)

)
by respectively P(Lj(ω) > L̄j) 6 Fj(L̄j) in the first

term and by P(Lq(ω)2 > t) 6 Fq(
√
t) in the second term. Hence by Assumption 2 we have

E[Lq(ω)21Ecω ] 6
min(ε̄0, ε̄2)

m
(71)

We can now obtain the desired results by combining (70) and (71) each time:

(i) we let A = Dgγ(ω)γ(ω)∗Dg. We have ‖E[A]‖ 6 2 by Lemma 3, and ‖γ(ω)γ(ω)∗‖ 6 sL2
01(ω). When

applied with the norm ‖·‖Block, we get ‖E[A]‖Block 6 2, and ‖γ(ω)γ(ω)∗‖Block 6 2sL2
01(ω) by Lemma

5 (iii).

(ii) we let A = Dgγ(ω)ϕω(x). We have ‖E[A]‖ 6 B0 by Lemma 3, and ‖A‖ 6
√
sL01(ω)L0(ω) 6

1
2

√
s(L01(ω)1 + L0(ω)2).

(iii) we letA = (γ̃(ω)>q)g
− 1

2
x (Hϕω)(x)g

− 1
2

x . We have ‖E[A]‖ 6 B2 ‖q‖ by Lemma 3, and ‖A‖ 6
√
sL01(ω)L2(ω).

B Concentration bounds

In this section, we detail the various Berstein concentration inequalities that we used in the golfing
scheme. More precisely, we present some probabilistic bounds on deviation of f̂ and Υ̂ from their deterministic
counterparts f and Υ, conditional on event Ē (recall their definitions in (30), (54) and (55)). Define the
shorthands

Lij(ω)
def.
=
√
Li(ω)2 + Lj(ω)2 and L̄ij

def.
=
√
L̄2
i + L̄2

j .

Observe that conditional on Ē, we have

‖Dgγ(ω)‖ 6
√
s(L̄2

0 + L̄2
1) =

√
sL̄01 (72)

All this section is done under the assumptions of Theorem 3, and we will use several times the following
from Lemma 3 and 4:

‖DgΥĒDg‖ 6 1 + ‖Id−DgΥDg‖+ ‖Dg(Υ−ΥĒ)Dg‖ 6 2 (73)
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B.1 Elementary concentration inequalities

To begin, we first recall some elementary concentration inequalities.

Lemma 6 (Matrix Bernstein for complex matrices). Let Y1, . . . , YM be a sequence of d1×d2 complex random
matrices with E[Y`] = 0, ‖Y`‖2→2 6 K for all ` = 1, . . . ,M and set

σ2 def.
= max

{∥∥∥∥∥
M∑
`=1

E(Y`Y
∗
` )

∥∥∥∥∥
2→2

,

∥∥∥∥∥
M∑
`=1

E(Y ∗` Y`)

∥∥∥∥∥
2→2

}
.

Then,

P

(∥∥∥∥∥ 1

M

M∑
`=1

Y`

∥∥∥∥∥
2→2

> t

)
6 2(d1 + d2) exp

(
− Mt2/2

σ2/M +Kt/3

)
.

Lemma 7 (Vector Bernstein for complex vectors [44]). Let Y1, . . . , YM ∈ Cd be a sequence of independent
random vectors such that E[Yi] = 0, ‖Yi‖2 6 K for i = 1, . . . ,M and set

σ2 def.
=

M∑
i=1

E ‖Yi‖22 .

Then, for all t > (2K + 6σ)/M ,

P

(∥∥∥∥∥ 1

M

M∑
i=1

Yi

∥∥∥∥∥
2

> t

)
6 28 exp

(
− Mt2/2

σ2/M + tK/3

)

B.2 Deviation between fĒ and f̂

Lemma 8 (Bound against a fixed vector). Let q ∈ Cs(d+1) and x ∈ X . For all u > 0 we have

PĒ
(∣∣∣(fĒ(x)− f̂(x))>Dgq

∣∣∣ > u ‖q‖
)
6 4 exp

(
−mu2

2L̄2
0 + 2

√
sL̄01L̄0u/3)

)
.

As a corollary,

PĒ
(∣∣∣(fĒ(x)− f̂(x))>Dgq

∣∣∣ > u ‖q‖Block

)
6 4 exp

(
−mu2

4s(2L̄2
0 +
√

2L̄01L̄0u/3)

)
.

Proof. Assume ‖q‖2 = 1 without lost of generality. We apply the classical (scalar) Bernstein inequality.

By defining Yk
def.
= ϕωk(x)γ(ωk)∗Dgq − EE [ϕω(x)γ(ω)>Dgq], we have (f̂(x) − fĒ(x))>Dgq = 1

m

∑m
k=1 Yk.

To apply Bernstein’s inequality, observe that for each k = 1, . . . ,m, EĒ [Yk] = 0, and conditional on event

Ē, we have |Yk| 6 2
√
sL̄01L̄0 and EE |Yk|2 = EE |ϕωk(x)|2 |γ(ωk)∗Dgq|2 6 L̄2

0 ‖DgΥĒDg‖ 6 2L̄2
0 by (73).

Therefore,

P

(∣∣∣∣∣ 1

m

m∑
k=1

Yk

∣∣∣∣∣ > u

)
6 4 exp

(
−mu2

2L̄2
0 + 2

√
sL̄01L̄0u/3)

)
.

The last inequality follows because ‖q‖Block > ‖q‖2 /
√

2s.

Lemma 9 (Uniform bound). Fix x ∈ X . For all u > 4
√
sL̄01L̄0

m + 6
√
sL̄01√
m

we have

PĒ
(∥∥∥Dg(fĒ(x)− f̂(x))

∥∥∥ > u
)
6 4 exp

(
−mu2

sL̄2
01 + 2

√
sL̄01L̄0u/3)

)
.
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Proof. We apply the vector Bernstein inequality (Lemma 7). By defining Yk
def.
= Dgγ(ωk)ϕωk(x)−EE [Dgγ(ωk)ϕωk(x)],

we have Dg(f̂(x) − fĒ(x)) = 1
m

∑m
k=1 Yk. Observe that for each k = 1, . . . ,m, EĒ [Yk] = 0, and conditional

on event Ē, we have |Yk| 6 2
√
sL̄01L̄0 and EE ‖Yk‖2 = EE |ϕωk(x)|2 ‖Dgγ(ωk)‖2 6 sL̄2

01. Therefore, for all

u > 4
√
sL̄01L̄0

m + 6
√
sL̄01√
m

,

P

(∥∥∥∥∥ 1

m

m∑
k=1

Yk

∥∥∥∥∥ > u

)
6 4 exp

(
−mu2

sL̄2
01 + 2

√
sL̄01L̄0u/3)

)
.

The last inequality follows because ‖q‖Block > ‖q‖2 /
√

2s.

B.3 Deviation between D2 [fĒ] and D2

[
f̂
]

Lemma 10 (Bound against a fixed vector). Let q ∈ Cs(d+1) and x ∈ X . For all u > 0 we have

PĒ
(∥∥∥D2

[
(fĒ − f̂)>Dgq

]
(x)
∥∥∥
x
> u ‖q‖

)
6 4d exp

(
−mu2

2L̄2
2 + 2

√
sL̄01L̄2u/3)

)
. (74)

as a corollary

PĒ
(∥∥∥D2

[
(fĒ − f̂)>Dgq

]
(x)
∥∥∥
x
> u ‖q‖Block

)
6 4d exp

(
−mu2

4s(2L̄2
2 +
√

2L̄01L̄2u/3)

)
. (75)

Proof. Assume ‖q‖ = 1 without lost of generality. Recalling the definitions of Sec. 4.1, we have∥∥∥D2

[
(fĒ − f̂)>Dgq

]
(x)
∥∥∥
x

=
∥∥∥g− 1

2
x H

(
(fĒ − f̂)>Dgq

)
(x)g

− 1
2

x

∥∥∥
We now apply Lemma 6. Define

Yk = (q>Dgγ(ωk))g
− 1

2
x H (ϕωk) (x)g

− 1
2

x − EĒ(q>Dgγ(ω))g
− 1

2
x H (ϕω) (x)g

− 1
2

x .

which are indeed symmetric matrices. We have EEYk = 0 and conditional on event E,

‖Yk‖ 6 2
√
sL̄01L̄2.

Furthermore, defining A = (q>Dgγ(ωk))g
− 1

2
x H (ϕωk) (x)g

− 1
2

x (which is symmetric), we have

0 � EĒ [YjY
∗
j ] � EĒ (AA∗)− EĒAEĒA∗ � EĒ (AA∗) � L̄2

2EĒ
∣∣q>Dgγ(ω)

∣∣2 Id � L̄2
2 ‖DgΥĒDg‖ Id � 2L̄2

2Id

and thus
∥∥EĒ [YjY

∗
j ]
∥∥ 6 2L̄2

2. Therefore, the matrix Bernstein’s inequality yields

P

(∥∥∥∥∥ 1

m

m∑
`=1

Y`

∥∥∥∥∥
2

> u

)
6 4d exp

(
−mu2

2L̄2
2 + 2

√
sL̄01L̄2u/3

)
.

The last inequality follows because ‖q‖Block > ‖q‖2 /
√

2s.

