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Abstract

Sparse regularization is a central technique for
both machine learning (to achieve supervised
features selection or unsupervised mixture
learning) and imaging sciences (to achieve
super-resolution). Existing performance guar-
anties assume a separation of the spikes based
on an ad-hoc (usually Euclidean) minimum
distance condition, which ignores the geome-
try of the problem. In this article, we study
the BLASSO (i.e. the off-the-grid version of
`1 LASSO regularization) and show that the
Fisher-Rao distance is the natural way to en-
sure and quantify support recovery, since it
preserves the invariance of the problem un-
der reparameterization. We prove that under
mild regularity and curvature conditions, sta-
ble support identification is achieved even in
the presence of randomized sub-sampled ob-
servations (which is the case in compressed
sensing or learning scenario). On deconvolu-
tion problems, which are translation invariant,
this generalizes to the multi-dimensional set-
ting existing results of the literature. For
more complex translation-varying problems,
such as Laplace transform inversion, this gives
the first geometry-aware guarantees for sparse
recovery.

1 Introduction

1.1 Sparse Regularization

In this work, we consider the general problem of estimat-
ing an unknown Radon measure µ0 ∈ M(X ) defined

over some metric space X (for instance X = Rd for a
possibly large d) from a few number m of randomized
linear observations y ∈ Cm, Let Φ :M(X ) 7→ Cm be
defined by

Φµ
def.
=

1√
m

(∫
X
ϕωk(x)dµ(x)

)m
k=1

, (1.1)

where (ω1, . . . , ωm) are identically and independently
distributed according to some probability distribution
Λ(ω) on ω ∈ Ω, and for ω ∈ Ω, ϕω : X → C is a
continuous function, denoted ϕω ∈ C (X ). We further
assume that ϕω(x) is normalized, that is

Eω[|ϕω(x)|2] = 1, ∀x ∈ X . (1.2)

The observations are y = Φµ0 + w, where w ∈ Cm
accounts for noise or modelling errors. Some represen-
tative examples of this setting include:

Off-the-grid compressed sensing: off-the-grid com-
pressed sensing, initially introduced in the special
case of 1-D Fourier measurements on X = T = R/Z
by (Tang et al., 2013), corresponds exactly to mea-
surements of the form (1.1). This is a “continuous”
analogous of the celebrated compressed sensing line
of works (Candès et al., 2006; Donoho, 2006).
Regression using a continuous dictionary: given a
set of m training samples (ωk, yk)mk=1, one wants to
predicts the values yk ∈ R from the features ωk ∈
Ω using a continuous dictionary of functions ω 7→
ϕω(x) (here x ∈ X parameterizes the dictionary), as
yk ≈

∫
X ϕωk(x)dµ(x). A typical example, studied for

instance by Bach (2017) is the case of neural networks
with a single hidden layer made of an infinite number
of neurons, where Ω = X = Rp and one uses ridge
functions of the form ϕω(x) = ψ(〈x, ω〉), for instance
using the ReLu non-linearity ψ(u) = max(u, 0).
Sketching mixtures: the goal is estimate a (hopefully
sparse) mixture of density probability distributions
on some domain T of the form ξ(t) =

∑
i aiξxi(t)

where the (ξx)x∈X is a family of template densities,
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and ai > 0,
∑
i ai = 1. Introducing the measure

µ0 =
∑
i aiδxi , this mixture model is conveniently re-

written as ξ(t) =
∫
X ξx(t)dµ0(x). The most studied

example is the mixture of Gaussians, using (in 1-D for

simplicity, T = R) as ξx(t) ∝ σ−1e−
(t−τ)2

2σ2 where the
parameter space is the mean and standard deviation
x = (τ, σ) ∈ X = R × R+. In a typical machine
learning scenario, one does not have direct access
to ξ but rather to n i.i.d. samples (t1, . . . , tn) ∈ T n
drawn from ξ. Instead of recording this (possibly
huge, specially when T is high dimensional) set of
data, following Gribonval et al. (2017), one computes
“online” a small set y ∈ Cm of m sketches against
sketching functions θω(t), that is, for k = 1, . . . ,m,

yk
def.
=

1

n

n∑
j=1

θωk(tj) ≈
∫
T
θωk(t)ξ(t)dt.

These sketches exactly have the form (1.1) when
defining the functions ϕω(x)

def.
=
∫
T θω(t)ξx(t)dt. A

popular set of sketching functions, over T = Rd are
Fourier atoms θω(t)

def.
= ei〈ω, t〉, for which ϕ·(x) is the

characteristic functions of ξx, which can generally be
computed in closed form.

BLASSO. In all these applications, and many more,
one is actually interested in recovering a discrete and
s-sparse measure µ0 of the form µ0 =

∑s
i=1 aiδxi where

(xi, ai) ∈ X × C. An increasingly popular method to
estimate such a sparse measure corresponds to solving
a infinite-dimensional analogous of the Lasso regression
problem

min
µ∈M(X )

1

2
‖Φµ− y‖22 + λ|µ|(X ). (Pλ(y))

Following De Castro and Gamboa (2012), we call this
method the BLASSO (for Beurling-Lasso). Here |µ|(X )
is the so-called total variation of the measure µ, and is
defined as

|µ|(X )
def.
= sup {Re〈f, µ〉 ; f ∈ C (X ), ‖f‖∞ 6 1} .

Note that on unbounded X , one needs to impose that
f vanishes at infinity. If X = {xi}i is a finite space,
then this corresponds to the classical finite-dimensional
Lasso problem (Tibshirani, 1996), because |µ|(X ) =

‖a‖1
def.
=
∑
i |ai| where ai = µ({xi}). Similarly, if X is

possibly infinite but µ =
∑
i aiδxi , one also has that

|µ|(X ) = ‖a‖1.

Previous Works. The BLASSO problem (Pλ(y))
was initially proposed by De Castro and Gamboa
(2012), see also Bredies and Pikkarainen (2013). The
first sharp analysis of the solution of this problem is

provided by Candès and Fernandez-Granda (2014) in
the case of Fourier measurement on Td. They show
that if the spikes are separated enough, then µ0 is the
unique solution of (Pλ(y)) when w = 0 and λ → 0.
Robustness to noise under this separation condition
is addressed in (Candès and Fernandez-Granda, 2013;
Fernandez-Granda, 2013; Azais et al., 2015). A re-
fined stability results is detailed by Duval and Peyré
(2015) which shows that conditions based on minimum
separation imply support stability, which means that
when ‖w‖ and ‖w‖ /λ are small enough, then the so-
lution of (Pλ(y)) has the same number of Diracs as
µ0, and that both the amplitudes and positions of the
spikes converges smoothly as w → 0. These initial
works have been extended by Tang et al. (2013) to the
case of randomized compressive measurements of the
form (1.1), when using Fourier sketching functions ϕω.
In all these results, the separation condition are given
for the Euclidean cases, which is an ad-hoc choice which
does not take into account the geometry of the prob-
lem, and gives vastly sub-optimal theories for spatially
varying operators (such as data-dependent kernels in
supervised learning, Gaussian mixture estimation and
Laplace transform in imaging, see Section 1.2).

While this is not the topic of the present paper, note
that for positive spikes, the separation condition is in
some cases not needed, see for instance (Schiebinger
et al., 2015; Denoyelle et al., 2017). It is important
to note that efficient algorithms have been developed
to solve (Pλ(y)), among which SDP relaxations for
Fourier measurements (Candès and Fernandez-Granda,
2013) and Frank-Wolfe (also known as conditional gra-
dient) schemes (Bredies and Pikkarainen, 2013; Boyd
et al., 2017). Note also that while we focus here on
variational convex approaches, alternative methods ex-
ist, in particular greedy algorithms (Gribonval et al.,
2017) and (for Fourier measurements) Prony-type ap-
proaches (Schmidt, 1986; Roy and Kailath, 1989). To
the best of our knowledge, their theoretical analysis in
the presence of noise is more involved, see however (Liao
and Fannjiang, 2016) for an analysis of robustness to
noise when a minimum separation holds.

1.2 The Fisher information metric

The empirial covariance operator is defined as
K̂(x, x′)

def.
= 1

m

∑
i ϕωi(x)ϕωi(x

′) and the determinis-
tic limit as m→ +∞ is denoted K with

K(x, x′)
def.
=

∫
Ω

ϕω(x)ϕω(x′)dΛ(ω). (1.3)

Note that many covariance kernels can be written under
the form (1.3). By Bochner’s theorem, this includes all
translation-invariant kernels, for which possible features
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are ϕω(x) = eiω>x. The associated metric tensor is

Hx
def.
= ∇x∇x′K(x, x) ∈ Cd×d. (1.4)

Throughout, we assume that Hx is positive definite
for all x ∈ X . Then, H naturally induces a distance
between points in our parameter space X . Given a
piecewise smooth curve γ : [0, 1]→ X , the length `H[γ]

of γ is defined by `H[γ]
def.
=
∫ 1

0

√
〈Hγ(t)γ′(t), γ′(t)〉dt.

Given two points x, x′ ∈ X , the distance from x to x′,
induced by H is dH(x, x′)

def.
= infγ∈F `H[γ] where F is

the set of all piecewise smooth paths γ : [0, 1] → X
with γ(0) = x and γ(1) = x′.

The metric H is closely linked to the Fisher information
matrix (Fisher, 1925) associated with Φ: since (1.2)
holds, f(x, ω)

def.
= |ϕω(x)|2 can be interpreted as a

probability density function for the random variable ω
conditional on parameter x, and the metric Hx is equal
(up to rescaling) to its Fisher information matrix, since∫

∇ (log f(x, ω))∇ (log f(x, ω))
>
f(x, ω)dΛ(ω)

= 4 Eω[Re
(
∇ϕω(x)∇ϕω(x)>

)
] = 4Hx.

The distance dH is called the “Fisher-Rao” geodesic
distance (Rao, 1945) and is used extensively in infor-
mation geometry for estimation and learning problems
on parametric families of distributions (Amari and Na-
gaoka, 2007). The Fisher-Rao is the unique Riemannian
metric on a statistical manifold (Cencov, 2000) and it
is invariant to reparameterization, which matches the
invariance of the BLASSO problem (Pλ(y)) to repa-
rameterization of the space X . Although dH has been
used in conjunction with kernel methods (see for in-
stance Burges (1999)), to the best of our knowledge, it
is the first time this metric is put forward to analyze the
performance of off-the-grid sparse recovery problems.

1.2.1 Examples

We detail some popular learning and imaging examples.

The Fejér kernel One of the first seminal result of
super-resolution with sparse regularization was given
by Candès and Fernandez-Granda (2014) for this ker-
nel, which corresponds to discrete Fourier measure-
ments on the torus. We give a multi-dimensional
generalization of this result here. Let fc ∈ N,
X ∈ Td, Ω =

{
ω ∈ Zd ; ‖ω‖∞ 6 fc

}
. Let ϕω(x)

def.
=

ei2πω>x and Λ(ω) ∝
∏d
j=1 g(ωj) where g(j) =

1
fc

∑min(j+fc,fc)
k=max(j−fc,−fc)(1−|k/fc|)(1−|(j − k)/fc|). Note

that this corresponds to sampling discrete Fourier
frequencies. Then, the associated kernel is the Fe-
jér kernel K(x, x′) =

∏d
i=1 κ(xi − x′i), where κ(x)

def.
=

sinc4
fc/2+1(x) where sincs(x)

def.
= s−1 sin(πsx)/ sin(πx),

which has a constant metric tensor Hx = CfcId and
dH(x, x′) =

√
Cfc ‖x− x′‖2 is a scaled Euclidean met-

ric (quotiented by the action of translation modulo 1
on Td), where Cfc = −κ′′(0) = π2fc(fc+4)

3 .

The Gaussian kernel Let Σ ∈ Rd×d be a posi-
tive semidefinite matrix, X ⊆ Rd and Ω = Rd. Let
ϕω(x) = eiω>x and Λ(ω) = N (0,Σ−1), the centered
Gaussian distribution with covariance Σ−1. This can be
interpreted as sampling continuous Fourier frequencies.
Then, the associated kernel isK(x, x′) = e−

1
2‖x−x′‖2Σ−1

where ‖x‖Σ =
√
x>Σx, with constant metric Hx =

Σ−1, and dH(x, x′) = ‖x− x′‖Σ−1 . In Section 3, we
also detail how to exploit this kernel for Gaussian Mix-
ture Model (GMM) estimation with the BLASSO.

The Laplace transform Let ᾱ = (αj) ∈ Rd+, X ⊆
(0,+∞)d and Ω = Rd+. A (sampled) Laplace transform

is defined by setting ϕω(x) =
∏d
i=1

√
2(xi+αi)

αi
e−〈x, ω〉

and Λ(ω) =
∏d
j=1(2αj)e

−〈2ᾱ, ω〉. Then, K(x, x′) =∏d
i=1 κ(xi + αi, x

′
i + αi) where κ(a, b) = 2

√
ab

a+b ,
with metric Hx as the diagonal matrix with diag-
onal

(
(2(xi + αi))

−2
)d
i=1

and distance dH(x, x′) =√∑
i

∣∣∣log
(
xi+αi
x′i+αi

)∣∣∣2. We remark that this kernel, asso-

ciated to the Laplace transform (which should not be
confused with the translation-invariant Laplace kernel
exp(−‖x− x′‖)) appears in some microscopy imaging
technique, see for instance Boulanger et al. (2014).
Unlike the previous examples, it is not translation-
invariant, and therefore the metric Hx is not constant.
Our results show that the corresponding Fisher metric
is the natural way to impose the separation condition
in super-resolution.

1.3 Contributions.

Our main contribution is Theorem 1, which states that
if the sought after spikes positions X0 are sufficiently
separated with respect to the Fisher distance dH, then
the solution to (Pλ(y)) is support stable (that is, the
solution of the BLASSO is formed of exactly s Diracs)
provided that the number of random noisy measure-
ments m is, up to log factors and under the assumption
of random signs of the amplitudes a0, linear in s, and
the noise level ‖w‖ is less than 1/s. In the case of trans-
lation invariant kernels, this generalizes existing results
to a large class of multi-dimensional kernels, and also
provides for the first time a quantitative bounds on
the impact of the noise and sub-sampling on the spikes
positions and amplitudes errors. For non-translation
kernels, this provides for the first time a meaningful
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support recovery guarantee, a typical example being
the Laplace kernel (see Section 1.2).

2 Key concepts

Notation for derivatives. Given f ∈ C∞(X ), by
interpreting the rth derivative as a multilinear map:
∇rf : (Cd)r → C, so given Q def.

= {q`}r`=1 ∈ (Cd)r,

∇rf [Q] =
∑

i1,··· ,ir

∂i1 · · · ∂irf(x)q1,i1 · · · qr,ir .

and we define the rth normalized derivative of f as

Dr [f ] (x)[Q]
def.
= ∇rf(x)[{H−

1
2

x qi}ri=1]

with norm ‖Dr [f ] (x)‖ def.
= sup∀`,‖q`‖61 |Dr [f ] (x)[Q]|.

For i, j ∈ {0, 1, 2}, let K(ij)(x, x′) be a “bi”-multilinear
map, defined for Q ∈ (Cd)i and V ∈ (Cd)j as

[Q]K(ij)(x, x′)[V ]
def.
= E[Di [ϕω] (x)[Q]Dj [ϕω] (x′)[V ]]

and
∥∥K(ij)(x, x′)

∥∥ def.
= supQ,V

∥∥[Q]K(ij)(x, x′)[V ]
∥∥

where the supremum is defined over all Q def.
= {q`}i`=1,

V
def.
= {v`}j`=1 with ‖q`‖ 6 1, ‖v`‖ 6 1. Note that

D2 [f ] (x) and K(02)(x, x′) can also be interpreted as
a matrix in Cd×d, and we have the normalization
K(02)(x, x) = −Id for all x.

2.1 Admissible kernel and separation

In previous studies on the recovery properties of
(Pλ(y)) (Candès and Fernandez-Granda, 2014; Bhaskar
et al., 2013; Bendory et al., 2016; Duval and Peyré,
2015; Fernandez-Granda, 2016), recovery bounds are
attained in the context of K being admissible and a
separation condition on the underlying positions {xj}j .
Namely, given X = {xj}j , that mini 6=j dH(xi, xj) is
sufficiently large with respect to the decay properties
of K. For example, in the case where Φ corresponds
to Fourier sampling on a grid, up to frequency fc, this
separation condition is minj 6=` ‖xj − x`‖2 & 1/fc. In
fact, if sign(aj) can take arbitrary values in {+1,−1},
this separation condition is a necessary to ensure exact
recovery for the BLASSO (Tang, 2015).

Following the aforementioned works, we introduce the
notion of an admissible kernel.
Definition 1. A kernel K will be said admissible with
respect to K def.

= {rnear,∆, εi, Bij , smax}, where 0 <
rnear < ∆/4 is a neighborhood size, ε0 ∈ (0, 1), ε2 ∈
(0, r−2

near) are respectively a distance to 1 and a cur-
vature, ∆ > 0 is a minimal separation, Bij > 0 for
i, j = 0, . . . , 2 are some constants and smax ∈ N∗ is a
maximal sparsity level, if

1. Uniform bounds: For (i, j) ∈ {(0, 0), (1, 0)},
supx,x′∈X ‖K(ij)(x, x′)‖ 6 Bij ; for
(i, j) ∈ {(0, 2), (1, 1), (1, 2)} and all x, x′

such that dH(x, x′) 6 rnear or dH(x, x′) >
∆/4, ‖K(ij)(x, x′)‖ 6 Bij; and finally,
supx∈X

∥∥K(22)(x, x)
∥∥ 6 B22.

2. Neighborhood of each point: For all x ∈
X , K(x, x) = 1 and for all x, x′ ∈ X with
dH(x, x′) 6 rnear, Re

(
K(02)(x, x′)

)
4 −ε2Id and∥∥Im

(
K(02)(x, x′)

)∥∥ 6 cε2, where c
def.
= 1

2

√
2−ε2r2

near
ε2r2

near

and for dH(x, x′) > rnear, |K(x, x′)| 6 1− ε0.
3. Separation: For dH(x, x′) > ∆/4, for all i, j ∈
{0, . . . , 2} with i + j 6 3, ‖K(ij)(x, x′)‖ 6 h

smax
,

where h def.
= mini∈{0,2}

(
εi

32B1i+32 ,
5ε2

16B12+24

)
.

Additionally, there exists CH > 0 such that for
dH(x, x0) 6 rnear:

∥∥∥Id−H
− 1

2
x0 H

1
2
x

∥∥∥ 6 CHdH(x, x0).

We also denote dH(X,X0) =
√∑

i dH(xi, x0,i)2 and
B

def.
=
∑
i+j63Bij and ε def.

= min{ε0, ε2}.

Intuitively, these three conditions express the following
facts: 1) the kernel and its derivatives are uniformly
bounded, 2) near x = x′, the kernel has negative cur-
vature, and otherwise it is strictly less than 1, and 3)
for x and x′ sufficiently separated, the kernel and all
its derivatives have a small value.

2.2 Almost bounded random features

Ideally, we would like our features and its derivatives to
be uniformly bounded for all ω. However this may not
be the case: think of eiω

>x where the support of the
distribution Λ is not bounded. Hence our results will be
dependent on the probability that the derivatives are
greater than some value T decays sufficiently quickly
as T increases. In the following, for r ∈ {0, 1, 2, 3},
Lr(ω)

def.
= supx∈X ‖Dr [ϕω] (x)‖ , and let Fr be such

that Pω (Lr(ω) > t) 6 Fr(t).

2.3 Key assumptions

Our main result will be valid under the following as-
sumptions.

I. On the domain and limit kernel Let
X be a compact domain with radius RX

def.
=

supx,x′∈X dH(x, x′). Assume the kernel is admissible
wrt K def.

= {rnear,∆, εi, Bij , smax}.

II. Assumption on the underlying signal For
s 6 smax, let a0 ∈ Cs and let X0

def.
= (x0,j)

s
j=0 be such

that dH(x0,i, x0,j) > ∆ for i 6= j. The underlying
measure is assumed to be µ0 =

∑s
j=1 a0,jδx0,j

.
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III. Assumption on the sampling complexity
For ρ > 0, suppose that m ∈ N and {L̄i}3i=0 ∈ R4

+

are chosen such that

3∑
j=0

Fj(L̄j) 6
ρ

m
, and

3
max
j=0
{L̄2

j

3∑
i=0

Fi(L̄i) + 2

∫ ∞
L̄j

tFj(t)dt} 6
ε

m
,

(2.1)

and either one of the following hold:

m & C · s · log
(
Nd/ρ

)
log (s/ρ) , (2.2)

or m & C · s3/2 · log
(
Nd/ρ

)
, (2.3)

where C def.
= ε−2(L̄2

2B11 +L̄2
1B22 +(B0 +B2)L̄2

01), N def.
=

L3dRX (rnearε)
−1 and Lr = maxri=1 L̄i.

Remark 1. Our main theorem presents support sta-
bility guarantees under the sampling complexity rate
(2.2) if sign(a0) = (a0,i/ |a0,i|)si=1 forms a Steinhaus se-
quence, that is, iid uniformly distributed on the complex
unit circle. This assumption has been used before in
compressed sensing (Candès and Romberg, 2007; Tang
et al., 2013) to achieve this optimal complexity (see
also Foucart and Rauhut (2013), Chap. 14). As noted
in previous works, this random signs assumption is
likely to be a proof artefact, however achieving optimal
complexity without it may require more involved argu-
ments (Candes and Plan, 2011). When the signs are
arbitrary, we prove our results under (2.3). Although
this s3/2 scaling is still sub-optimal in s, we remark it
improves upon the previous theoretical rate of s2 (up to
log factors) (Li and Chi, 2017).

Remark 2. The assumption on the choice of L̄r en-
sures that with high probability, Dr [ϕω] (x) is uniformly
bounded up to r = 3. Note also that, generally, the
{L̄r} depend on m, through (2.1). However, in all our
examples: either a) supx∈X ‖Dr [ϕω] (x)‖ are already
uniformly bounded, in which case L̄i can be chosen inde-
pendently of ρ and m (for instance this is the case of the
Fejér kernel); or b) the Fr(t) are exponentially decaying,
in which case we can show that L̄r = O(log(m/ρ)p) for
some p > 0, which only incurs additional logarithmic
terms on the bounds (2.2) and (2.3). This is the case
of the Gaussian or Laplace transform kernel.

3 Main result

Our main theorem below states quantitative exact sup-
port recovery bounds under a minimum separation
condition according to dH.

Theorem 1. Let ρ > 0, suppose that K is
admissible, and that a0, X0, m and L̄i satisfy

the assumptions of Section 2.3. Let Dλ0,c0
def.
=

{(λ,w) ∈ R+ × Cm ; λ 6 λ0, ‖w‖ 6 c0λ} where c0 ∼
min

(
ε0
L̄0
, ε2
L̄2

)
and λ0 ∼ D/s with

D
def.
= amin

(
rnear

√
s, ε

√
s

L2
2‖a‖

, ε
CH(B+L2

2)

)
(3.1)

where a = min{|a0,i| , |a0,i|−1}. Suppose that either
sign(a0) is a Steinhaus sequence and m satisfies (2.2)
or sign(a0) is an arbitrary sign sequence and m satisfies
(2.3). Then, with probability at least 1− ρ,

(i) for all v def.
= (λ,w) ∈ Dλ0,c0 , (Pλ(y)) has a unique

solution which consists of exactly s spikes. Moreover,
up to a permutation of indices, the solution can be
written as

∑s
i=1 a

v
i δxvi , and sign(avi ) = sign(a0,i) for

all i = 1, . . . , s

(ii) The mapping v ∈ Dλ0,c0 7→ (av, Xv) is C 1 and we
have the error bound

‖av − a0‖+ dH(Xv, X0) 6
√
s(λ+‖w‖)

mini|a0,i| (3.2)

We detail below the values relating to the sampling
complexity corresponding to each of the examples de-
tailed in Section 1.2.1. The corresponding proofs can
be found in Section F of the appendix.