Lemma 11 (Uniform bound). Let x ∈ X . Let Bx
def.
=
{
v ∈ Cd ; ‖v‖x 6 1

}
and given v ∈ Bx, let gω(v)

def.
=

D2 [ϕω] (x)[v, v] ∈ C. Then, for all u > 4
√
sL̄01L̄2

m +
6
√

2L̄2
2√

m
,

P

(
sup
v∈Bx

∥∥∥∥∥ 1

m

m∑
k=1

Dgγ(ωk)gωk(v)− EĒDgγ(ω)gω(v)

∥∥∥∥∥ > u

)
6 exp

(
Cd log

(
sL̄01L̄2

u

)
− mu2

sL̄2
01B22 + 2

√
sL̄01L̄2u/3)

)
for some constant C.
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Proof. We use a covering net strategy: let V = {v1, . . . , vN} be a covering ε-net of Bx, for ε > 0 that we
will adjust later. Fix v ∈ V, and define Yk = Dgγ(ωk)gωk(v) − EĒDgγ(ωk)gωk(v) ∈ Cs(d+1) centered i.i.d.

variables. We have EĒYk = 0, |Yk| 6 2
√
sL̄01L̄2 and EĒ ‖Yk‖

2 6 EĒ |gω(v)|2 ‖Dgγ(ω)‖2 6 sL̄2
01B22. Hence

applying Lemma 7: for all u > 4
√
sL̄01L̄2

m + 6
√
B22sL̄01√
m

,

PĒ

(∥∥∥∥∥ 1

m

m∑
k=1

Yk

∥∥∥∥∥ > u

)
6 4 exp

(
−mu2

sL̄2
01B22 + 2

√
sL̄01L̄2u/3)

)
.

Next, we use the fact that for all ω∣∣∣Dgγ(ω)gω(v)−Dgγ(ω)gω(v′)
∣∣∣ 6 2

√
sL̄01L̄2 ‖v − v′‖x

Hence by choosing

|V| ∼
(√

sL̄01L̄2

u

)d
and using a union bound on |V| we conclude the proof.

B.4 Deviation between ΥĒ and Υ̂

Lemma 12 (Bound in spectral norm). For all u > 0, it holds that,

PĒ
(∥∥∥Dg(ΥĒ − Υ̂)Dg

∥∥∥ > u
)
6 4(d+ 1)s exp

(
− mu2

2sL̄2
01 + 2sL̄2

01u/3

)
. (76)

Proof. To bound this probability, we apply Lemma 6 with Yk
def.
= (Dgγ(ωk))(Dgγ(ωk))∗ − ΥĒ . We have,

conditional on event E:

EĒ [Yk] = 0, ‖Yk‖
(72)

6 2sL̄2
01.

Also,

0 � EĒ [YkY
∗
k ] = EĒ [Y ∗k Yk] = EĒ [‖Dgγ(ωk)‖2 (Dgγ(ωk))(Dgγ(ωk))∗]− (DgΥĒDg)2

� EĒ [‖Dgγ(ωk)‖2 (Dgγ(ωk))(Dgγ(ωk))∗] � sL̄2
01 ‖DgΥĒDg‖ Id

So, ‖E[Y ∗k Yk]‖ = ‖E[YkY
∗
k ]‖ 6 sL̄2

01 ‖DgΥĒDg‖ 6 2sL̄2
01 by (73). By choosing K = 2sL̄2

01 and σ2 =
msL̄2

01 ‖DgΥĒDg‖ in Lemma 6, we obtain

PĒ
(∥∥∥Dg(ΥĒ − Υ̂)Dg

∥∥∥ > u
)
6 4(d+ 1)s exp

(
− mu2

2sL̄2
01 + 2sL̄2

01t/3

)
.

Lemma 13. For i = 1, . . . , s, let Si = {s + (i − 1)d + 1, . . . , s + id}, q ∈ Cs(d+1). Then, for all u >
4
√
sL̄01L̄1

m + 6
√

2L̄1√
m

,

PĒ
(∥∥∥(Dg(ΥĒ − Υ̂)Dgq)Si

∥∥∥
2
> u ‖q‖2

)
6 28 exp

(
−mu2/2

2L̄2
1 + 2u

√
sL̄01L̄1/3

)
.

As a corollary, for all u > 4
√

2sL̄01L̄1

m + 12
√
sL̄1√
m

, we have

PĒ
(∥∥∥(Dg(ΥĒ − Υ̂)Dgq)Si

∥∥∥
2
> u ‖q‖Block

)
6 28 exp

(
−mu2

4s
(
2L̄2

1 +
√

2uL̄01L̄1/3
)) .
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Proof. Fix i ∈ {1, . . . , s}. Without loss of generality, assume that ‖q‖2 = 1. The claim of this lemma follows
by applying Lemma 7. Let

Yk = g
− 1

2
xi ∇ϕωk(xi)(γ(ωk)∗Dgq)− EĒ

(
g
− 1

2
xi ∇ϕωk(xi)(γ(ωk)∗Dgq)

)
∈ Cd,

and observe that (Dg(Υ̂−ΥĒ)Dgq)Si = 1
m

∑
k Yk. We apply Lemma 7. Observe that conditional on event

Ē, we have
‖Yk‖2 6 2 ‖q‖2 ‖Dgγ(ωk)‖2 ‖D1 [ϕωk ] (xi)‖xi 6 2

√
sL̄01L̄1

and

EĒ ‖Yk‖
2 6 EĒ |γ(ωk)∗Dgq|2

∥∥∥g− 1
2

xi ∇ϕωk(xi)
∥∥∥2

2
6 L̄2

1q
∗DgΥĒDgq 6 L̄2

1 ‖DgΥĒDg‖2 6 2L̄2
1

by (73). Therefore, for all u > 4
√
sL̄01L̄1

m + 6
√

2L̄1√
m

,

PĒ

(∥∥∥∥∥ 1

m

m∑
i=1

Yi

∥∥∥∥∥
2

> u

)
6 28 exp

(
− mu2/2

2L̄2
1 + 2u

√
sL̄01L̄1/3

)
The last inequality follows because ‖q‖Block > ‖q‖2 /

√
2s.

Lemma 14 (Bound in block norm). Let q ∈ Cs(d+1) be any vector. For all u > 4
√

2sL̄01L̄1

m + 12
√
sL̄1√
m

we have

PĒ
(∥∥∥Dg(ΥĒ − Υ̂)Dgq

∥∥∥
Block

> u ‖q‖Block

)
6 32s exp

(
−mu2

4s
(
2L̄2

01 +
√

2uL̄01L̄1/3
)) (77)

Proof. Let S0
def.
= {1, . . . , s} and Sj

def.
= {s+ (j − 1)d+ 1, . . . , s+ jd} for j = 1, . . . , s. By the union bound

PĒ
(∥∥∥Dg(ΥĒ − Υ̂)Dgq

∥∥∥
Block

> u ‖q‖Block

)
6

s∑
j=1

PĒ
(∣∣∣(Dg(ΥĒ − Υ̂)Dgq)j

∣∣∣ > u ‖q‖Block

)
+

s∑
j=1

PĒ
(∥∥∥(Dg(ΥĒ − Υ̂)Dgq)Sj

∥∥∥
2
> u ‖q‖Block

)
(78)

To bound the first sum, observe that for j = 1, . . . , s, (Dg(Υ− Υ̂)Dgq)j = (Dg(f(xj)− f̂(xj)))
>q and apply

Lemma 8. The second sum can be bounded by applying Lemma 13.

B.5 Proof of Proposition 3

We fix a particular j = 1, . . . , s, do the proof for η̂j , then use a union bound to conclude. As before, it
is enough to establish the probability that η̂j satisfies the properties of Proposition 3 conditional on event
Ē. We proceed in the same way as in the main proof of the golfing scheme: first we show that η̂j satisfies
the desired property on a finite grid, then we bound ‖pj‖, and finally we use the latter to extend the non-
degeneracy to the whole space. As mentioned in the paper, the first step is considerably simpler and more
direct than the golfing scheme, since the “sign” vector uj is of norm 1.

Deviation bounds on a grid. Similar to our previous argument, we will bound the deviation between
η̂j and ηj on a finite grid Gfar ⊂ X far whose precision we will later adjust, and between D2 [η̂j ] and D2 [ηj ]
on Gnear ⊂ X near. We will show that

∀x ∈ Gfar, |ηj(x)− η̂j(x)| 6 ε̄0

16

∀x ∈ Gnear, ‖D2 [ηj ] (x)−D2 [η̂j ] (x)‖x 6
ε̄2

32
.

44



Let q̂j
def.
= D−1

g Υ̂−1uj and qj
def.
= D−1

g Υ−1uj . Note that qj is deterministic and ‖qj‖ 6 2 for all j. Recall

also that ηj = q>j Dgf(x) and η̂j = q̂>j Dgf̂(x). For x ∈ Gfar,

|ηj(x)− η̂j(x)| 6
∣∣∣q>j Dg(f(x)− f̂(x))

∣∣∣+
∥∥∥D−1

g (Υ−1 − Υ̂−1)D−1
g

∥∥∥∥∥∥Dgf̂(x)
∥∥∥

6
∣∣∣q>j Dg(f(x)− f̂(x))

∣∣∣+ 8
∥∥∥Dg(Υ− Υ̂)

∥∥∥∥∥∥Dgf̂(x)
∥∥∥

where the last line is valid with probability 1− ρ by Lemma 3 and (61). Similarly,

‖D2 [ηj ] (x)−D2 [η̂j ] (x)‖x

6
∥∥∥D2

[
q>j Dg(f − f̂)

]
(x)
∥∥∥
x

+
∥∥∥D−1

g (Υ−1 − Υ̂−1)D−1
g

∥∥∥ sup
‖v‖x61

∥∥∥∥∥ 1

m

m∑
k=1

Dgγ(ωk)D2 [ϕωk ] (x)[v, v]

∥∥∥∥∥
6
∥∥∥D2

[
q>j Dg(f − f̂)

]
(x)
∥∥∥
x

+ 8
∥∥∥Dg(Υ− Υ̂)

∥∥∥ sup
‖v‖x61

∥∥∥∥∥ 1

m

m∑
k=1

Dgγ(ωk)D2 [ϕωk ] (x)[v, v]

∥∥∥∥∥
where again, the last line is valid with probability 1 − ρ by Lemma 3 and (61). Therefore, we simply have
to show that with probability at least 1− ρ,

(i) For j = 1, . . . , s,
∣∣∣q>j Dg(fĒ(x)− f̂(x))

∣∣∣ 6 ε̄0/32 for all x ∈ Gfar.