Discrete Fourier sampling The Fejer kernel of or-
der fc > 128 is admissible with ∆ = O(

√
d 4
√
smax),

rnear = 1/(8
√

2), ε0 = 0.00097, ε2 = 0.941, B01 =
O(d), B11 = B02 = B12 = O(1) and B22 = O(d).
Moreover, L̄r = O(dr/2). Hence, up to logarithmic
terms, Thm. 1 is applicable with m = O(sd3) when
the random signs assumption holds, and m = O(s

3
2 d3)

in the general case, with guaranteed support stability
when λ = O(s−1d−2), ‖w‖ = O(s−1d−3). Note that
our choice of ∆ imposes that ‖xi − xj‖2 &

√
ds

1/4
max/fc

whereas the previous result of Candès and Fernandez-
Granda (2014) requires ‖xi − xj‖∞ & Cd/fc with no
dependency in smax, however, their proof would imply
that the constant Cd grows exponentially in d. Since
we are interested in having a general theory in arbi-
trary dimension, we have opted to present a polynomial
dependency on smax.

Continuous Gaussian Fourier sampling In the
appendix we prove that the kernel is admissible with
∆ = O

(√
log smax

)
, rnear = 1/

√
2, ε0 = 1− e− 1

4 , ε2 =

e−
1
4 /2, Bij = O(1) for i + j 6 3, B22 = O(d) and

L̄r =

(
d+ log

(
dm
ρ

)2
) r

2

(as mentioned before, the

dependence in m only incurs additional logarithmic
factors in (2.2) and (2.3)). Hence, up to log factors, the
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sample complexity and noise level for the application
of Thm. 1 is the same as for the Fejér kernel.

Laplace sampling The associated kernel is ad-
missible with ∆ = O (d+ log(dsmax)), rnear = 0.2,
ε0 = 0.005, ε2 = 1.52, Bij = O(1) for i + j 6 3 and

B22 = O(d). Define R̄X =
(

1 + RX
mini αi

)d
(where we

recall that RX is the radius of X ). Assuming for
simplicity that all αj are distinct, we can set L̄r =

R̄X (RX + ‖α‖∞)r
(√

d+ maxi
1
αi

log
(
dβimR̄X
ραi

))r
Hence, choosing αi ∼ d, we have that R̄X = (1)
and up to log factors, (2.2) is O(sd7) and (2.3) is
O(s3/2d7), and support stability is guaranteed when
λ = O(s−1d−3) and ‖w‖ = O(s−1d−5). Note that
despite the stronger dependency on d, for practical
applications (microscopy), one is typically only
interested in the low dimensional setting of d = 2, 3.

Gaussian mixture learning Consider n datapoints
z1, . . . , zn ∈ Rd drawn iid from a mixture of Gaus-
sians

∑
i a0,iN (x0,i,Σ) with means x0,i ∈ X ⊂ Rd and

known covariance Σ, where X is bounded. Consider
the following procedure:

draw ωj iid fromN (0,Σ−1/d) (the 1/d normalization
is necessary to avoid an exponential dependency in d
later on)
compute the generalized moments y =

1√
m

∑n
i=1(ei〈ωj ,xi〉)mj=1

solve the BLASSO with features ϕω(x) =

ei〈ω,x〉e−
1
2‖ω‖

2
Σ , to obtain a distribution µ̃

Then, as described in the introduction, we can interpret
y as noisy Fourier measurements of µ0 =

∑
i a0,iδx0,i

in
the space of means X , where the "noise" w corresponds
to using the empirical average over the zi instead of a
true integration. It is easily bounded with probability

1−ρ by ‖w‖ 6 O
(√

log(1/ρ)
n

)
, by a simple application

of Hoeffding’s inequality (Gribonval et al., 2017).

The associated kernel is the Gaussian kernel with co-
variance (2 + d)Σ and hence, our result states that, if
‖xi − xj‖Σ−1 >

√
d log s, and the number of measure-

ments and sample complexity satisfy, up to logarithmic
terms, m = O

(
s

3
2 d3
)
, n = O

(
s2d6/mini |a0,i|2

)
and

λ0 = O
(

mini|a0,i|√
sd2‖a0‖2

)
, then, with probability 1− ρ on

both samples zj and frequencies ωj , the distribution
µ̃ is formed of exactly s Diracs, and their positions
and weights converge to the means and weights of the
GMM. Let us give a few remarks on this result.

On model selection. Besides convexity (with respect to
the distribution of means) of the BLASSO, which is

not the case of classical likelihood- or moments-based
methods for learning GMM, the most striking feature
of our approach is probably the support stability: with
a sample complexity that is polynomial in s and d, the
BLASSO yields exactly the right number of components
for the GMM. Despite the huge literature on model
selection for GMM, to our knowledge, this is one of
the only result which is non-asymptotic in sample com-
plexity, as opposed to many approaches (Roeder and
Wasserman, 1997; Huang et al., 2013) which guarantee
that the selected number of components approaches
the correct one when the number of samples grows to
infinity.

On separation condition. Our separation condition of√
d log s is, up to the logarithmic term, similar to the√
d found in the seminal work by Dasgupta (1999). This

was later improved by different methods (Dasgupta and
Schulman, 2000; Vempala and Wang, 2004), until the
most recent results on the topic (Moitra and Valianty,
2010) show that it is possible to learn a GMM with no
separation condition, provided the sample complexity is
exponential in s, which is a necessary condition (Moitra
and Valianty, 2010). As mentioned in the introduction,
similar results exist for the BLASSO: Denoyelle et al.
(2017) showed that in one dimension, one can identify
s positive spikes with no separation, provided the noise
level is exponentially small with s. Hence learning
GMM with the BLASSO and no separation condition
may be feasible, which we leave for future work, however
we note that the multi-dimensional case is still largely
an open problem (Poon and Peyré, 2017).

On known covariance. An important path for future
work is to handle arbitrary covariance. When the com-
ponents all share the same mean and have diagonal co-
variance, the Fisher metric is related, up to a change of
variables, to the Laplace transform kernel case treated
earlier. When both means and covariance vary, in one
dimension, the Fisher metric is related to the Poincaré
half-plane metric (Costa et al., 2015). In the general
case, it does not have a closed-form expression. We
leave the treatment of these cases for future work.

4 Sketch of proof

4.1 Background on dual certificates

Our approach to establishing that the solutions to
(Pλ(y)) are support stable is via the study of the asso-
ciated dual solutions in accordance to the framework
introduced in Duval and Peyré (2015). We first recall
some of their key ideas. In order to study the support
stability properties of (Pλ(y)) in the small noise regime,
we consider the limit problem as λ→ 0 and ‖w‖ → 0,
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that is

min
µ∈M(X )

|µ|(X ) subject to Φµ = y. (P0(y))

The dual of (Pλ(y)) and (P0(y)) are

min
p

{
‖y/λ− p‖22 ; ‖Φ∗p‖∞ 6 1

}
(Dλ(y))

max
p
{〈y, p〉 ; ‖Φ∗p‖∞ 6 1} . (D0(y))

Any solution µλ of (Pλ(y)) to related to the (unique)
solution pλ of (Dλ(y)) by −pλ = 1

λ (Φµλ − y) and
writing ηλ

def.
= Φ∗pλ, 〈ηλ, µλ〉 = |µλ| (X ). Note that

Supp(µλ) ⊆ {x ∈ X ; |Φ∗pλ(x)| = 1}, so ηλ “certifies”
the support of µλ and is often referred to as a dual
certificate. Furthermore, by defining the minimal norm
certificate η0 as η0

def.
= Φ∗p0 where

p0 = argmin {‖p‖2 ; p is a solution to (D0(y))}
(4.1)

one can show that pλ converges as λ → 0 to p0 and
hence ηλ converges to η0

def.
= Φ∗p0 in L∞. When λ

and ‖w‖ are sufficiently small, solutions to (Pλ(y)) are
support stable provided that η0 (called the minimal
norm certificate) is nondegenerate, that is η0(xi) =

sign(ai) for i = 1, . . . , s and ∇2 |η0|2 (xi) is negative
definite. This is proven to be an almost sharp condition
for support stability, since Duval and Peyré (2017)
provided explicit examples where |η0(x)| = 1 for some
x 6∈ {xi}i implies that (Pλ(y)) recovers more than s
spikes under arbitrarily small noise.

Pre-certificates In practice, the minimal norm cer-
tificate is hard to compute and analyse due to the
nonlinear `∞ constraint in (4.1). So, one often intro-
duces a proxy which can be computed in closed form
by solving an linear system associated to the following
least squares problem: ηX

def.
= Φ∗p where

pX
def.
= argmin{‖p‖2 ; (Φ∗p)(xi) = sign(ai),

∇(Φ∗p)(xi) = 0}.
(4.2)

Note that if ηX satisfies ‖ηX‖∞ 6 1, then ηX = η0.

Computation of ηX For x ∈ X , let ϕ(x)
def.
=

1√
m

(ϕωk(x))
m
k=1. For X = {xi}si=1 we define ΓX :

Cs(d+1) → Cm as ΓX([α, β])
def.
=

∑s
i=1 αiϕ(xi) +

∇ϕ(xi)
>βi where ∇ϕ ∈ Cm×d. Then, the minimizer

of (4.2) is pX = Γ∗,†X
(

sign(a)
0sd

)
. Furthermore, when ΓX

is full rank, we can write η̂X(x)
def.
=
∑
i α̂iK̂(xi, x) +

〈β̂i, ∇1K̂(xi, x)〉, where α̂i ∈ C, β̂i ∈ Cd are such
that

(
α̂
β̂

)
= (Γ∗XΓX)−1

(
sign(a)

0sd

)
, and the hat nota-

tion refers to the fact that we are using sub-sampled

measurements. The limit precertificate is defined as
ηX(x)

def.
=

∑
i αiK(xi, x) + 〈βi, ∇1K(xi, x)〉, where(

α
β

)
= (E[Γ∗XΓX ])−1

(
sign(a)

0sd

)
.

The key to establishing our recovery results is to show
that η̂X is nondegenerate. In this paper, we will actu-
ally prove a stronger notion of nondegeneracy:

Definition 2. Let a ∈ Cs, X = {xi}si=1 ∈ X s for
some s ∈ N, and ε0, ε2, r > 0. We say that η ∈ C 1(X )
is (ε0, ε2)-nondegenerate with respect to a, X and r if
for all i, η(xi) = sign(ai), ∇η(xi) = 0 and

∀x ∈ X far, |η(x)| 6 1− ε0

∀x ∈ X near
j , |η(x)| 6 1− ε2dH(x, xj)

2

where X near
j

def.
= {x ∈ X ; dH(xi, x) 6 r} and X far def.

=

X \
⋃s
j=1 X near

j .

Our proof proceeds in three steps:

1. Show that under admissibility of the kernel and
sufficient separation, the limit precertificate ηX0 is
non-degenerate (see Theorem 2).

2. Show that this non-degeneracy transfers to η̂X when
m is large enough and X is close to X0. This is the
purpose of Section 4.3.

3. As discussed, nondegeneracy of η̂X0
automatically

guarantees support stability when (λ,w) ∈ Dλ0,c0

for λ0 and c0 sufficiently small. To conclude we
simply need to quantify λ0 and c0. This is the pur-
pose of Section 4.4. In particular, given (λ,w), we
construct a candidate solution by means of (a quan-
titative version of) the Implicit Function Theorem,
and show that it is indeed a true solution using the
previous results.

4.2 Non-degeneracy of the limit certificate

Our first result shows that the “limit precertificate"
ηX0 is nondegenerate:

Theorem 2. Assume the kernel is admissible wrt
K (see Definition 1). Then, for s 6 smax, for all
a = (aj)

s
j=1 ∈ Cs and X = {xj}sj=1 ∈ X s such

that dH(xi, xj) > ∆, the function ηX0 is ( ε02 ,
ε2
2 )-

nondegenerate with respect to a, X and rnear.

The proof of this result can be found in Appendix B
and is a generalization of the arguments of Candès
and Fernandez-Granda (2014) (see also Bendory et al.
(2016)). We remark that unlike previous works which
focus on translation invariant kernels, the Fisher metric
provides a natural way to understand the required
separation between the points in X and thus open up
the possibility of analysing more complex problems
such as Laplace transform inversion.
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4.3 The randomized setting

For the remainder of this paper, we consider solutions of
(Pλ(y)) given y = Φµa0,X0

+ w for some fixed a0 ∈ Cs
and X0 ∈ X s. The following result shows that η̂X is
nondegenerate for all X close to X0:
Theorem 3. Let ρ > 0. Under the assumptions of
Section 2.3, and assuming that either m satisfies (2.2)
and sign(a0) is a Steinhaus sequence, or m satisfies
(2.3) and sign(a0) is an arbitrary sign sequence, with
probability at least 1− ρ: for all X ∈ X s such that

dH(X,X0) . min

(
rnear,

εr
CH
√
smax(B,L̄12L̄r)

)
, (4.3)

ΓX is full rank and η̂X is (ε0/8, ε2/8)-nondegenerate
with respect to a0, X and rnear.