(ii) For j = 1, . . . , s,
∥∥∥D2

[
q>j Dg(f − f̂)

]
(x)
∥∥∥
x
6 ε̄2/64 for all x ∈ Gnear.

(iii)
∥∥∥Dgf̂(x)

∥∥∥ 6 2B0 for all x ∈ Gfar.

(iv) sup‖v‖x61

∥∥∥ 1
m

∑m
k=1Dgγ(ωk)D2 [ϕωk ] (x)[v, v]

∥∥∥ 6 2B2 for all x ∈ Gnear.

(v)
∥∥∥Dg(Υ− Υ̂)Dg

∥∥∥ 6 min
(

ε̄0
512B0

, ε̄2
1024B2

)
.

By applying Lemma 4 and recalling our choice of m, (i) follows by Lemma 8, (ii) follows by Lemma 10, (iii)
follows by Lemma 9, (iv) follows by Lemma 11, and (v) follows by Lemma 12.

Bound on pj. By the same computations as in Section 6.5, we have η̂j(x) = (Υ̂−1uj)
>f̂(x) = Φ∗pj with

pj = 1√
m

(
γ(ωi)

∗Υ̂−1uj

)m
i=1

. Therefore,

‖pj‖22 =
1

m

m∑
i=1

u∗j Υ̂
−1γ(ωi)γ(ωi)

∗Υ̂−1uj = u∗j Υ̂
−1uj

6
∥∥∥DgΥ̂−1D−1

g

∥∥∥ 6 4

with probability 1− ρ, by (61).

Extension to the whole domain. We proceed as in Section 6.4. By the same computations, we obtain:
for any x ∈ X far and x′ ∈ Gfar,

|η̂j(x)| 6 |ηj(x′)|+ |η̂j(x′)− ηj(x′)|+ |η̂j(x)− η̂j(x′)| 6 1− ε̄0

4
+
ε̄0

16
+ L̄1 ‖pj‖ δg(x, x′)

and therefore, we choose

∣∣Gfar
∣∣ ∼ (RX L̄1

ε̄0

)d
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For the second covariante derivative, as in Section 6.4 we get: for all x ∈ X near
j and x′ ∈ Gnear

j ,∥∥∥sign(aj)D2 [η̂j ] (x)−K(02)(xj , x)
∥∥∥
x

6 ‖D2 [η̂j ] (x)−D2 [η̂j ] (x′)[τx→x′ ·, τx→x′ ·]‖x
+ ‖D2 [η̂j ] (x′)[τx→x′ ·, τx→x′ ·]−D2 [ηj ] (x′)[τx→x′ ·, τx→x′ ·]‖x
+
∥∥∥sign(aj)D2 [ηj ] (x′)[τx→x′ ·, τx→x′ ·]−K(02)(xj , x

′)[τx→x′ ·, τx→x′ ·]
∥∥∥
x

+
∥∥∥K(02)(xj , x

′)[τx→x′ ·, τx→x′ ·]−K(02)(xj , x)
∥∥∥
x

6
ε̄2

32
+
ε̄2

16
+
ε̄2

64
+ L̄3(L̄0 + ‖pj‖)dg(x, x′)

and similarly for ` 6= j, for all x ∈ X near
` and x′ ∈ Gnear

` ,

‖D2 [η̂j ] (x)‖x 6 ‖D2 [η̂j ] (x)−D2 [η̂j ] (x′)[τx→x′ ·, τx→x′ ·]‖x
+ ‖D2 [η̂j ] (x′)[τx→x′ ·, τx→x′ ·]−D2 [ηj ] (x′)[τx→x′ ·, τx→x′ ·]‖x + ‖D2 [ηj ] (x′)[τx→x′ ·, τx→x′ ·]‖x
6
ε̄2

32
+
ε̄2

16
+ L̄3 ‖pj‖ dg(x, x′)

and therefore we conclude by setting

|Gnear| ∼ s
(
rnearL̄3L̄0

ε̄2

)d
The final bound on m is satisfied with the one we obtained previously (65).

C Application: Discrete Fourier sampling

In this section, we consider the case of sampling Fourier coefficients as described in [15]. Let f ∈ N and

X ∈ Td the d-dimensional torus. Let Ω =
{
ω ∈ Zd ; ‖ω‖∞ 6 f

}
, ϕω(x)

def.
= ei2πω>x, and Λ(ω) =

∏d
j=1 g(ωj)

where g(j) = 1
f

∑min(j+f,f)
k=max(j−f,−f)(1− |k/f |)(1− |(j − k)/f |).

The kernel and Fisher metric The associated kernel is the multivariate Jackson kernel K(x, x′) =∏d
i=1 κ(xi − x′i), where

κ(x)
def.
=

 sin
((

f
2 + 1

)
πx
)

(
f
2 + 1

)
sin(πx)

4

,

with constant metric tensor

gx = Cf Id and dg(x, x′) = C
1
2

f ‖x− x
′‖2 .

where Cf
def.
= −κ′′(0) = π2

3 f(f+4) ∼ f2. Note that K(ij) = ∇i1∇
j
2K and

∥∥K(ij)
∥∥
x,x′

= C
−(i+j)/2
f

∥∥∥∇i1∇j2K∥∥∥.

Moreover, since the metric is constant, we have ‖·‖x = C
1
2

f ‖·‖ for all x. The domain diameter is RX = C
1
2

f d
1
2 .

Sampling bounds Suppose that f > 128. The rest of this section consists of Lemmas which bound the
parameters in Theorem 3: We show in Lemma 15 that by choosing rnear = 1

8
√

2
, for all dg(x, x′) 6 rnear,

we can set ε̄2 = (1− 6rnear
2)/(1− rnear

2/(2− rnear
2)− rnear

2) > 0.941. In Lemma 16, we show that for all
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dg(x, x′) > rnear, |K(x, x′)| 6 1 − 1/(83 · 2), so we can set ε̄0
def.
= 0.00097. Moreover, the uniform bounds

given in Lemma 18 imply that
min(ε̄0, ε̄2)

32 maxi,j Bij
= O(d−

1
2 ).

So, for h = O(d−
1
2 ), by Lemma 17, we have W (h, s) = O(s

1
4 d

1
2 ). Gradient bounds are computed in Section

C.6.
To summarise, Theorem 3 is applicable with:

(i) B00 = B02 = B12 = O(1), B01 = O(d
1
2 ), B22 = O(d) and Cg = 0.

(ii) rnear = 1/(8
√

2), ε̄0 = 0.00097, ε̄2 = 0.941.

(iii) ∆ = O(d
1
2 s

1
4
max).

(iv) L̄i = O(di/2).

and

m & d2s

(
log(s) log

(
s

ρ

)
+ log

(
(fd)d

ρ

))
.

C.1 Preliminaries: properties of the univariate kernel

We first summarise in Section C.1 some key properties of the univariate Jackson kernel κ when f > 128
which were derived in [15].

From [15, Equations (2.20)-(2.24) and (2.29)], for all t ∈ [−1/2, 1/2] and ` = 0, 1, 2, 3:

1− Cf
2
t2 6 κ(t) 6 1− Cf

2
t2 + 8

(
1 + 2/f

1 + 2/(2 + f)

)2

C2
f t

4 6 1− Cf
2
t2 + 8C2

f t
4

|κ′(t)| 6 Cf t, |κ′′(t)| 6 Cf , |κ′′′(t)| 6 3

(
1 + 2/f

1 + 2/(2 + f)

)2

C2
f t 6 12C2

f t

κ′′ 6 −Cf +
3

2

(
1 + 2/f

1 + 2/(2 + f)

)2

C2
f t

2 6 −Cf + 6C2
f t

2.

(79)

By [15, Lemma 2.6],

∣∣∣κ(`)(t)
∣∣∣ 6


π`H`(t)

(f+2)4−`t4
, t ∈ [ 1

2f ,
√

2
π ]

π`H∞`
(f+2)4−`t4

, t ∈ [
√

2
π ,

1
2 ),

where H∞0
def.
= 1, H∞1

def.
= 4, H∞2

def.
= 18 and H∞3

def.
= 77, and H`(t)

def.
= α4(t)β`(t), with

α(t)
def.
=

2

π(1− π2t2

6 )
, β̄(t)

def.
=

α(t)

ft
=

2

ftπ(1− π2t2/6)

and β0(t)
def.
= 1, β1(t)

def.
= 2 + 2β̄(t), β2

def.
= 4 + 7β̄(t) + 6β̄(t)2 and β3(t)

def.
= 8 + 24β̄ + 30β̄(t)2 + 15β̄(t)3. Let us

first remark that β̄ is decreasing on I
def.
= [ 1

2f ,
√

2
π ], so

∣∣β̄(t)
∣∣ 6 ∣∣β̄(1/(2f))

∣∣ ≈ 1.2733, and a(t) 6 a(
√

2/π) = 3
π

on I. Therefore, on I, H0(t) 6 3
π , H1(t) 6 3.79, H2(t) 6 18.83 and H3(t) 6 98.26, and we can conclude that

on [ 1
2f ,

1
2 ), we have ∣∣∣κ(`)(t)

∣∣∣ 6 π`H∞`
(f + 2)4−`t4
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where H∞0 = 1, H∞1
def.
= 4, H∞2

def.
= 19, H∞3

def.
= 99. Combining with (79), we have∥∥∥κ(`)

∥∥∥
∞

6 κ∞` (80)

where κ∞0
def.
= 1, κ∞2

def.
= Cf ,

κ∞1
def.
=
√
Cf max

(
2π4

( 1
2 + 1

f )3

f√
Cf

,

√
Cf

2f

)
= O(

√
Cf )

κ∞3
def.
= (Cf )3/2 max

 99π3

( 1
2 + 1

f )

(
2f√
Cf

)4

,
6
√
Cf

f

 = O((Cf )3/2).

Finally, given p ∈ (0, 1),

(f + 2)4t4 > (1 + p(f + 2)2t2)2, ∀ t > 1√
(1− p)(f + 2)

.

Choosing p = 1
2 and using (f + 2)2 = ( 3

π2Cf + 4) > 3
π2Cf , we have∣∣∣κ(`)(t)

∣∣∣ 6 κ∞`
(1 + 3

2π2Cf t2)2
, ∀ t2 >

2π2

3Cf
, (81)

In the following sections, we will repeatedly make use of (79), (80) and (81).

C.2 Notation

For notational convenience, write ti
def.
= xi − x′i, κi

def.
= κ(ti), κ

′
i

def.
= κ′(ti), and so on. Let

Ki
def.
=

d∏
k=1
k 6=i

κk, Kij
def.
=

d∏
k=1
k 6=i,j

κk and Kij`
def.
=

d∏
k=1
k 6=i,j,`

κk.

With this, we have:

∂1,iK(x, x′) = κ′iKi

∂1,i∂2,iK(x, x′) = − κ′′iKi, and ∀i 6= j, ∂1,i∂2,jK(x, x′) = −κ′iκ′jKij .

Where convenient, we sometimes write K(t) = K(x − x′) def.
= K(x, x′). Given a symmetric matrix M , we

write λmin(M) to denote the smallest eigenvalue of M .

C.3 Bounds when ‖t‖ is small

Lemma 15. Suppose that Cf ‖x− x′‖22 6 c with c > 0 such that

ε
def.
= (1− 6c)

(
1− c

2− c

)
− c > 0

Then, −〈K(02)(x− x′)q, q〉 > ε ‖q‖x.
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Proof. Let q ∈ Rd, and note that

−〈∇2
2Kq, q〉 = −

∑
i

qiκ′′iKi − κ′i
∑
j 6=i

qjκ
′
jKij

 qi

= −

∑
i

q2
i κ
′′
iKi −

∑
i

qiκi
∑
j 6=i

qjκjKij


> ‖q‖2x

1

Cf

−max
i
{κ′′iKi} −

∑
j

∣∣κ′j∣∣2
 .

(82)

We first consider κ′′iKi: By applying (79), we obtain

κ′′i 6 −Cf + 6C2
f t

2
i ,

Ki >
∏
j 6=i

(
1− Cf

2
t2i

)
> 1− Cf

2
‖t‖22 −

(
Cf
2
‖t‖22

)3

−
(
Cf
2
‖t‖22

)5

− · · ·

> 1−
Cf ‖t‖22

2(1− Cf
2 ‖t‖

2
2)
.

and hence,

κ′′iKi 6
(
−Cf + 6C2

f ‖t‖
2
2

)(
1−

Cf ‖t‖22
2(1− Cf

2 ‖t‖
2
2)

)
For the second term in (82), again, by applying (79), we obtain∑

j

∣∣κ′j∣∣2 6 C2
f ‖t‖

2
2 .

Therefore, for ‖q‖x = 1, we have

−〈K(02)(x− x′)q, q〉 >
(

1− 6Cf ‖t‖22
)(

1−
Cf ‖t‖22

2(1− Cf
2 ‖t‖

2
2)

)
− Cf ‖t‖22

Lemma 16. Assume that 1

8
√
Cf

> ‖t‖2 Then,

K(t) 6 1− Cf
4
‖t‖22 + 16C2

f ‖t‖
4
2 .

Consequently, for all

0 < c 6
1

8
√

2Cf
,

and all t such that ‖t‖2 > c,

|K(t)| 6 1− Cf
8
c2.

Proof. First note that by (79),

|κ(u)| 6 1− Cf
2
u2 + 32C2

fu
4 = 1− u2g(u)
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where

g(u)
def.
= Cf

(
1

2
− 32Cfu

2

)
,

and note that g(u) ∈ (0,
Cf
2 ) for u ∈ (0, 1/(8

√
Cf ). So, writing t = (ti)

d
i=1 and gj

def.
= g(tj), we have

K(t) =

d∏
j=1

κ(ti) 6
d∏
j=1

(
1− t2j · g(tj)

)
= 1−

d∑
j=1

t2jgj +
∑
j 6=k

t2j t
2
kgjgk −

∑
j 6=k 6=`

t2j t
2
kt

2
`gjgkg` + · · ·

= 1 +

d∑
`=1

∑
j∈J`

(−1)`
∏̀
i=1

(t2jigji),

where J`
def.
=
{
j ∈ Nd ; j 6 d, all entries of j are distinct

}
. Note that for odd integers `,

−
∑
j∈J`

∏̀
i=1

(t2jig
2
ji) +

∑
j∈J`+1

`+1∏
i=1

(t2jigji) 6 −
∑
j∈J`

∏̀
i=1

(t2jigji) +

∑
j∈J`

∏̀
i=1

(t2jig
2
ji)

( d∑
k=1

t2kgk

)

6 −

∑
j∈J`

∏̀
i=1

(t2jig
2
ji)

(1− Cf
2
‖t‖22

)
< 0

since
(

1− Cf
2 ‖t‖

2
2

)
> 0. Also,

d∑
j=1

t2jgj 6
Cf
2

d∑
j=1

t2j < 1,

by assumption. So,

K(t) 6 1−
d∑
j=1

t2jgj +
∑
j 6=k

t2j t
2
kgjgk

6 1−
d∑
j=1

t2jgj +
1

2

∑
j

t2jgj

2

6 1− 1

2

d∑
j=1

t2jgj

6 1− Cf
2

1

2

d∑
j=1

t2j − 32Cf

d∑
j=1

t4j

 6 1− Cf
4
‖t‖22 + 16C2

f ‖t‖
4
2 .

Finally, observe that the function

q(z)
def.
=

Cf
4
z2 − 16C2

fz
4

is positive and increasing on the interval [0, 1

8
√

2Cf
]. So, for t satisfing

c 6 ‖t‖2 6
1

8
√

2Cf
, (83)

we have |K(t)| 6 1− q(c) 6 1− Cf
8 c

2. Finally, since |K(t)| is decreasing as t increases, we trivially have that
|K(t)| 6 1− q(c) for all t with ‖t‖2 > c.
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C.4 Bounds when ‖t‖ is large

Lemma 17. Let i, j ∈ {0, 1, 2} with i + j 6 3. Let Ā >
√

4π2

3 and ‖t‖2 > Ā
√
ds

1/4
max/

√
Cf . Then, we have∥∥K(ij)(t)

∥∥
x,x′

6 d
i+j−4

2 (Ā4smax)−1.

Proof. Write t = (tj)
d
j=1. To bound K(t) =

∏d
j=1 κ(tj), we want to make use of the bounds on κ∞j from

(81). We can do this for each tj such that |tj | >
√

2π2

3Cf
. Note that there exists at least one such tj since

‖t‖∞ > ‖t‖2 /
√
d > Ās

1/4
max/

√
Cf >

√
2π2

3Cf
. If {|tj |}kj=1 ⊂ [0,

√
2π2

3Cf
) for k 6 d− 1, then

k
2π2

3Cf
+

d∑
j=k+1

t2j > ‖t‖
2
2 >

Ā2ds
1/2
max

Cf
,

which implies that
∑d
j=k+1 t

2
j >

1
Cf

(
Ā2ds

1/2
max − 2π2(d−1)

3

)
> Ā2ds1/2

max

2Cf
, by our assumptions on Ā. Therefore,

we may assume that we have some d > p > 1 such that {bj}pj=1 ⊆ {tj} with |bj | >
√

2π2

3Cf
and ‖b‖2 >

Ā
√
d 4
√
smax√

2Cf
. Observe that

p∏
j=1

(1 +
3Cf
2π2

b2j ) > 1 +
3Cf
2π2

p∑
j=1

b2j = 1 +
3Cf
2π2
‖b‖22 > 1 +

3

4π2
Ā2d
√
smax.

So, by applying the fact that |κ| 6 1, κ∞0 = 1 and (81), we have

|K(t)| 6
p∏
j=1

|κ(bj)| 6
p∏
j=1

1(
1 +

3Cf
2π2 b2j

)2 6
1(

1 + 3
4π2 Ā2d

√
smax

)2 .
For |κ′iKi|, if i 6∈

{
j ; |tj | >

√
2π2

3Cf

}
, then

|κ′iKi| 6 ‖κ′i‖∞
p∏
j=1

|κ(bj)| 6
‖κ′i‖∞(

1 + 3
4π2 Ā2d

√
smax

)2 ,
and otherwise, we have |κ′iKi| 6 |κ′(ti)|

∏
j 6=i |κ(bj)| 6 κ∞1

(1+ 3
4π2 Ā

2d
√
smax)

2 , In a similar manner, writing

V
def.
=
(
1 + 3

4π2 Ā
2d
√
smax

)−2
, we can deduce that

|κ′iKi| 6 κmax
1 V, |κ′′iKi| 6 κ∞2 V,

∣∣κ′iκ′jKij

∣∣2 6 (κ∞1 )2V

|κ′′′i Ki|
3
6 κ∞3 V,

∣∣κ′′i κ′jKij

∣∣3 6 κ∞2 κ
max
1 V,

∣∣κ′iκ′jκ′`Kij`

∣∣ 6 (κmax
1 )3V.

Therefore,

∥∥∥K(10)
∥∥∥
x,x′

=
1√
Cf
‖∇1K‖ 6

1√
Cf

√√√√ d∑
j=1

∣∣κ′jKj

∣∣2 6
κ∞1√
Cf

V
√
d .