The proof of this result is given in Appendix D. We
simply make a remark on the proof here: We first
prove that η̂X0

is nondegenerate by bounding variations
between ηX0

and η̂X0
. The proof of this fact is a

generalization of the arguments in Tang et al. (2013)
to the multidimensional and general operator case. We
then exploit the fact the ϕ is smooth and hence, Γ∗XΓX
satisfies certain Lipschitz properties with respect to X,
to bound the local variation between η̂X and η̂X0

.

4.4 Quantitative support recovery

This final section concludes the proof of Theorem 1
by quantifying the regions for λ and ‖w‖ for which
support stability is guaranteed.

Solution of the noisy BLASSO. Let ΦX : Cs →
Cm be defined by ΦXa =

∑s
i=1 aiϕ(xi). Recall that

µa,X =
∑
i aiδxi is a solution to the BLASSO with

y = Φµa0,X0
+ w if and only if η̂λ = Φ∗pλ, with pλ =

1
λ (y − ΦXa), satisfies ‖η̂λ‖∞ 6 1 and η̂(xj) = sign(aj).
In that case, pλ is the unique solution to the dual of
the BLASSO. Moreover, if |η̂λ(x)| < 1 for x 6= xi and
ΦX is full rank (which follows by Theorem D.2), then
µa,X is also the unique solution of the primal.

Construction of a solution Following Denoyelle
et al. (2017), we define the function f : Cs×X s×R+×
Cm by

f(u, v)
def.
= Γ∗X(ΦXa− ΦX0a0 − w) + λ

(
sign(a0)

0sd

)
where u = (a,X) and v = (λ,w). Observe that
having f(u, v) = 0 ensures the existence of η̂λ de-
fined as above that satisfies η̂λ(xi) = sign(a0,i) and
∇η̂λ(xi) = 0. We will use it to construct a non-
degenerate solution to Dλ(y) for small λ and ‖w‖. Now,
f is continuously differentiable, with explicit forms of

∂vf(u, v) and ∂uf(u, v) given in (E.1) and (E.2) in
the appendix, and in particular, letting u0 = (a0, X0),
∂uf(u0, 0) = Γ∗X0

ΓX0
Ja, where Ja is the diagonal ma-

trix with
(

1
a

)
⊗1d ∈ Cs(d+1) along its diagonal and ΓX0

is full rank (with probability at least 1− ρ) by Theo-
rem D.2. So, ∂uf(u0, 0) is invertible and f(u0, 0) = 0.
Hence, by the Implicit Function Theorem, there exists
a neighbourhood V of 0 in C×Cm, a neighbourhood U
of u0 in Cs ×X s and a Fréchet differentiable function
g : V → U such that for all (u, v) ∈ U × V , f(u, v) = 0
if and only if u = g(v). So, to establish support sta-
bility for (Pλ(y)), we simply need to estimate the size
of the neighbourhood V on which g is well defined,
and given (λ,w) ∈ V , for (a, Z) = g((λ,w)), to check
that the associated certificate η̂λ,w

def.
= Φ∗pλ,w with

pλ,w
def.
= 1

λ (ΦXa− ΦX0a0 − w) is nondegenerate.

Indeed, one can prove (see Theorem E.1)
that with probability at least 1 − ρ, V
contains the ball Br(0) with radius r ∼
1√
s

min
(

min{rnear,(CHB)−1}
mini|a0,i| , 1

L̄01L̄12(1+‖a0‖)

)
and

given any v ∈ Br(0), (a,X) = g(v) indeed satisfy the
error bound (3.2).

Checking that the candidate solution is a true
solution It remains to check that g(λ,w) defines
a valid certificate and is non-degenerate (and hence,∑
i aiδxi is the unique solution to (Pλ(y))) provided

that λ,w satisfy (3.1). Given (λ,w) ∈ V , let (a,X) =

g((λ,w)). Define η̂λ,w
def.
= 1

λΦ∗(ΦXa−ΦX0
a0 −w) and

following Denoyelle et al. (2017), one can show that

η̂λ,w = η̂X + ϕ(·)>ΠX
w

λ
+

1

λ
ϕ(·)>ΠXΦX0

a0

where ΠX is the orthogonal projection onto Im(ΓX)⊥.

Note that since we have the error bound (3.2), our
choice of λ and ‖w‖ ensures that (4.3) holds and
hence, Theorem D.2 implies that η̂X is nondegener-
ate with probablity at least 1 − ρ. To conclude, it is
sufficient to show that the two remaining terms are
sufficiently small, so that η̂λ,w remains non-degenerate.
Under Ē, ‖Dr [ϕω] (·)‖ 6 L̄r, and for any z ∈ Cm,∥∥Dr [ϕ>z] ·∥∥ 6 L̄r ‖z‖. Therefore, since ΠX is a
projection, we have

∥∥Dr [ϕ(·)>ΠX
w
λ

]∥∥ . εr when
‖w‖ /λ . εr/L̄r. Finally, since ΦX0

a0 =
∑s
j=1 ϕ(x0,j),

by Taylor expansion of ϕ(x0,j) around xj and applying
ΠX (see Lemma E.1 for this computation), we have∥∥∥∥ 1

λ
ΠXΓX0

(
a0

0sd

)∥∥∥∥ 6
L̄2

λ
‖a0‖∞ dH(X,X0)2.

Since g satisfies (3.2) our choice of λ0 =
O(s−1) ensures that we can upper bound this
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by L̄2 ‖a0‖∞
s(λ+‖w‖2/λ)

min|a0,i|2
. ε and consequently,

1
λ

∥∥Dr [ϕ(·)>ΠXΦX0
a0

]∥∥ . εr.
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A Notations.

In this section, we recall and introduce some notation which will be used throughout the appendix.

Block norms. By default, ‖·‖ is the Euclidean norm for vector and spectral norm for matrices. For a vector
x = [x1, . . . , xs] ∈ Csd formed of s blocks xi ∈ Cd, 1 6 i 6 s, we define the block norm

‖x‖block
def.
= sup

16i6s
‖xi‖2

For a vector q = [q1, . . . , qs, Q1, . . . , Qs] ∈ Cs(d+1) decomposed such that qi ∈ C and Qi ∈ Cd, we define

‖q‖∗,∞
def.
=

s
max
i=1
{|qi| , ‖Qi‖}.

Kernel The empirical kernel is defined as

K̂(x, x′) =
1

m

m∑
k=1

ϕωk(x)ϕωk(x′)

and the limit kernel is K(x, x)
def.
= Eω[ϕω(x)ϕω(x′)]. The metric tensor associated to this kernel is

Hx
def.
= Eω[∇ϕω(x)∇ϕω(x)>]

Given an event E, we write KE(x, x′)
def.
= Eω[K̂(x, x′)|E] to denote the conditional expectation on E.

Derivatives Given f ∈ C∞(X ), by interpreting the rth derivative as a multilinear map: ∇rf : (Cd)r → C, so
given Q def.

= {q`}r`=1 ∈ (Cd)r,
∇rf [Q] =

∑
i1,··· ,ir

∂i1 · · · ∂irf(x)q1,i1 · · · qr,ir .

and we define the rth normalized derivative of f as

Dr [f ] (x)[Q]
def.
= ∇rf(x)[{H−

1
2

x qi}ri=1]

with norm ‖Dr [f ] (x)‖ def.
= sup∀`,‖q`‖61 |Dr [f ] (x)[Q]|. We will sometimes make use the the multiarray interpreta-

tion: D0 [f ] = f , D1 [f ] (x) = H
− 1

2
x ∇f(x) ∈ Cd, D2 [f ] (x) = H

− 1
2

x ∇2f(x)H
− 1

2
x ∈ Cd×d.

For a bivariate function K : X × X → C, ∂1,i (resp. ∂2,i) designates the derivative with respect to the ith
coordinate of the first variable (resp. second variable), and similarly ∇i and ∇2

i denote the gradient and Hessian
on the ith coordinate respectively.

For i, j ∈ {0, 1, 2}, let K(ij)(x, x′) be a “bi”-multilinear map, defined for Q ∈ (Cd)i and V ∈ (Cd)j as

[Q]K(ij)(x, x′)[V ]
def.
= E[Di [ϕω] (x)[Q]Dj [ϕω] (x′)[V ]]

and
∥∥K(ij)(x, x′)

∥∥ def.
= supQ,V

∥∥[Q]K(ij)(x, x′)[V ]
∥∥ where the supremum is defined over all Q def.

= {q`}i`=1, V
def.
=

{v`}j`=1 with ‖q`‖ 6 1, ‖v`‖ 6 1.

When i+ j 6 2, an equivalent definition is K(ij)(x, x′) = E[Di [ϕω] (x)Dj [ϕω] (x′)
>

], and we note that K(00) = K,
and we have normalized so that Re

(
K(11)(x, x)

)
= −Re

(
K(02)(x, x)

)
. Finally, we will make use of the still

equivalent definition: [q]K(12)(x, x′) = E[q>D1 [ϕω] (x)D2 [ϕω] (x′)
>

] ∈ Cd×d.

Kernel constants For for i, j ∈ {(0, 0), (0, 1)}, define Bij
def.
= supx,x′∈X

∣∣K(ij)(x, x′)
∣∣ , for (i, j) ∈ {(0, 2), (1, 2)},

Bij
def.
= sup

{∥∥∥K(ij)(x, x′)
∥∥∥ ; dH(x, x′) 6 rnear or dH(x, x′) > ∆/2

}
.
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and define for i = 1, 2

Bii
def.
= sup

x∈X

∥∥∥K(ii)(x, x)
∥∥∥ .

For convenience, we define
Bi

def.
= B0i +B1i + 1, B

def.
=

∑
i,j∈{0,1,2}
i+j63

Bij + 1. (A.1)

Matrices and vectors We will make use of the following vectors and matrices throughout: Given X
def.
=

{xj}sj=1 ∈ X s and a ∈ Cs which are always clear from context, define the vector γX(ω) ∈ Cs(d+1) as

γX(ω)
def.
=
((
ϕω(xi)

)s
i=1

,
(
D1 [ϕω] (xi)

>)s
i=1

)>
, (A.2)

and

ΥX
def.
= Eω[γ(ω)γ(ω)∗] ∈ Cs(d+1)×s(d+1)

fX(x)
def.
= Eω[γ(ω)ϕω(x)] ∈ Cs(d+1)

α
def.
= Υ−1

X us, us =

(
sign(a)

0sd

)
.

Note that the diagonal of Υ has only 1’s. For ω1, . . . , ωm, we denote their empirical versions as:

Υ̂X
def.
=

1

m

m∑
k=1

γ(ωk)γ(ωk)∗,

f̂X(x)
def.
=

1

m

m∑
k=1

γ(ωk)ϕωk(x), α̂
def.
= Υ̂−1

X us.

which will serve us to construct our certificate, using the properties of their respective limit version.

We remark that G−1/2
X Γ∗XΓXG

−1/2
X = Υ̂X , where ΓX is defined in the main paper and

GX =


Ids 0

Hx1

. . .
0 Hxs


The vanishing derivative pre-certificate η̂X is α̂>f̂X(·) and the limit pre-certificate is ηX

def.
= α>fX(·). When the

set of points X is clear from context, we will drop the subscript X and write instead γ, Υ, f , η, and so on.

Metric induced distances Given X = (xj)
s
j=1 ∈ X s and X ′ = (x′j)

s
j=1 ∈ X s, denote dH(X,X ′)

def.
=√∑

j dH(xj , x′j)
2. Observe also that GX is positive definite for all X and induces a metric on Rs × X s so

that given a, a′ ∈ Rs and X,X ′ ∈ X s,

dG((a,X), (a′, X ′)) =

√
‖a− a′‖22 + dH(X,X ′)2.