1

Ā4d3/2smax
.

Using Gershgorin theorem, we have∥∥∇2
2K(x, x′)

∥∥ 6 max
16i6d

{|κ′′iKi|+ |κ′i|
∑
j 6=i

∣∣κ′j∣∣ |Kij |}

51



and hence, ∥∥∥K(02)
∥∥∥
x′

=
1

Cf

∥∥∇2
2K
∥∥ 6

1

Cf

d
max
i=1
{|κ′′iKi|+ |κ′i|

∑
j 6=i

∣∣κ′jKij

∣∣}
6

1

Cf
V
(
κ∞2 + (κ∞1 )2(d− 1)

)
6

max{κ∞2 , (κ∞1 )2}
Cf

V d .
1

Ā4dsmax
.

Note also that
∥∥K(11)

∥∥
x,x′

=
∥∥K(02)

∥∥
x′

. Finally, since

∥∥∂1,i∇2
2K(x, x′)

∥∥ 6 max

{
|κ′′′i Ki|+ |κ′′i |

∑
j 6=i

∣∣κ′j∣∣ |Kij | ,

max
j 6=i
{
∣∣κ′′j κ′iKij

∣∣+
∣∣κ′jκ′′iKij

∣∣+ |κ′i|
∣∣κ′j∣∣ ∑

l 6=i,j

|κ′l| |Kij`|}

}
,

we have ∥∥∥K(12)
∥∥∥
x,x′

=
1

C
3/2
f

∥∥∇1∇2
2K
∥∥

6
1

C
3/2
f

√
dV max

(
κ∞3 + κ∞2 κ

∞
1 (d− 1), 2κ∞2 κ

∞
1 + (d− 1)(κ∞1 )3

)
6 d3/2 max{κ∞3 , κ∞1 κ∞2 , (κ∞1 )3} 1

C
3/2
f

V .
1

Ā4d1/2smax

C.5 Uniform bounds

Lemma 18. If rnear ∼ 1/
√
Cf , then B0 = O(1), B01 = O(

√
d), B02 = B12 = O(1) and B22 = O(d).

Proof. We have |K| 6 1, and

‖∇K‖2 6
∑
i

|κi|2 |Ki|2 6 d(κ∞1 )2 . Cfd,

so B01 = O(
√
d).

From (82), for all ‖q‖ = 1,

〈∇2
2K(t)q, q〉 6 max

i
|κ′′i | ‖q‖

2
2 + ‖q‖22

∑
i

|κi|2 6 Cf + C2
f ‖t‖

2
= O(Cf ),
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for ‖t‖ . 1/
√
Cf . So, since rnear 6 2/

√
Cf ,

∥∥K02(t)
∥∥ 6 2

def.
= B02. For the bound on B12:

∥∥∥K(12)
∥∥∥
x,x′

= sup
‖q‖=‖p‖=1

1

C
3/2
f

(∑
k

∑
k 6=i

∂1,i

(
∂2

2,kKpiq
2
k + ∂1,i∂2,i∂2,kKpiqiqk

)
+
∑
i

∑
k

∑
j

∂1,i∂2,j∂2,kpipjpk +
∑
i

∑
j 6=i

∂1,i∂2,i∂2,jKpiqiqj +
∑
i

∂1,i∂
2
2,jKpiq

2
i

)

= sup
‖q‖=‖p‖=1

1

C
3/2
f

(∑
k

∑
k 6=i

κ′iκ
′′
kKikpiq

2
k + κ′′i κ

′
kKikpiqiqk

+
∑
i

∑
k

∑
j

κ′iκ
′
kκ
′
jKijkpipjpk +

∑
i

∑
j 6=i

κ′′i κ
′
jKijpiqiqj +

∑
i

κ′iκ
′′
jKijpiq

2
i

)

6
1

C
3/2
f

(
3 ‖κ′′‖∞

√∑
i

|κ′k|
2

+

(∑
i

|κ′k|
2

)3/2

+ ‖κ′‖∞ ‖κ
′′‖∞

)

6
1

C
3/2
f

(
3C2

f ‖t‖+ C3
f ‖t‖

3
+O(C

3/2
f )

)
= O(1)

for ‖t‖ 6 1/C
1/2
f .

C.6 Gradient bounds

The derivatives of the random features are uniformly bounded with∥∥∇jϕω(x)
∥∥ = ‖ω‖j 6 f jdj/2 ∼ Cj/2f dj/2 (84)

So, we can set L̄i = O(di/2) for i = 0, 1, 2. For L̄3, the condition (44) is simply

C−1
f

∥∥∇2ϕω(x)−∇2ϕω(x′)
∥∥ 6 L̄3C

1
2

f ‖x− x
′‖ ,

so L̄3 = O(d3/2) by (84).

D Application: Continuous Fourier sampling with the Gaussian
kernel

In this section, we consider the case of continuous Fourier sampling with Gaussian frequencies, which
may appear for instance in sketched Gaussian mixture learning [39]. Let X ⊂ Rd be any bounded subset of

Rd. Let Ω = Rd, ϕω(x)
def.
= eiω>x, and Λ(ω) = N (0,Σ−1), for a known covariance matrix Σ.

The kernel and Fisher metric The associated kernel is the Gaussian kernel

K(x, x′) = exp

(
−1

2
‖x− x′‖2Σ−1

)
with constant metric tensor

gx = Σ−1 and d(x, x′) = ‖x− x′‖Σ−1 =
∥∥∥Σ−

1
2 (x− x′)

∥∥∥
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Sampling bounds The rest of this section consists of Lemmas which bound the parameters in Assumptions

1 and 2. We show that by choosing rnear = 1√
2
, we obtain ε̄2 = 1

2e
− 1

4 and ε̄0
def.
= 1− e− 1

4 . Moreover, Lemma

21 gives uniform bounds in Bij = O(1) and, for h = O(1), W (h, s) = O(
√

log s + 1). Gradient bounds are
computed in Section D.5.

D.1 Properties of the kernel

Notations. For simplicity define t = x − x′, b an abuse of notations KΣ(t) = exp
(
− 1

2 ‖t‖
2
Σ−1

)
and for

u ∈ R, κ(u) = exp
(
− 1

2u
2
)
. Denote by {ei} the canonical basis of Rd, and by fi = Σ−1ei the ith row of Σ−1.

Gradients of the kernel. We have the following:

∇KΣ(t) = − Σ−1tKΣ(t)

∇2KΣ(t) =
(
−Σ−1 + Σ−1tt>Σ−1

)
KΣ(t)

∂i∇2KΣ(t) =
(
Σ−1tf>i + fit

>Σ−1
)
KΣ(t)− (t>fi)∇2KΣ(t)

∂ij∇2KΣ(t) =
(
−Σ−1((t>fj)tf

>
i + (t>fi)tf

>
j ) + (fif

>
j + fjf

>
i )
)
KΣ(t)− fij∇2KΣ(t)− (t>fi)∂j∇2KΣ(t)

Then we observe that for any q > 1 the function fq(r) = rqe−
1
2 r

2

defined on R+ is increasing on [0,
√
q]

and decreasing after, and its maximum value is fq(
√
q) =

(
q
e

)q/2
. Furthermore, it is easy to see that we have

fq(r) = rqe−r
2/2 6

(
2q
2

) q
2 e−r

2/4 and therefore f(r) 6 ε if r > 2
(
log
(

1
ε

)
+ q

2 log
(

2q
e

))
.

D.2 Bounds when ‖t‖ is small

Lemma 19. For all dg(x, x′) 6 rnear
def.
= 1√

2
and all v ∈ TxM, we have −K(02)(x, x′)[v, v] > ε̄2 ‖v‖2x where

ε̄2 = 1
2e
− 1

4 .

Proof. From the derivations above we haveK(02)(x, x′)[v, v] = v>∇2
2KΣ(t)v = (−1+dg(x, x′)2)κ(dg(x, x′)) ‖v‖2x 6

(rnear
2 − 1)κ(rnear) ‖v‖x.

D.3 Bounds when ‖t‖ is large

Lemma 20. For all dg(x, x′) > rnear we have |K(x, x′)| 6 1− ε̄0, where ε̄0
def.
= 1− e− 1

4 , and for h = O(1),
W (h, s) = O(

√
log s+ 1).

Proof. For the first inequality we have |K| 6 κ(rnear) = 1− (1− e− 1
4 ).

Then, from (27), the fact that the metric tensor is constant, and the expressions for the derivatives of
the kernel above, it is immediate that∥∥∥K(10)(x, x′)

∥∥∥
x,x′

=
∥∥∥K(01)(x, x′)

∥∥∥
x,x′

=
∥∥∥Σ

1
2∇KΣ(t)

∥∥∥
1

= d(x, x′)κ(d(x, x′)) = f1(d(x, x′))∥∥∥K(02)(x, x′)
∥∥∥
x,x′

=
∥∥∥K(11)(x, x′)

∥∥∥
x,x′

=
∥∥∥Σ

1
2∇2KΣ(t)Σ

1
2

∥∥∥
2

= (d(x, x′)2 + 1)κ(d(x, x′)) = f2(d(x, x′)) + f0(d(x, x′))

For K(12), again since the metric tensor g is constant, we observe that

[q]K(12)(x, x′)[v1, v2] = v>1

(
d∑
i=1

qi
(
∂i∇2KΣ(t)

))
v2
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and ∥∥∥K(12)(x, x′)
∥∥∥ = sup∥∥∥Σ−

1
2 q

∥∥∥
2
61,

∥∥∥Σ−
1
2 vi

∥∥∥
2
61

∣∣∣∣∣v>1
(

d∑
i=1

qi
(
∂i∇2KΣ(t)

))
v2

∣∣∣∣∣
= sup
‖q‖261,‖vi‖261

∣∣∣∣∣v>1
(

d∑
i=1

(Σ
1
2 q)iΣ

1
2

(
∂i∇2KΣ(t)

)
Σ

1
2

)
v2

∣∣∣∣∣
= sup
‖q‖=1

∥∥∥∥∥Σ
1
2

(
d∑
i=1

(Σ
1
2 q)i∂i∇2KΣ(t)

)
Σ

1
2

∥∥∥∥∥
2

.