Stochastic gradient bounds For r ∈ N,

Lr(ω) = sup
x∈X
‖Dr [ϕω] (x)‖ ,

and Lij(ω)
def.
=
√
Li(ω)2 + Lj(ω)2. For i = 0, 1, 2, 3, let Fi be such that

Pω (Lj(ω) > t) 6 Fi(t),
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Throughout, for (L̄j)
3
j=0 ∈ R4

+, the event Ē is defined as

Ē
def.
=

m⋂
k=1

Eωk where Eω
def.
= {Lj(ω) 6 L̄j , ∀j = 0, 1, 2, 3}. (A.3)

B Proof of Theorem 2

In this section, we consider the (limit) vanishing derivative pre-certificate

η(x) = u>Υ−1
X fX(x).

Note that

D2 [η] (x) =

s∑
i=1

α1,iK
(02)(xi, x) + [α2,i]K

(12)(xi, x)

where we have decomposed α = [α1,1, . . . , α1,s, α2,1, . . . , α2,s] ∈ Cs(d+1) where α2,i ∈ Cd.

We aim to prove that η is nondegenerate if K is an admissible kernel. Our first lemma shows that nondegeneracy
of η within each small neighbourhood of xi can be established by controlling the real and imaginary parts of
D2 [η] in each small region:

Lemma B.1. Let ε > 0. Let a0 6= 0, x0 ∈ X and let σ ∈ C be such that |σ| = 1. Suppose that η ∈ C 2(X ;C) is
such that η(x0) = σ, ∇η(x0) = 0 and Re (σD2 [η] (x0)) ≺ −εId. Then, ∇2 |η|2 (x0) ≺ −2εId. If in addition, we
have c, r > 0 with εr < 1 and c2 6 (1− εr2)/(εr2) such that for all x such that dH(x, x0) 6 r,

Re (σD2 [η] (x)) ≺ −εId and ‖Im (σD2 [η] (x))‖ 6 cε,

then, |η(x)|2 6 1− ε2dH(x, x0)2 for all x such that dH(x, x0) 6 r.

Proof. The first claim follows immediately from the computation: by writing η = ηr(x) + iηi(x) where ηi and ηr
are real valued functions,

1

2
D2

[
|η|2
]

= Re
(
D1 [η]D1 [η]

>
+ D2 [η] η

)
,

and evaluation at x0 gives the required result.

Let γ : [0, 1]→ X be a piecewise smooth path such that γ(0) = x0, γ(1) = x.

η(x) = η(x0) +

∫ 1

0

(1− t)〈∇2η(γ(t))γ′(t), γ′(t)〉dt

= η(x0) +

∫ 1

0

(1− t)〈D2 [η] (γ(t))H
1
2

γ(t)γ
′(t), H

1
2

γ(t)γ
′(t)〉dt.

So,

Re
(

sign(a0)η(x)
)

= 1 + inf
γ

Re

(
sign(a0)

∫ 1

0

(1− t)〈D2 [η] (γ(t))H
1
2

γ(t)γ
′(t), H

1
2

γ(t)γ
′(t)〉dt

)
6 1− εdH(x, x′)2

if we minimise over all paths from x to x0. Similarly,∥∥∥Im
(

sign(a0)η(x)
)∥∥∥ 6 cεdH(x, x0)2

Therefore,

|η(x)|2 6
∣∣1− εdH(x, x0)2

∣∣2 +
∣∣cεdH(x, x0)2

∣∣2
6 1− 2εdH(x, x0)2 + ε2dH(x, x0)4 + c2ε2dH(x, x0)4

= 1− εdH(x, x0)2 − εdH(x, x0)2
(
1− εdH(x, x0)2

(
1 + c2

))
6 1− εdH(x, x0)2.
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Proof of Theorem 2. In order to show that η is (ε0/2, ε2/2)-nondegenerate, it is enough to show that

∀x ∈ X far, |η(x)| 6 1− ε0/2 (B.1)

∀x ∈ X near, Re
(

sign(aj)D2 [η] (x)
)
≺ −ε2

2
Id and

∥∥∥Im
(

sign(aj)D2 [η] (x)
)∥∥∥ 6

p

4
ε2 (B.2)

where p =
√

1−ε2r2
near/2

ε2r2
near/2

.

We first prove that the matrix Υ is invertible. To this end, we write

Υ =

(
Υ0 Υ>1
Υ1 Υ2

)
(B.3)

where Υ0
def.
= (K(xi, xj))

s
i,j=1 ∈ Cs×s, Υ1

def.
= (K(10)(xi, xj))

s
i,j=1 ∈ Csd×s, and Υ2

def.
= (K(11)(xi, xj))

s
i,j=1 ∈

Csd×sd. By definition of K(ij), Υ (and also Υ0 and Υ2) has only 1’s on its diagonal.

To prove the invertibility of Υ, we use the Schur complement of Υ, and in particular it suffices to prove that Υ2

and the Schur complement ΥS
def.
= Υ0 −Υ1Υ−1

2 Υ>1 are both invertible. To show that Υ2 is invertible, we define
Aij = K(11)(xi, xj). So Υ2 has the form:

Υ2 =


Id A12 . . . A1s

A21 Id
. . .

...
...

. . . . . .
...

As1 . . . . . . Id


and by Lemma G.6, we have

‖Id−Υ2‖block 6 max
i

∑
j

‖Aij‖ 6 1/4.

Since ‖Id−Υ2‖block < 1, Υ2 is invertible, and we have
∥∥Υ−1

2

∥∥
block 6 1

1−‖I−Υ2‖block
6 4

3 . Next, again with Lemma
G.6, we can bound

‖I −Υ0‖∞ = max
i

∑
j 6=i

|K(xi, xj)| 6
ε0

16

‖Υ1‖∞→block 6 max
i

∑
j

∥∥∥K(10)(xi, xj)
∥∥∥ 6 h since K(10)(x, x) = 0

∥∥Υ>1
∥∥

block→∞ 6 max
i

∑
j

∥∥∥K(10)(xj , xi)
∥∥∥ 6 h

Hence, we have

‖I −ΥS‖∞ 6 ‖I −Υ0‖∞ +
∥∥Υ>1

∥∥
block→∞

∥∥Υ−1
2

∥∥
block ‖Υ1‖∞→block 6

ε0

16
+

4

3
h2 6

ε0

8
(B.4)

since h 6 ε0
32 . Therefore the Schur complement of Υ is invertible and so is Υ.

Expression of η. By definition, η = satisfies η(xi) = sign(ai) and ∇η(xi) = 0.

We divide:
α = Υ−1us =

(
α1

α2

)
where α1 ∈ Cs and α2 ∈ Csd, and we denote α2,i ∈ Cd blocks such that α2 = [α2,1, . . . , α2,s].
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The Schur’s complement of Υ allows us to express α1 and α2 as

α1 = Υ−1
S sign(a), α2 = −Υ−1

2 Υ1Υ−1
S sign(a) (B.5)

and therefore we can bound

‖α1‖∞ 6
1

1− ε0/8
(B.6)

‖α2‖block 6
8

3
h 6 4h (B.7)

Moreover, we have

‖α1 − sign(a)‖∞ 6
∥∥I −Υ−1

S

∥∥
∞ 6

∥∥Υ−1
S

∥∥
∞ ‖I −ΥS‖∞ 6

1

4
(B.8)

Non-degeneracy. We can now prove that η is non-degenerate.

Let x be such that dH(xi, x) 6 rnear. We need to prove that for all x such that dH(x, xi) 6 r,

Re
(

sign(ai)D2 [η] (x)
)
≺ −ε2

2
Id and

∥∥∥Im
(

sign(ai)D2 [η] (x)
)∥∥∥ 6

ε2

2

√
2− εr2

near

ε2r2
near

.

Then, since rnear 6 ∆/2 and the xi’s are ∆-separated, for all j 6= i we have dH(x, xj) > ∆/2. Then, we have

sign(ai)D2 [η] (x) = sign(ai)

[
α1,iK

(02)(xi, x) +
∑
j 6=i

α1,jK
(02)(xj , x)

+ [α2,i]K
(12)(xi, x) +

∑
j 6=i

[α2,j ]K
(12)(xj , x)

]

Re
(

sign(ai)D2 [η] (x)
)
4 (1− ‖α1 − sign(a)‖∞)Re

(
K(02)(xi, x)

)
+ ‖α1‖∞

∑
j 6=i

∥∥∥K(02)(xj , x)
∥∥∥ Id

+

∥∥∥K(12)(xi, x)
∥∥∥+

∑
j 6=i

∥∥∥K(12)(xj , x)
∥∥∥
 ‖α2‖block Id

4

(
− 3

4
ε2 +

1

1− ε0/8

ε2

16
+ 4h(B12 + 1)

)
Id 4 ε2

(
−3

4
+

1

4

)
Id 4 −ε2

2
Id .

Taking the imaginary part, we have∥∥∥Im
(

sign(ai)D2 [η] (x)
)∥∥∥ 6 (1 + ‖α1 − sign(a)‖)

∥∥∥Im
(
K(02)(xi, x)

)∥∥∥+ ‖α1‖∞
∑
j 6=i

∥∥∥K(02)(xj , x)
∥∥∥

+

∥∥∥K(12)(xi, x)
∥∥∥+

∑
j 6=i

∥∥∥K(12)(xj , x)
∥∥∥
 ‖α2‖block

6

(
5cε2

4
+

1

(1− ε0/8)
h+ 4h(B12 + 1)

)
6

5cε2

4
+ h (4B12 + 6) 6

ε2

2

√
2− εr2

near

ε2r2
near

.

So, by Lemma B.1, for each i = 1, . . . , s, |η(x)| 6 1− ε2/2dH(x, xi) for all x ∈ X such that dH(x, xi) 6 rnear.

Next, for any x such that dH(x, xi) > rnear for all xi’s, we can say that there exists (at most) one index i such



Support Localization and the Fisher Metric for off-the-grid Sparse Regularization

that dH(x, xi) > rnear and for all j 6= i we have dH(x, xj) > ∆/2. We have

|η(x)| =

∣∣∣∣∣α1,iK(xi, x) +
∑
j 6=i

α1,jK(xj , x)

+K(10)(xi, x)>α2,i +
∑
j 6=i

K(10)(xj , x)>α2,j

∣∣∣∣∣
6 ‖α1‖∞

|K(xi, x)|+
∑
j 6=i

|K(xj , x)|


+ ‖α2‖block

∥∥∥K(10)(xi, x)
∥∥∥+

∑
j 6=i

∥∥∥K(10)(xj , x)
∥∥∥


6
1− ε0 + ε0/16

1− ε0/8
+ 4h(B10 + 1) 6 1− ε0

2
.

Remark B.1. Assuming that the derivatives of the kernel decay like a function f(‖x− x′‖) when, there is always
a separation ∆ ∝ f−1(1/(Csmax))) such that the kernel is admissible. Ex: when f = x−p, we have ∆ ∝ s1/p

max (eg
Cauchy). When f = e−x

p

, we have ∆ ∝ log1/p(smax) (eg Gaussian).

C Preliminaries

In this section, we present some preliminary results which will be used for proving our main results. We assume that
K is admissible, and given a set of points X ∈ X s, let X near

j
def.
= {x ∈ X ; dH(x, xj) 6 rnear}, X near def.

=
⋃s
j=1 X near

j

and X far def.
= X \ X near.

C.1 On the determistic kernel

For an admissible kernel, we have the following additional bounds that will be handy.

Lemma C.1. Assume K is an admissible kernel, let X ∈ X s be ∆-separated points. Then we have the following:

(i) We have seen that Υ is invertible. Additionally it satisfies

‖Id−Υ‖ 6 1

2
and ‖Id−Υ‖∗,∞ 6

1

2
. (C.1)

(ii) For any vector q ∈ Cs(d+1) and any x ∈ X far, we have

‖f(x)‖ 6 B0 and
∣∣q>f(x)

∣∣ 6 B0 ‖q‖∗,∞ (C.2)

(iii) For any vector q ∈ Cs(d+1) and any x ∈ X near we have the bound:∥∥D2

[
q>f(.)

]
(x)
∥∥ 6 ‖q‖B2 and

∥∥D2

[
q>f(.)

]
(x)
∥∥ 6 ‖q‖∗,∞B2 (C.3)

Proof. We bound the spectral norm of Id − Υ. Define y ∈ Cs(d+1) decomposed as y = [y1, . . . , ys, Y1, . . . , Ys]
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where Yi ∈ Rd, such that ‖y‖ 6 1. We have

‖(Id−Υ)y‖2 =

s∑
i=1

∣∣∣∣∣∣
∑
j 6=i

K(xi, xj)yj +

s∑
j=1

K(10)(xi, xj)
>Yj

∣∣∣∣∣∣
2

+

∥∥∥∥∥∥
∑
j

yjK
(10)(xi, xj) +

∑
j 6=i

K(11)(xi, xj)Yj

∥∥∥∥∥∥
2

6
s∑
i=1

∑
j 6=i

|K(xi, xj)| |yj |+
s∑
j=1

∥∥∥K(10)(xi, xj)
∥∥∥ ‖Yj‖

2

+

∑
j

|yj |
∥∥∥K(10)(xi, xj)

∥∥∥+
∑
j 6=i

∥∥∥K(11)(xi, xj)
∥∥∥ ‖Yj‖

2

6 max
dH(x,x′)>∆

(
|K(x, x′)| ,

∥∥∥K(10)(x, x′)
∥∥∥ ,∥∥∥K(11)(x, x′)

∥∥∥)2∑
i

2

∑
j

|yj |+ ‖Yj‖

2

6 4s2 max
dH(x,x′)>∆

(
|K(x, x′)| ,

∥∥∥K(10)(x, x′)
∥∥∥ ,∥∥∥K(11)(x, x′)

∥∥∥)2

by Cauchy-Schwartz inequality and since K(10)(x, x) = 0 for all x ∈ X . Since by hypothesis we have

max
dH(x,x′)>∆

(
|K(x, x′)| ,

∥∥∥K(10)(x, x′)
∥∥∥ ,∥∥∥K(11)(x, x′)

∥∥∥) 6
1

4smax
,

we obtain
‖Id−Υ‖ 6 1

2
(C.4)

and we deduce (i). A near identical argument also yields ‖Υ− Id‖∗,∞ 6 1
4 .

For (ii), let x ∈ X far, then we have

‖f(x)‖ 6

(
s∑
i=1

|K(xi, x)|2 +
∥∥∥K(10)(xi, x)

∥∥∥2
) 1

2

6

(
B2

00 +
(s− 1)ε2

0

(16smax)2
+B2

10 +
(s− 1)

s2
max

) 1
2

6 B0

for which, similar to the proof above, we have used the fact that x is ∆/2-separated from at least s− 1 points xi.
Similarly, for any vector q = [q1, . . . , qs, Q1, . . . , Qs] ∈ Cs(d+1) and any x ∈ X far, we have

∥∥q>f(x)
∥∥ 6

s∑
i=1

|qi| |K(xi, x)|+ ‖Qi‖
∥∥∥K(10)(xi, x)

∥∥∥
6 ‖q‖∗,∞

(
B00 +

(s− 1)ε0

32smax)
+B10 +

(s− 1)ε0

32smax

)
6 B0 ‖q‖∗,∞ .
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For any x ∈ X near we have the bound:

∥∥D2

[
q>f

]
(x)
∥∥ =

∥∥∥∥∥
s∑
i=1

qiK
(02)(xi, x) + [Qi]K

(12)(xi, x)

∥∥∥∥∥
6 ‖q‖

(
s∑
i=1

∥∥∥K(02)(xi, x)
∥∥∥2

+
∥∥∥K(12)(xi, x)

∥∥∥2
) 1

2

6 ‖q‖B2

and

∥∥D2

[
q>f

]
(x)
∥∥ =

∥∥∥∥∥
s∑
i=1

qiK
(02)(xi, x) + [Qi]K

(12)(xi, x)

∥∥∥∥∥
6 ‖q‖∗,∞

(
s∑
i=1

∥∥∥K(02)(xi, x)
∥∥∥+

∥∥∥K(12)(xi, x)
∥∥∥)

6 ‖q‖∗,∞B2

C.2 Lipschitz bounds

Lemma C.2 (Local Lipschitz constant of ϕω and higher order derivatives). Suppose that ‖Dj [ϕω] (x)‖ 6 L̄j for
all x ∈ X . For all x, x′ with dH(x, x′) 6 rnear, we have

(i) |ϕω(x)− ϕω(x′)| 6 L0dH(x, x′),

(ii) ‖D1 [ϕω] (x)−D1 [ϕω] (x′)‖ 6 L1dH(x, x′),

(iii) ‖D2 [ϕω] (x)−D2 [ϕω] (x′)‖ 6 L2dH(x, x′),

where L0
def.
= L̄1, L1

def.
= L̄1CH + L̄2(1 + CHrnear) and L2

def.
= L̄2

(
CH + C2

Hrnear + 1
)

+ L̄3(1 + CHrnear)
2. As a

consequence, for all X = (xj) and X ′ = (x′j) such that dH(xj , x
′
j) 6 rnear, we have

sup
‖q‖=1

∥∥∥Dr [q>(f̂X − f̂X′)
]

(y)
∥∥∥ 6 L̄r

√
L2

0 + L2
1dH(X,X ′).

Proof. Let x, x′ ∈ X with dH(x, x′) 6 rnear. Recall that
∥∥∥H 1

2

x′H
− 1

2
x − Id

∥∥∥ 6 CHdH(x, x′), and so,
∥∥∥H 1

2

x′H
− 1

2
x

∥∥∥ 6

1 + CHrnear.

Let p : [0, 1]→ X be a piecewise smooth path such that p(0) = x′, p(1) = x. Then, by Taylor’s theorem,

ϕω(x)− ϕω(x′) =

∫ 1

t=0

〈H−
1
2

p(t)∇ϕω(p(t)), H
1
2

p(t)p
′(t)〉dt 6 L̄1

∫ 1

0

∥∥∥H 1
2

p(t)p
′(t)
∥∥∥ dt (C.5)

so taking the minimum over all paths p yields |ϕω(x)− ϕω(x′)| 6 L̄1dH(x, x′).

Given q ∈ Rd, by Taylor’s theorem,

D1 [ϕω] (x)[q] = ∇ϕ(x)[H
− 1

2
x q] = ∇ϕ(x′)[H

− 1
2

x q] +

∫
∇2ϕω(p(t))[H

− 1
2

x q, p′(t)]dt

= D1 [ϕω] (x′)[q] + D1 [ϕω] (x′)[(H
1
2

x′H
− 1

2
x − Id)q] +

∫
D2 [ϕω] (p(t))[H

1
2

p(t)H
− 1

2
x q,H

1
2

p(t)p
′(t)]dt

(C.6)

Therefore,
‖D1 [ϕω] (x)−D1 [ϕω] (x′)‖ 6 L̄1CHdH(x, x′) + L̄2(1 + CHrnear)dH(x, x′).
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Finally, for all q1, q2 ∈ Rd, by Taylor’s theorem

D2 [ϕω] (x)[q1, q2]−D2 [ϕω] (x′)[q1, q2]

= ∇2ϕω(x)[H
− 1

2
x q1,H

− 1
2

x q2]−∇2ϕω(x′)[H
− 1

2

x′ q1,H
− 1

2

x′ q2]

= D2 [ϕω] (x′)[H
1
2

x′H
− 1

2
x q1, (H

1
2

x′H
− 1

2
x − Id)q2] + D2 [ϕω] (x′)[(H

1
2

x′H
− 1

2
x − Id)q1, q2]

+

∫
D3 [ϕω] (p(t))[H

1
2

p(t)H
− 1

2
x q1,H

1
2

p(t)H
− 1

2
x q2,H

1
2

p(t)p
′(t)]dt.

(C.7)

Therefore,

‖D2 [ϕω] (x)−D2 [ϕω] (x′)‖ 6
(
L̄2 ((1 + CHrnear)CH + 1) + L̄3(1 + CHrnear)

2
)
dH(x, x′).

By applying these Lipschitz bounds, we obtain

sup
‖q‖=1

∥∥∥Dr [q>(f̂X − f̂X′)
]

(y)
∥∥∥2

6
s∑
j=1

∥∥∥K̂(0r)(xj , y)− K̂(0r)(x′j , y)
∥∥∥2

+

s∑
j=1

∥∥∥K̂(1r)(xj , y)− K̂(1r)(x′j , y)
∥∥∥2

6
s∑
j=1

L2
0L̄

2
rdH(xj , x

′
j)

2 +

s∑
j=1

L2
1L̄

2
rdH(xj , x

′
j)

2

=
(
L2

0 + L2
1

)
L̄2
rdH(X,X ′)2

Lemma C.3 (Local Lipschitz constant of K̂(ij)). Let x1, x0 ∈ X . Let i, j ∈ {0, 1, 2} with i+ j 6 3. Define

Aij = sup
x

∥∥∥K̂(ij)(x, x0)
∥∥∥

where x ranges over dH(x, x1) 6 rnear. Then, for all x such that dH(x, x1) 6 rnear,∥∥∥K̂(0j)(x, x0)− K̂(0j)(x1, x0)
∥∥∥ 6 A1jdH(x, x1)∥∥∥K̂(1j)(x, x0)− K̂(1j)(x1, x0)
∥∥∥ 6 (CHA1j + (1 + CHrnear)A2j) dH(x, x1)

The same results hold if we replace K̂ by K.

Proof. The Lipschitz bounds on K̂ij follow by combining

[q1, . . . , qi](K̂
(ij)(x, x0)− K̂(ij)(x1, x0))[v1, . . . , vj ]

= ÊRe
(

(Di [ϕω] (x)−Di [ϕω] (x1))[q1, . . . , qi]Dj [ϕj ] (x0)[v1, . . . , vj ]
)

where Ê indicates either empirical expectation or true expectation with (C.5), (C.6) and (C.7).

C.3 Probability bounds

In the proof of our main results, we will often assume that event Ē (see (A.3)) holds since our assumptions
in Section 2.3 imply that P(Ēc) 6 ρ/m. The following lemma shows that our assumptions also imply that
Eω[Li(ω)21Ecω ] 6 ε

m . and this is a condition which our proofs will often rely upon.
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Lemma C.4. The following holds. P(Ecω) 6
∑
i Fi(L̄i) and

Eω[Lj(ω)21Ecω ] 6 2

∫ ∞
L̄j

tFj(t)dt+ L̄2
j

∑
i

Fi(L̄i)

Proof. Let Eω,j be the event that Lr(ω) 6 L̄r, so Eω = ∩3
j=0Eω,j . By the union bound, P(Ecω) 6

∑
j P(Ecω,j) 6∑

i Fi(L̄i).

For the second claim, observe that Ecω = ∪iEcω,i so that E[Lj(ω)21Ecω ] 6
∑
i E[Lj(ω)21Ecω,i ] and we have

E[Lj(ω)21Ecω,i ] =

∫ ∞
0

P(Lj(ω)21Ecω,i > t)dt

=

∫ ∞
0

P
(
(Lj(ω)2 > t) ∩ (Li(ω) > L̄i)

)
dt

6 L̄2
jFi(L̄i) +

∫ ∞
L̄2
j

Fj(
√
t)dt = L̄2

jFi(L̄i) + 2

∫ ∞
L̄j

tFj(t)dt

where we have bounded P
(
(Lj(ω)2 > t) ∩ (Li(ω) > L̄i)

)
by respectively P(Li(ω) > L̄i) 6 Fi(L̄i) in the first term

and by P(Lj(ω)2 > t) 6 Fj(
√
t) in the second term.

C.3.1 Concentration inequalities

The following result is an adaption of the Matrix Bernstein inequality for dealing with conditional probabilities.

Lemma C.5 (Adapted unbounded Matrix Bernstein). Let Aj ∈ Rd1×d2 be a family of iid matrices for j = 1, . . . ,m.
Let Z = 1

m

∑m
j=1Aj and let Z̄ = E[Z]. Let t ∈ (0, 4 ‖E[A1]‖]. Let events Ej be independent events such that

Ej ⊆ {‖Aj‖ 6 L} and let E = ∩jEj. Suppose that we have

P(Ecj ) 6
t

t+ 4 ‖E[A1]‖
and E[‖Aj‖ 1Ecj ] 6

t

4

Then a first consequence is that we have EE [Z] = EEj [Aj ] for all j and ‖E[Z]− EE [Z]‖ 6 t
2 .

Finally, assuming that
σ2 def.

= max
j
{
∥∥EEj [AjA∗j ]∥∥ ,∥∥EEj [A∗jAj ]∥∥} <∞

we have

PE (‖Z − E[Z]‖ > t) 6 (d1 + d2) exp

(
− mt2/4

σ2 + Lt/3

)
.