Using,
∑
i(Σ

1
2 q)ifi = Σ−

1
2 q, we observe that

Σ
1
2

(∑
i

(Σ
1
2 q)iΣ

−1tf>i

)
Σ

1
2 = Σ−

1
2 t

(∑
i

q>Σ
1
2 eie

>
i Σ−

1
2

)
= Σ−

1
2 tq>

Σ
1
2

∑
i

(Σ
1
2 q)i(t

>fi)∇2KΣ(t)Σ
1
2 = (q>Σ−

1
2 t)
(

Σ
1
2∇2

2K(x, x′)Σ
1
2

)
Hence at the end of the day∥∥∥K(12)(x, x′)

∥∥∥ 6 (3d(x, x′) + d(x, x′)3)κ(d(x, x′)) = 3f1(d(x, x′)) + f3(d(x, x′))

Therefore, for h = O(1), using the properties of the functions fq it is immediate that W (h, s) = O(
√

log s+
1).

D.4 Uniform bounds

Lemma 21. For (i, j) ∈ {0, 1, 2}, we have Bij = O(1).

Proof. The bounds for i + j 6 3 are immediate using the identities in the proof of Lemma 20 and the
properties of the functions fq.

By the same reasoning we have∥∥∥K(22)(x, x′)
∥∥∥ = sup

‖q1‖=1,‖q2‖=1

∥∥∥∥∥∥Σ
1
2

∑
ij

(Σ
1
2 q1)i(Σ

1
2 q2)j∂ij∇2KΣ(t)Σ

1
2

∥∥∥∥∥∥
and we have

Σ
1
2

∑
ij

(Σ
1
2 q1)i(Σ

1
2 q2)jΣ

−1(t>fj)(tf
>
i )

Σ
1
2 = (q>2 Σ−

1
2 t)Σ−

1
2 tq>1

Σ
1
2

∑
ij

(Σ
1
2 q1)i(Σ

1
2 q2)jfif

>
j

Σ
1
2 = q1q

>
2

Σ
1
2

∑
ij

(Σ
1
2 q1)i(Σ

1
2 q2)jfij

Σ
1
2 = q1q

>
2

v1Σ
1
2

∑
ij

(Σ
1
2 q1)i(Σ

1
2 q2)j(t

>fi)∂j∇2KΣ(t)

Σ
1
2 v2 = (q>1 Σ−

1
2 t)[q2]K(12)(x, x′)[v1, v2]

Hence ∥∥∥K(22)(x, x′)
∥∥∥ 6 [3f0 + 6f2 + f4](d(x, x′))

and B22 = O(1).
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D.5 Gradient bounds

For j = {0, 1, 2}, we have Dj [ϕω] (x)[q1, . . . , qj ] =
(∏

i ω
>qi
)
ϕω(x) and therefore

‖Dj [ϕω] (x)‖x 6
∥∥∥Σ

1
2ω
∥∥∥j

2

And then, from (44), using τx→x′ = Id,

‖D2 [ϕω] (x)−D2 [ϕω] (x′)[τx→x′ ·, τx→x′ ·]‖x =
∥∥∥Σ

1
2

(
∇2

2ϕ(x′)−∇2
2ϕ(x)

)
Σ

1
2

∥∥∥
2

=
∥∥∥Σ

1
2ω
∥∥∥2

2
|ϕω(x)− ϕω(x′)|

=
∥∥∥Σ

1
2ω
∥∥∥2

2

∣∣ω>(x− x′)
∣∣ 6 ∥∥∥Σ

1
2ω
∥∥∥3

2
dg(x, x′)

Since ω ∼ N (0,Σ−1),
∥∥∥Σ

1
2ω
∥∥∥j = W

j
2 where W is a χ2 variable with d degrees of freedom. Then, we use

the following Chernoff bound [26]: for x > d, we have

P(W > x) 6
(ex
d
e−

x
d

) d
2

6

(
e

(√
x

d

)2

e−
1
2 ·(
√

x
d )

2

e−
x
2d

) d
2

6 2
d
2 e−

x
4

by using x2e−
x2

2 6 2
e .

Hence we can define the Fj such that, for all t > dj/2, P(Lj(ω) > t) 6 Fj(t) = 2
d
2 exp

(
− t

2
j

4

)
, and

Fj(L̄j) is smaller than some δ if L̄j ∝
(
d+ log 1

δ

) j
2 . Then we must choose the Lj such that

∫
L̄j
tFj(t)dt is

bounded by some δ. Taking L̄j > dj/2 in any case, we have∫
L̄j

tFj(t)dt = 2
d
2

∫
L̄j

t exp

(
− t

2
j

4

)
dt = 2

d
2

∫
L̄

2
j
j

(j/2)tj−1 exp

(
− t

4

)
dt

= 2
d
2 (j/2)

∫
L̄

2
j
j

(
tj−1 exp

(
− t

8

))
exp

(
− t

8

)
dt 6 2

d
2 (j/2)

(
8(j − 1)

e

)j−1 ∫
L̄

2
j
j

exp

(
− t

8

)
dt

= 2
d
2 j

(
8(j − 1)

e

)j−1

8 exp

(
−L̄

2
j

j /8

)

Hence this quantity is bounded by δ if L̄j ∝
(
d+ log

(
1
δ

)) j
2 . Then we have L̄2

jFi(L̄i) = L̄2
j2

d
2 exp

(
− L̄

2
i
i

4

)
which is also bounded by δ if L̄j ∝

(
d+

(
log d

δ

)2) j2
. At the end of the day, our assumptions are satisfied for

L̄j ∝

(
d+

(
log

dm

ρ

)2
) j

2

D.5.1 Gaussian mixture model learning

We apply the mixture model framework with the base distribution:

Pθ = N (θ,Σ)

The random features on the data space are ϕ′ω(x) = Ceiω
>x with Gaussian distribution ω ∼ Λ = N (0, A)

for some constant C and matrix A that we will choose later. Then, the features on the parameter space
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are ϕω(θ) = Ex∼Pθϕ′ω(x) = Ceiω
>θe−

1
2‖ω‖

2
Σ (that is, the characteristic function of Gaussians). Then, it is

possible to show [39] that the kernel is

K(θ, θ′) = C2

∣∣A−1
∣∣ 1

2

|2Σ +A−1|
1
2

e
− 1

2‖θ−θ′‖2(2Σ+A−1)−1

Hence we choose A = cΣ−1, C = (1 + 2c)
d
4 , and we come back to the previous case K(θ, θ′) = e−

1
2‖θ−θ′‖2Σ̃−1

with covariance Σ̃ = (2+1/c)Σ. Hence ε̄i = O (1), Bij = O (1), d(θ, θ′) = ‖θ − θ′‖Σ̃−1 = 1√
2+1/c

‖θ − θ′‖Σ−1 .

Admissible features. Unlike the previous case, the features are directly bounded and Lipschitz. We have

|ϕω(θ)| 6 C
def.
= L0,

‖Dj [ϕω(θ)]‖ = C
∥∥∥Σ̃

1
2ω
∥∥∥j e− ‖ω‖2Σ2 = C (2 + 1/c)

j
2

∥∥∥Σ
1
2ω
∥∥∥j e− ‖ω‖2Σ2 6 C (2 + 1/c)

j
2

(
j

e

) j
2

def.
= Lj

Hence all constants Lj are in O
(
C(2 + 1/c)

j
2

)
by choosing c = 1

d they are in O
(
d
j
2

)
.

E Application: Sampling the Laplace transform

Let α ∈ Rd+ and let X = (0, R]d ⊂ Rd+ for some R > 0. Let Ω = Rd+. Define for x ∈ X and ω ∈ Ω,

ϕω(x)
def.
= exp (−〈x, ω〉)

d∏
i=1

√
xi + αi
αi

and Λ(ω) = exp(−〈2α, ω〉)
d∏
i=1

(2αi).

The kernel and Fisher metric The associated kernel is K(x, x′) =
∏d
i=1 κ(xi + αi, x

′
i + αi) where

κ(u, v)
def.
= 2

√
uv

u+ v
.

The associated metric gx ∈ Rd×d is the diagonal matrix with diagonal (hxi+αi)
d
i=1 where given x ∈ R+,

hx
def.
= ∂x∂x′κ(x, x) = (2x)−2. The induced distance in dimension one is∫ max{s,t}

min{s,t}
(2x+ 2α)−1dx =

∣∣∣∣log

(
t+ α

s+ α

)∣∣∣∣ (85)

and hence,

dg(x, x′) =

√√√√ d∑
i=1

∣∣∣∣log

(
xi + αi
x′i + αi

)∣∣∣∣2

is the Fisher distance between exponential distributions. The domain diameter is RX =

√∑
i

∣∣∣log
(
R+αi
αi

)∣∣∣.
The Christoffel symbol is Γijk = −(xi+αi)

−1 when i = j = k and 0 otherwise, so the Riemannian Hessian
of f at x is

Hf(x) = ∇2f(x) + diag(g
1
2
x∇f(x)).
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Sampling bounds Assuming that the αi ∼ d and are all distinct, Theorem 3 is applicable with:

(i) B00 = B01 = B02 = O(1), B12 = O(
√
d), B22 = O(d).

(ii) rnear = 0.2, ε̄0 = 0.005, ε̄2 = 0.7960.