Proof. We first bound ‖E[Z]− EE [Z]‖. First observe that E[Z] = EE1
[A1] and EEZ = EE1

[A1] since Aj are iid.
Moreover,

E[A1] = E[A11E1
] + E[A11Ec1 ] = E[A1|E1]P(E1) + E[A11Ec1 ].

Hence,

‖E[A1]− EE1
[A1]‖ =

∥∥(P (E1)− 1)EE1
[A1] + E[A11Ec1 ]

∥∥
6 P(Ec1) ‖E[A1]‖+ P (Ec1) ‖E[A1]− EE1

[A1]‖+ E[‖A1‖ 1Ec1 ].

Therefore,

‖E[A1]− EE1
[A1]‖ 6

P (Ec1) ‖E[A1]‖+ E[‖A1‖ 1Ec1 ]

1− P(Ec1)
6
t

2

For the second statement,

PE(‖Z − E[Z]‖ > t) 6 PE(‖Z − EE [Z]‖ > t− ‖E[Z]− EE [Z]‖)
6 PE(‖Z − EE [Z]‖ > t/2).
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To conclude, we apply Bernstein’s inequality (Lemma G.2) to Yj = Aj−E[Aj |E] = Yj = Aj−E[Aj |Ej ] conditional
to E. Observe that

0 � EE [YjY
>
j ] � EE [AjA

>
j ]− EE [Aj ]EE [Aj ]

>] � EE [AjA
>
j ],

which yields
∥∥EE [YjY

>
j ]
∥∥ 6

∥∥E[AjA
>
j ]
∥∥ and similarly,

∥∥EE [Y >j Yj ]
∥∥ 6

∥∥EE [A>j Aj ]
∥∥. So by Bernstein’s inequality

PE(‖Z − EE [Z]‖ > t/2) 6 2(d1 + d2) exp

(
− mt2/4

σ2 + Lt/3

)
.

Corollary C.1. Let x, x′ ∈ X . If

P(Ecω) 6
t

t+ 4
∥∥K(ij)(x, x′)

∥∥ and E[Lij(ω)1Ecω ] 6
t

4

then
∥∥∥K(ij)

Ē
(x, x′)−K(ij)(x, x′)

∥∥∥ 6 t/2.

Proposition C.1. Let t > 0 and assume that

P(Ecω) 6
t

t+ 6
and E[L01(ω)21Ecω ] 6

t

4s

then ‖Υ−ΥĒ‖ 6 t/2 and

PĒ(
∥∥∥Υ− Υ̂

∥∥∥ > t) 6 4(d+ 1)s exp

(
− mt2/4

sL̄2
01(3 + t/3)

)
Consequently,

PĒ(
∥∥∥Υ−1 − Υ̂−1

∥∥∥ > t) 6 4(d+ 1)s exp

(
− mt2

16sL̄2
01(3 + 2t̃)

)
.

Proof. We apply Lemma C.5 to Aj = γ(ωj)γ(ωj)
∗ with the following observations:

• for each ω,
‖γ(ω)γ(ω)∗‖ 6 ‖γ(ω)‖2 6 smax

x∈X
{‖D1 [ϕω] (x)‖2 + |ϕω(x)|2},

so under event Ē, ‖Aj‖ 6 sL̄2
01.

• By Lemma C.1, ‖E[Aj ]‖ = ‖Υ‖ 6 3/2,

• We may set σ2 = L̄01(3/2 + t/2) since

0 � EĒ [A1A
∗
1] = EĒ [A∗1A1] = EĒ [‖γ(ωj)‖2 γ(ωj)γ(ωj)

∗] � L̄01(‖E[Aj ]‖+ t/2)Id.

The last claim is because
∥∥∥Υ− Υ̂

∥∥∥ 6 t implies that ‖Υ‖ 6 3/2 + t,
∥∥Υ−1

∥∥ 6 ‖Υ‖
1−‖Υ−Υ̂‖‖Υ−1‖

6 3
2−4t and∥∥∥Υ−1 − Υ̂−1

∥∥∥ 6
∥∥Υ−1

∥∥∥∥∥Υ− Υ̂
∥∥∥∥∥∥Υ̂−1

∥∥∥ 6 3t
1−2t and writing t̃ = 3t

1−2t is equivalent to t = t̃/(3 + 2t̃).

Bounds on f̂X applied to a fixed vector

Proposition C.2. Let t ∈ (0, 1), r ∈ {0, 2}, q ∈ Cs(d+1) and y ∈ Xr, where X0
def.
= X and X2

def.
= X near. If

P(Ecω) 6
t

t+ 4Br
and E[L01(ω)Lr(ω)1Ecω ] 6

t

4
√
s

then

PĒ
(∥∥∥Dr [(f̂X0 − fX0)>q

]
(y)
∥∥∥ > t ‖q‖

)
6 2d̃ exp

(
−mt2/4

2L̄2
r + L̄rL̄01t/(3

√
s)

)



Support Localization and the Fisher Metric for off-the-grid Sparse Regularization

where d̃ = 1 if r = 0 and d̃ = d if r = 2.

As a consequence, since
√

2s ‖q‖∗,∞ > ‖q‖2, we have

PE
(∥∥∥Dr [(fX0 − f̂X0)>q

]
(y)
∥∥∥ > t ‖q‖∗,∞

)
6 2d̃ exp

(
−mt2

16s(L̄2
r + 8L̄rL̄01t/(3

√
2))

)
provided that

P(Ecω) 6
t

t+ 4
√

2sBr
and E[L01(ω)Lr(ω)1Ecω ] 6

t

4
√

2s
.

Proof. Without loss of generality, assume that ‖q‖ = 1. First note that

Dr
[
(f̂X0

− fX0
)>q
]

(y) =
1

m

m∑
k=1

q>γ(ωk)Dr [ϕωk ] (y)− E[q>γ(ωk)Dr [ϕωk ] (y)].

We first consider the case of r = 0. We apply Lemma C.5 to Ak
def.
= q>γ(ωk)ϕωk(y) ∈ C: Note that |Ak| 6√

sL01(ωk)L0(ωk) and |E[Ak]| 6 B0.

• Under event Eωk , ‖Ak‖ 6 L̄2L̄01
√
s

def.
= L.

• EĒ |Ak|
2

= EĒ [〈γ(ωk)γ(ωk)∗q, q〉 |ϕωk(y)|2] 6 L̄2
0 ‖ΥĒ‖ 6 (3/2 + t/2) L̄2

0 6 2L̄2
0

def.
= σ2.

For the case r = 2, we apply Lemma C.5 with Ak
def.
= q>γ(ωk)D2 [ϕωk ] (y) ∈ Cd×d. Then, ‖Ak‖ 6

√
sL01(ωk)L2(ωk), ‖E[Ak]‖ 6 B2, under event Eωk , ‖Ak‖ 6 L̄2L̄01

√
s

def.
= L and

‖EĒ [AkA
∗
k]‖ = ‖EĒ [A∗kAk]‖ =

∥∥∥EĒ [D2 [ϕωk ] (y)∗D2 [ϕωk ] (y)
∣∣q>γ(ωk)

∣∣2]
∥∥∥ 6 L̄2

2EĒ [
∣∣q>γ(ωk)

∣∣2] 6 2L̄2
2

def.
= σ2.

Lemma C.6. Assume that

P(Ecω) 6
t

t+ 6
√

2s
and E[L01(ω)21Ēc ] 6

t

4
√

2s3/2

Let q ∈ Cs(d+1). Then, for all t > 2
√

2sL̄01L̄1

m +

√
8s2L̄2

01L̄
2
1

m2 +
144sL̄2

1

m , we have for each xi ∈ X,

PE
(∥∥∥D1

[
q>(fX − f̂X)

]
(xi)

∥∥∥
2
> 2t ‖q‖∗,∞

)
6 28 exp

(
− mt2/(4s)

2L̄2
1 +
√

2tL̄1L̄01/3

)
.

Proof. For each xi ∈ X, ∥∥∥D1

[
(EĒ [q>f̂X ]− q>fX)

]
(xi)

∥∥∥ 6 ‖Υ−ΥĒ‖ ‖q‖ 6
t√
2s
‖q‖ ,

by Proposition C.1. For convenience, we drop the subscript X from fX . Fix i ∈ {1, . . . , s}. Observe that

PE
(∥∥∥D1

[
q>(f − f̂)

]
(xi)

∥∥∥
2
> 2t ‖q‖∗,∞

)
6 PE

(∥∥∥D1

[
q>(f − f̂)

]
(xi)

∥∥∥
2
>

2t√
2s
‖q‖2

)
6 PE

(∥∥∥D1

[
q>(EĒ [f̂ ]− f̂)

]
(xi)

∥∥∥
2
>

t√
2s
‖q‖2

)

The claim of this lemma follows by applying Lemma G.3: Let

Yk = D1 [ϕωk ] (xi)γ(ωk)>q − EĒD1 [ϕωk ] (xi)γ(ω)>q ∈ Cd,
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and observe that D1

[
q>(f̂ − EĒ [f̂ ])

]
(xi) = 1

m

∑
k Yk. Without loss of generality, assume that ‖q‖2 = 1. We

apply Lemma G.3. Observe that conditional on event E,

• ‖Yk‖2 6 2 ‖q‖2 ‖γ(ωk)‖2 ‖D1 [ϕωk ] (xi)‖2 6 2
√
sL̄01L̄1.

• EE ‖Yk‖2 6 EE [
∣∣γ(ωk)>q

∣∣2 D1 [ϕωk ] (xi)D1 [ϕωk ] (xi)
>] 6 L̄2

1 ‖ΥE‖. So, σ2 6 mL̄2
1 ‖ΥE‖ 6 mL̄2

1(t+ ‖Υ‖) 6
mL̄2

1(t/2 + 3/2) 6 2mL̄2
1 (here we are talking about the σ2 in Lemma G.3).

Therefore, for all

t >
2
√

2sL̄01L̄1

m
+

√
8s2L̄2

01L̄
2
1

m2
+

144sL̄2
1

m

P

(∥∥∥∥∥ 1

m

m∑
k=1

Yk

∥∥∥∥∥
2

>
t√
2s

)
6 28 exp

(
− mt2/(4s)

2L̄2
1 +
√

2tL̄1L̄01/3

)

Proposition C.3 (Block norm bound on Υ̂ applied to a fixed vector). Suppose that

P(Ecω) 6
t

t+ 6
√
s(B0 + 1)

and E[L01(ω)21Ēc ] 6
t

4s3/2(1 + 4B0)

Then, for all

t >

(
4
√

2sL̄01L̄1

m
+

√
32s2L̄2

01L̄
2
1

m2
+

576sL̄2
1

m

)
we have

PE
(∥∥∥(Υ− Υ̂)q

∥∥∥
∗,∞

> t ‖q‖∗,∞

)
6 32s exp

(
− mt2

s
(
32L̄2

1 + 34tL̄1L̄01

)) . (C.8)

Proof. Let S0
def.
= {1, . . . , s} and Sj

def.
= {s+ (j − 1)d+ 1, . . . , s+ jd} for j = 1, . . . , s. Observe that by the union

bound

PE
(∥∥∥(Υ− Υ̂)q

∥∥∥
∗,∞

> t ‖q‖∗,∞

)
6 PE

(∥∥∥((Υ− Υ̂)q)S0

∥∥∥
∞

> t ‖q‖∗,∞
)

+

s∑
j=1

PE
(∥∥∥((Υ− Υ̂)q)Sj

∥∥∥
2
> t ‖q‖∗,∞

)
6

s∑
j=1

PE
(∣∣∣((Υ− Υ̂)q)j

∣∣∣ > t ‖q‖∗,∞
)

+

s∑
j=1

PE
(∥∥∥((Υ− Υ̂)q)Sj

∥∥∥
2
> t ‖q‖∗,∞

)
.

(C.9)

To bound the first sum, observe that ((Υ− Υ̂)q)j = (f(xj)− f̂(xj))
>q and ((Υ− Υ̂)q)Sj = D1

[
q>(f − f̂)

]
(xj).

So, the first sum can be bounded by applying Proposition C.2. The second sum can be bounded by applying
Lemma C.6.

Norm bounds for f̂ We will repeatedly make use of the following result on f̂X . This result is due to
concentration bounds on the kernel K̂ which are derived subsequently.