(iii) ∆ = O(d+ log(d3/2smax))

(iv) L̄j ∝ dj
(√

d+
(

log(m) + log
(
d
ρ

)))j
and

m & s

(
C log(s) log

(
s

ρ

)
+ C2 log

(
Cd

ρ

))
(86)

where C
def.
= d2

(
d+ log2(m) + log2

(
d
ρ

))
. In the above, the implicit constant depends on R.

E.1 Preliminaries: properties of the univariate kernel

We first provide bounds for κ and its derivatives. In the following, let

κ(ij)(u, v)
def.
= h−i/2u h−j/2v ∂iu∂

j
vκ(u, v).

We denote dκ(u, v)
def.
= |log(u/v)|. Recall also the hyperbolic functions

sinh(u)
def.
=

eu − e−u

2
, cosh(u)

def.
=

eu + e−u

2
, tanh(u)

def.
=

sinh(u)

cosh(u)
, sech(u)

def.
=

1

cosh(u)
.

Lemma 22. We have

(i) κ(u, v) = sech
(

dκ(u,v)
2

)
6 2e−

1
2dκ(u,v).

(ii)
∣∣κ(10)(u, v)

∣∣ = 2
∣∣∣tanh

(
dκ(u,v)

2

)
κ(u, v)

∣∣∣ , and
∣∣κ(10)(u, v)

∣∣ 6 2 |κ(u, v)|.

(iii)
∣∣κ(11)(u, v)

∣∣ 6 |κ(u, v)|3 + 4 |κ(u, v)|

(iv)
∣∣κ(20)(u, v)

∣∣ 6 5 |κ(u, v)| and −κ(20)(u, v) > κ(u, v)
(

1− 4 tanh
(

dκ(u,v)
2

))
.

(v)
∣∣κ(12)(u, v)

∣∣ 6 49 |κ(u, v)|.

Proof. We first state the partial derivatives of κ:

κ(u, v) =
2
√
uv

u+ v
,

∂uκ(u, v) =
v(v − u)√
uv(u+ v)2

∂u∂vκ(u, v) =
−u2 + 6uv − (v)2

2
√
uv(u+ v)3

∂2
uκ(u, v) = −

(v)2
(
(u+ v)2 + 4u(v − u)

)
2 (uv)

3/2
(u+ v)3

= − (v)2

2 (uv)
3/2

(u+ v)
− 2v(v − u)

(uv)
1/2

(u+ v)3

∂u∂
2
vκ(u, v) =

u3 + 13u2v − 33u(v)2 + 3(v)3)

4v(uv)1/2(u+ v)4
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We also make use of the following fact: For u > v,

v − u
u+ v

=

(
1

u
v + 1

− 1

1 + v
u

)
=

(
1

1 + exp(dκ(u, v))
− 1

1 + exp(−dκ(u, v))

)
=

(
exp(−dκ(u, v))− exp(dκ(u, v))

2 + exp(dκ(u, v)) + exp(dκ(u, v))

)
=
− sinh(dκ(u, v))

1 + cosh(dκ(u, v))
= − tanh(dκ(u, v)/2).

(i)

κ(u, v) = 2

(√
u

v
+

√
v

u

)−1

=
2

e−
dκ(u,v)

2 + e
dκ(u,v)

2

=
1

cosh(dκ(u,v)
2 )

6 2e−
1
2dκ(u,v),

(ii) We have, assuming that u > v,

κ(10)(u, v) = 2u∂uκ(u, v) = 2
v − u
u+ v

κ(u, v) = −2 tanh(dκ(u, v)/2)κ(u, v).

(iii)

κ(11)(u, v) = 4uv∂v∂uκ(u, v) = 4uv
4uv − (u− v)

2

2
√
uv(u+ v)3

= κ(u, v)

(
κ(u, v)2 − (u− v)

2

(u+ v)2

)
= κ(u, v)

(
κ(u, v)2 − 4 tanh2(dκ(u, v)/2)

)
so
∣∣κ(11)

∣∣ 6 |κ|3 + 4 |κ|.
(iv)

κ(20)(u, v) = 4u2∂2
uκ(u, v) = −

4 (uv)
1/2 (

(u+ v)2 + 4u(v − u)
)

2(u+ v)3

= −κ(u, v)

(
1 +

4u(v − u)

(u+ v)2

)
so
∣∣κ(20)

∣∣ 6 5 |κ|. Also,

−κ(20) > κ(u, v) (1− 4 tanh(dκ(u, v)/2))

(v)

κ(12)(u, v) = 2u(2v)2∂u∂
2
vκ(u, v)

= κ(u, v)

(
1 +

2v(5u2 − 18uv + (v)2)

(u+ v)3

)
so
∣∣κ(12)

∣∣ 6 49 |κ|.
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E.2 Kernel bounds

Theorem 5 (Kernel bounds). The following hold:

1. 1− 1
8d(x, x′)2 6 |K(x, x′)| 6 min{2de− 1

2d(x,x′), 8
8+d(x,x′)2 }.

2.
∥∥K(10)(x, x′)

∥∥ 6 min{2
√
d |K| ,

√
2}.

3.
∥∥K(11)

∥∥ 6 min{9d |K| , 8}

4.
∥∥K(20)

∥∥ 6 min{9d |K| , 8} and λmin(−K(20)) >
(
1− 5d(x, x′)2

)
K when d(x, x′) 6 1.

5.
∥∥K(12)

∥∥ 6 min{66 |K| d3/2, 16
√
d+ 49} and

∥∥K(12)(x, x′)
∥∥ 6 34 if d(x, x′) 6 1.

In particular, for d(x, x′) > 2d log(2) + 2 log
(

52d3/2smax

h

)
, we have

∥∥K(ij)(x, x′)
∥∥ 6 h

smax
.

Proof. Let d`
def.
= dκ(x` + α`, x

′
` + α`) and note that dg(x, x′) =

√∑
` d2

` . Define g =
(
2 tanh(d`

2 )
)d
`=1

. We
first prove that

(i) |K(x, x′)| 6
∏d
`=1 sech(d`/2) 6

∏d
`=1

1
1+d2

`/8
6 1

1+ 1
8d(x,x′)2 .

(ii)
∥∥K(10)(x, x′)

∥∥ 6 ‖g‖2 |K|.

(iii)
∥∥K(11)

∥∥ 6 |K|
(
‖g‖22 + 5

)
(iv)

∥∥K(20)
∥∥ 6 |K|

(
‖g‖22 + 5

)
and λmin

(
−K(20)

)
> K

(
1− 5 ‖g‖22

)
.

(v)
∥∥K(12)

∥∥ 6 |K|
(
‖g‖32 + 16 ‖g‖2 + 49

)
The result would then follow because |tanh(x)| 6 min{x, 1}, so ‖g‖ 6 min{d(x, x′), 2

√
d}. For example,∥∥K(12)

∥∥ 6 1
1+ 1

8d(x,x′)2

(
d(x, x′)3 + 16d(x, x′) + 24

)
6 8d(x, x′) +

√
8

2 + 24 6 34 when d(x, x′) 6 1.

In the following, we write

κ
(ij)
`

def.
= κ(ij)(x` + α`, x

′
` + α`)

and κ`
def.
= κ

(00)
` and Ki

def.
=
∏
j 6=i κj . Moreover, we will make use of the inequalities for κ(ij) derived in Lemma

22.
(i) Note that sech(x) 6 2e−x and sech(x) 6 (1 + x2/2)−1. So,

|K(x, x′)| 6
d∏
`=1

sech

(
d`
2

)
6

d∏
`=1

(
1 +

d2
`

2

)−1

6
1

1 + d(x, x′)2
.

Also, since sech(x) > 1− x2

2 , we also have K(x, x′) >
∏d
`=1

(
1− 1

8d2
`

)
> 1− 1

8d(x, x′)2.

(ii) Note that
∥∥K(10)(x, x′)

∥∥ =

∥∥∥∥(κ(10)
` K`

)d
`=1

∥∥∥∥ , so by Lemma 22 (ii),

∥∥∥K(10)(x, x′)
∥∥∥ 6 ‖g‖2 |K| .

(iii) For i 6= j ∣∣∣κ(10)
i κ

(01)
j Kij

∣∣∣ 6 4 tanh

(
di
2

)
tanh

(
dj
2

)
|K| ,
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and
∣∣∣κ(11)
i Ki

∣∣∣ 6 5 |K|. So, given p ∈ Rd of unit norm,

∥∥∥K(11)
∥∥∥ = sup

‖p‖=1

d∑
i=1

∑
j 6=i

κ
(10)
i κ

(01)
j Kijpipj +

d∑
i=1

p2
iκ

(11)
i Ki

6 sup
‖p‖=1

|K|

 d∑
i=1

∑
j 6=i

4 tanh(di/2) tanh(dj/2)pipj + 5

d∑
i=1

p2
i


6 |K|

(
‖g‖22 + 5

)
.

(iv) Note that

∥∥∥K(20)
∥∥∥ = sup

‖p‖=1

∣∣∣∣∣∣
d∑
i=1

∑
j 6=i

κ
(10)
i κ

(10)
j Kijpipj +

d∑
i=1

p2
iκ

(20)
i Ki +

d∑
i=1

κ
(10)
i Kip

2
i

∣∣∣∣∣∣ .
Observe that

∣∣∣κ(20)
i Ki

∣∣∣ 6 5 |K| and −κ(20)
i Ki > K

(
1− 4 tanh

(
di
2

))
.

∥∥∥K(20)
∥∥∥ 6 sup

‖p‖61

∣∣∣∣∣∣
d∑
i=1

∑
j 6=i

κ
(10)
i κ

(10)
j Kijpipj +

d∑
i=1

p2
iκ

(20)
i Ki

∣∣∣∣∣∣+ ‖g‖2 |K|

6 |K| sup
‖p‖61

 d∑
i=1

∑
j 6=i

4 tanh(di/2) tanh(dj/2)pipj + 5

d∑
i=1

p2
i

+ ‖g‖2 |K|

6 |K|
(

2 ‖g‖22 + 5
)
,

and given any p with ‖p‖x = 1,

〈−K(20)p, p〉 > K (1− 4 ‖g‖∞)

(v)Note that
∥∥K12

∥∥
x,x′

= ‖A‖, where A = (Aij`)
d
i,j,`=1 is defined as follows: For i, j, ` all distinct,

Aij` = κ
(10)
i κ

(01)
j κ

(01)
` Kij` 6 8 tanh

(
di
2

)
tanh

(
dj
2

)
tanh

(
d`
2

)
K,

for all i, ` distinct,

Aii` = 8κ
(11)
i κ

(01)
` Ki` 6 10 tanh

(
d`
2

)
K,

Ai`i = κ
(11)
i κ

(01)
` Kij 6 10 tanh

(
dj
2

)
K,

and for i 6= j, Aijj = κ
(10)
i κ

(02)
j Kij 6 12 tanh

(
di
2

)
K,

Aijj = κ
(10)
i κ

(02)
j Kij + κ

(10)
i κ

(01)
j Kij 6 10 tanh

(
di
2

)
K + 2 tanh

(
di
2

)
K
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and Aiii = (κ
(12)
i + κ

(02)
i )Ki 6 54K. So, for p, q ∈ Rd of unit norm,

∑
i

∑
j

∑
`

Aij`pjp`qi =
∑
i

∑
j 6=i

∑
`

Aij`pjp`qi +
∑
`

Aii`pip`qi


=
∑
i

∑
j 6=i

 ∑
` 6∈{i,j}

Aij`pjp`qi +Aijipjpiqi +K
(12)
ijj p

2
jqi


+
∑
i

∑
6̀=i

Aii`pip`qi +
∑
i

Aiiip
2
i qi

6 |K|
(
‖g‖32 + 16 ‖g‖2 + 49

)
.

E.3 Gradient bounds

Theorem 6 (Stochastic gradient bounds). Assume that the αi’s are all distinct. Then, L̄0(ω) 6 L̄0
def.
=(

1 + R
mini αi

)d
and

P(Lj(ω) > t) 6 Fj(t)
def.
=

d∑
i=1

βi exp

(
−αi

(
1

2(R+ ‖α‖∞)

(
t

L̄0

)1/j

−
√
d

))
, j ∈ {1, 2, 3}

and we have that
∑
i Fj(L̄j) 6 δ and L̄2

j

∑
i Fi(L̄i) + 2

∫∞
L̄j
tFj(t)dt 6 δ provided that

L̄j ∝ L̄0(R+ ‖α‖∞)j
(√

d+ max
i

1

αi
log

(
dβiL̄0(R+ ‖α‖∞)

δαi

))j
, j ∈ {1, 2, 3}

where βi =
∏
j 6=i

αj
αj−αi . Note that αi ∼ d implies that L̄0 ∼ (1 +R/d)d ∼ eR.

Proof. Let Vx
def.
= (1− 2(xi + αi)ωi)

d
i=1 ∈ Rd. Then,

‖Vx‖ =

√∑
i

(1− 2(xi + αi)ωi)2

6

√∑
i

1 + 4(xi + αi)2ω2
i 6

√
d+ 4(R+ ‖α‖∞)2 ‖w‖2

6
√
d+ 2(R+ ‖α‖∞) ‖w‖ def.

= V̄

We have the following bounds:

|ϕω(x)| 6
d∏
i=1

√
1 +

xi
αi

6

(
1 +

R

mini αi

)d
def.
= L̄0

g
− 1

2
x ∇ϕω(x) = ϕω(x)Vx =⇒ ‖D1 [ϕω] (x)‖x 6 L̄0V̄

and

g
− 1

2
x Hϕω(x)g

− 1
2

x = g
− 1

2
x ∇2ϕω(x)g

− 1
2

x + diag
(
g
− 1

2
x ϕω(x)

)
= ϕω(x)(VxV

>
x − 2Id) + ϕω(x) diag(Vx).
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which yields ‖D2 [ϕω] (x)‖x 6 L̄0(2 + V̄ 2).
Note that by the mean value theorem, |xi − x′i| 6 (R+ αi) |log(xi + αi)− log(x′i + αi)| and hence,

‖Vx − Vx′‖2 6 2 ‖ω‖2 ‖x− x
′‖2 6 2 ‖ω‖2 (R+ ‖α‖∞)dg(x, x′).

Also, |ϕω(x)− ϕω(x′)| 6 supx ‖D1 [ϕω] (x)‖ dg(x, x′) 6 L̄0V̄ dg(x, x′). Therefore,∥∥∥g− 1
2

x Hϕω(x)g
− 1

2
x − g

− 1
2

x′ Hϕω(x′)g
− 1

2

x′

∥∥∥
6 |ϕω(x)− ϕω(x′)|

(
2 + V̄ + V̄ 2

)
+ |ϕω(x′)| ‖Vx − Vx′‖+ |ϕω(x′)|

∥∥VxV >x − Vx′V >x′ ∥∥
6 L̄0V̄

(
2 + V̄ + V̄ 2

)
dg(x, x′) + (L̄0 + 2L̄0V̄ )2 ‖ω‖2 (R+ ‖α‖∞)dg(x, x′)

Define for j = 0, 1, 2, 3

Gj(ω)
def.
= L̄0

(√
d+ 2(R+ ‖α‖∞) ‖w‖

)j
,

then, for j = 0, 1, 2, Lj(ω)
def.
= supx ‖Dj [ϕω] (x)‖x . Gj(ω) and

L3(ω)
def.
= sup

x,x′

∥∥∥g− 1
2

x Hϕω(x)g
− 1

2
x − g

− 1
2

x′ Hϕω(x′)g
− 1

2

x′

∥∥∥
dg(x, x′)

. G3(ω).

When all αj are distinct, we have [2]:

P(‖ω‖ > t) 6 P(‖ω‖1 > t) =

d∑
i=1

βie
−αit

where βi =
∏
j 6=i

αj
αj−αi , using the fact that ‖ω‖1 is a sum of independent exponential random variable.

Hence, for all 1 6 j 6 3 and t > d
j
2 we have

P(Lj(ω) > t) 6 P

(
‖w‖ > 1

2(R+ ‖α‖∞)

(
t

L̄0

)1/j

−
√
d

)

6 Fj(t)
def.
=

d∑
i=1

βi exp

(
−αi

(
1

2(R+ ‖α‖∞)

(
t

L̄0

)1/j

−
√
d

))
6 δ

and Fj(L̄j) 6 δ if

L̄j > L̄0

(
2j(R+ ‖α‖∞)j

(√
d+ max

i

1

αi
log

(
dβi
δ

))j)
Next, we compute∫ ∞

L̄j

tFj(t)dt =

d∑
i=1

βi

∫ ∞
L̄j

t exp

(
−αi

(
1

2(R+ ‖α‖∞)

(
t

L̄0

)1/j

−
√
d

))
dt

= L̄2
0j

d∑
i=1

eαi
√
dβi

∫ ∞
(L̄j/L̄0)1/j

exp

(
−αiu

2(R+ ‖α‖∞)

)
u2j−1du

6

(
(2j − 1)4(R+ ‖α‖∞)

eαi

)2j−1

L̄2
0j

d∑
i=1

eαi
√
dβi

∫ ∞
(L̄j/L̄0)1/j

exp

(
−αiu

4(R+ ‖α‖∞)

)
du

6

(
4(R+ ‖α‖∞)

αi

)2j (
2j − 1

e

)2j−1

L̄2
0j

d∑
i=1

eαi
√
dβi exp

(
−αi(L̄j/L̄0)1/j

4(R+ ‖α‖∞)

)
.
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This is bounded from above by δ if for all i = 1, . . . , d,

4(R+ ‖α‖∞)

αi

(
2j log

(
4(2j − 1)(R+ ‖α‖∞)

eαi

)
+ log(L̄2

0j) + αi
√
d+ log

(
dβi
δ

))
6

(
L̄j
L̄0

)1/j

that is,

L̄j & L̄0

(
2j(R+ ‖α‖∞)j

(√
d+ max

i

1

αi
log

(
dβi
δ

))j)
.

It remains to bound L̄jF`(L̄`) with `, j ∈ {0, 1, 2, 3}: Let L̄` > L̄0M
` for some M to be determined. Then,

L̄jF`(L̄`) 6 L̄0M
j

d∑
i=1

βi exp

(
−αi

2(R+ ‖α‖∞)
M + αi

√
d

)

= L̄0

d∑
i=1

βiM
j exp

(
−αi

4(R+ ‖α‖∞)
M

)
exp

(
−αi

4(R+ ‖α‖∞)
M

)
eαi
√
d

6 L̄0e
−j

d∑
i=1

(
4j(R+ ‖α‖∞)

αi

)j
βi exp

(
−αi

4(R+ ‖α‖∞)
M

)
eαi
√
d

6 L̄0e
−3

d∑
i=1

(
12(R+ ‖α‖∞)

αi

)3

βi exp

(
−αi

4(R+ ‖α‖∞)
M

)
eαi
√
d 6 δ

if for each i = 1, . . . , d

M > 4(R+ ‖α‖∞)

(
√
d+ max

i

1

αi
log

(
L̄0dβi
δe3

(
12(R+ ‖α‖∞)

αi

)3
))

.

Therefore, the conclusion follows for L̄0 =
(

1 + R
mini αi

)d
, and for j = 1, 2, 3,

L̄j ∝ L̄0(R+ ‖α‖∞)j
(√

d+ max
i

1

αi
log

(
dβiL̄0(R+ ‖α‖∞)

δαi

))j
.
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