Proposition C.4 (Bound on f̂X). Let X ∈ X s. Let ρ > 0. Assume that for all (i, j) ∈ {(0, 0), (1, 0), (0, 2), (1, 2)},

P(Ecω) 6
t

t+ 4
√
smax{B0, B2}

, E[Li(ω)Lj(ω)1Ecω ] 6
t

4
√
s
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Then, given any y ∈ X ,

PĒ
(∥∥∥f̂X(y)− fX(y)

∥∥∥ > t
)
6 4sd exp

(
−mt

2/8

3sL̄2
01

)
. (C.10)

and given any y ∈ X near, writing f̂X = (f̂j)
p
j=1 and fX = (fj)

p
j=1 with p = s(d+ 1), we have

PĒ

 sup
‖q‖=1

√√√√ p∑
j=1

∥∥∥D2

[
f̂j − fj

]
(y)q

∥∥∥2

> t

 6 s(3d+ d2) exp

(
− mt2/8

s(L̄2
2B11 + L̄2

1B22 + L̄01L̄2)

)
. (C.11)

Proof. Let i, j ∈ N0 with i+ j 6 2. Let [s]
def.
= {1, . . . , s} and I def.

= {(0, 0), (1, 0)}, By Lemma C.7 and the union
bound,

PĒ
(
∃(i, j) ∈ I, ∃` ∈ [s],

∥∥∥K̂(ij)(x`, y)−K(ij)(x`, y)
∥∥∥ >

t√
s

)
6 4sd exp

(
−mt

2/4

3sL̄2
01

)
. (C.12)

So, (C.10) follows because

∥∥∥f̂X(y)− fX(y)
∥∥∥ 6

√√√√ s∑
i=1

∣∣∣K̂(xi, y)−K(xi, y)
∣∣∣2 +

∥∥∥K̂(10)(xi, y)−K(10)(xi, y)
∥∥∥2

6
√

2t.

By Lemma C.7, Lemma C.9 and the union bound, letting I2
def.
= {(0, 2), (1, 2)}, we have

PĒ
(
∃(i, j) ∈ I2,∃` ∈ [s],

∥∥∥K̂(ij)(x`, y)−K(ij)(x`, y)
∥∥∥ >

t√
s

)
6 2sd exp

(
− mt2/4

2s(L̄2
2 + L̄0L̄2)

)
+ s(d+ d2) exp

(
− mt2/4

s(L̄2
2B11 + L̄2

1B22 + L̄1L̄2)

)
.

(C.13)

and (C.11) follows since given q ∈ Cd, ‖q‖ = 1, we have

p∑
j=1

∥∥∥D2

[
f̂j − fj

]
(y)q

∥∥∥2

6
s∑
j=1

(∥∥∥K̂(02)(xj , y)−K(02)(xj , y)
∥∥∥2

+
∥∥∥K̂(12)(xj , y)−K(12)(xj , y)

∥∥∥2
)

6 2t2

Lemma C.7 (Concentration on kernel). Let t > 0, x, x′ ∈ X . Let i, j ∈ N0 with i+ j 6 2. Assume

P(Ecω) 6
t

t+ 4
∥∥K(ij)(x, x′)

∥∥ , E[Li(ω)Lj(ω)1Ecω ] 6
t

4

then

PĒ
(∥∥∥K̂(ij)(x, x′)−K(ij)(x, x′)

∥∥∥ > t
)
6 2d exp

(
− mt2

L̄2
p(bij + 1) + L̄iL̄jt/3

)

where p = max (i, j) and bij = 1 if min (i, j) = 0 and bij
def.
=
∥∥K(11)(x, x′)

∥∥ otherwise.

Proof. It is an immediate application of Lemma C.5 with Ak = Re
(
Di [ϕωk ] (x)Dj [ϕωk ] (x′)>

)
for k = 1, . . . ,m.

Note that Ak ∈ (Rd)i+j if (i, j) ∈ {(0, 0), (0, 1), (1, 0)} and Ak ∈ Rd×d if max(i, j) = 2. noting that under
Ē, ‖Ak‖ 6 L̄iL̄j . Next, we need to bound ‖EĒ [AkA

∗
k]‖ and ‖EĒ [A∗kAk]‖. We present only the argument for
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(i, j) = (0, 2), since all the other cases are similar:

0 � EĒAkA∗k � EĒ [‖ϕωk(x′)‖2 D2 [ϕωk ] (x)D2 [ϕω] (x)∗]

� L̄2
2EĒ ‖ϕωk(x′)‖2 Id = L̄2

2 |KĒ(x′, x′)| Id � (1 + t/2)L̄2
2Id

so ‖EĒAkA∗k‖ 6 (1 + t/2)L̄2
2. Similarly, ‖EĒA∗kAk‖ 6 (1 + t/2)L̄2

2 and

‖EĒA∗kAk‖ , ‖EĒAkA∗k‖ 6 L2
p(Bqq + t/2)

where p = max (i, j) and q = min (i, j).

Applying a grid on X near, we get a uniform version.

Lemma C.8. Let i, j ∈ N0 with i+ j 6 2, and assume that

P(Ecω) 6
t

t+ 16Bij
, E[Li(ω)Lj(ω)1Ecω ] 6

t

16
.

Then

PĒ
(
∃ x, x′ ∈ X near,

∥∥∥K̂(ij)(x, x′)−K(ij)(x, x′)
∥∥∥ > t

)
6 2ds2 exp

(
− mt2/16

L2
p(Bqq + 1) + L̄iL̄jt/12

+ 2d log

(
4(LiL̄j + L̄iLj)

t

))
.

where p = max (i, j) and q = min (i, j) and Li,Lj are as in Lemma C.2

Proof. We define a δ-covering of X near for the metric dH with δ = min
(
rnear,

t
4(LiL̄j+L̄iLj)

)
of size s

(
rnear
δ

)d.
Let this covering be denoted by X grid.

By the union bound and Lemma C.7,

PĒ
(
∃x, x′ ∈ X grid s.t.

∥∥∥K̂(ij)(x, x′)−K(ij)(x, x′)
∥∥∥ > t/4

)
6 2ds2

(rnear

δ

)2d

exp

(
− mt2/16

L2
p(Bqq + 1) + L̄iL̄jt/12

)

where p = max (i, j) and q = min (i, j). This gives the required upper bound: Given any x, x′ ∈ X , let
xgrid, x

′
grid ∈ X grid be such that dH(x, xgrid), dH(x′, x′grid) 6 δ. Then, under event Ē, by Lemma C.2,∥∥∥K̂(ij)(x, x′)− K̂(ij)(xgrid, x

′
grid)

∥∥∥ 6 (LiL̄j + L̄iLj)δ 6 t/4.

By Jensen’s inequality and since
∥∥∥K(ij)

Ē
(x, x′)−K(ij)(x, x′)

∥∥∥ 6 t/4 for all x, x′, we have∥∥∥K(ij)(x, x′)−K(ij)(xgrid, x
′
grid)

∥∥∥ 6 t/2.

We now derive analogous results for the kernel differentiated 3 times.

Lemma C.9 (Concentration on order 3 kernel). Let x, x′ ∈ X near. Assume that

P(Ecω) 6
t

t+ 4 max{B12, B22}
, E[(L1(ω)L2(ω) + L2

2(ω))1Ecω ] 6
t

4
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For j = 1, . . . ,m, let ai = (D1

[
ϕωj
]

(x))i ∈ C, D def.
= D2 [ϕω] (x′) ∈ Cd×d and

Aj
def.
=
(
a1D a2D · · · adD

)> ∈ Cd
2×d (C.14)

Let Z def.
= 1

m

∑m
j=1(Aj − E[Aj ]). Then, given

g(x′)
def.
= (gi(x

′))di=1
def.
=

m∑
k=1

(
D1 [ϕωk ] (x)ϕω(x′)− E[D1 [ϕωk ] (x)ϕω(x′)]

)
= K̂(10)(x, x′)−K(10)(x, x′),

(i) supq∈Cd,‖q‖61

∑d
i=1 ‖D2 [gi] (x′)q‖2 = ‖Z‖2 ,

(ii) supq∈Cd,‖q‖61

∥∥D2

[
q>g

]
(x′)

∥∥ =
∥∥∥K̂(12)(x, x′)−K(12)(x, x′)

∥∥∥ 6 ‖Z‖.

and

PĒ (‖Z‖ > t) 6 (d+ d2) exp

(
− mt2/4

B̃ + L̄1L̄2t/3

)
where B̃ def.

= max{L̄2
2(B11 + t/2), L̄2

1(B22 + t/2)}.

Proof. The claim (i) is simply by definition, since Zq = (D2 [gi] (x′)q)
d
i=1 ∈ Cd2

. For (ii), the first equality is
simply be definition, and for the inequality, observe that

sup
q∈Cd,‖q‖61

∥∥D2

[
q>g

]
(x′)

∥∥ = sup
q∈Cd,‖q‖61

sup
p∈Cd,‖p‖61

∥∥∥∥∥
d∑
i=1

qiD2 [gi] (x′)p

∥∥∥∥∥
6 sup
q∈Cd,‖q‖61

sup
p∈Cd,‖p‖61

‖q‖

√√√√ d∑
i=1

‖D2 [gi] (x′)p‖2 6 ‖Z‖ .

Finally, the probability bound follows by applying Lemma C.5: First note that under Ē, ‖Aj‖ 6 L̄1L̄2. It remains
to bound

∥∥EĒ [A∗jAj ]
∥∥ and

∥∥EĒ [AjA
∗
j ]
∥∥:

sup
‖q‖61

EĒ〈A∗jAjq, q〉 = sup
‖q‖61

EE
d∑
i=1

∣∣(D1

[
ϕωj
]

(x))i
∣∣2 ‖D2 [ϕω] (x′)q‖2

6 sup
‖qk‖61

L̄2
1EĒD2 [ϕω] (x′)[q1, q2]D2 [ϕω] (x′)[q3, q4]

6 L̄2
1

∥∥∥K(22)

Ē
(x, x)

∥∥∥ 6 L̄2
1(B22 + t/2).

Given pi ∈ Cd for i = 1, . . . , d such that
∑
i ‖pi‖

2 6 1, write P =
(
p1 p2 · · · pd

)
∈ Cd×d and

p̄ =
(
p>1 p>2 · · · p>d

)> ∈ Cd2

. Then,

EE〈AjA∗j p̄, p̄〉 = EE

∥∥∥∥∥
d∑
i=1

(D1

[
ϕωj
]

(x))iD2

[
ϕωj
]

(x′)pi

∥∥∥∥∥
2

= EE
∥∥D2

[
ϕωj
]

(x′)PD1

[
ϕωj
]

(x)
∥∥2

6 L̄2
2EE

∑
i

∣∣∣∣∣∑
k

pi,k(D1

[
ϕωj
]

(x))k

∣∣∣∣∣
2

= L̄2
2

∑
i

〈K̂(11)

Ē
(x, x)pi, pi〉 6 L̄2

2

∥∥∥K̂(11)

Ē
(x, x)

∥∥∥2∑
i

‖pi‖2 6 L̄2
2(B11 + t/2).
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Lemma C.10 (Uniform concentration on order 3 kernel). Assume

P(Ecω) 6
t

t+ 16 max{B12, B22}
, E[L1(ω)L2(ω)1Ecω ] 6

t

16

then

PĒ
(
∃x, x′ ∈ X near,

∥∥∥K̂(12)(x, x′)−K(12)(x, x′)
∥∥∥ > t

)
6 s2(d+ d2) exp

(
− mt2/16

B̃ + L̄1L̄2t/6
+ 2d log

(
8(L1L̄2 + L̄2L2)

t

))
where B̃ def.

= max{L̄2
2(B11 + t/2), L̄2

1(B22 + t/2)}, L1, L2 are as in Lemma C.2.

Proof. Let X grid be a δ-covering of X near for the metric dH with δ = min
(
rnear,

t
8(L1L̄2+L2L̄2)

)
of size at most

s
(

8(L1L̄2+L2L̄2)
t

)d
. By Lemma C.9 and the union bound,

PĒ
(
∃x, x′ ∈ X grid,

∥∥∥K̂(ij)(x, x′)−K(ij)(x, x′)
∥∥∥ > t/2

)
6 s2(d+ d2)

(
8(L̄1L̄2 + L̄2

2)

t

)2d

exp

(
− mt2/16

L̄2
2(B11 + t/4) + L̄1L̄2t/6

)
def.
= ρ.

Moreover, under event Ē, given any x, x′ ∈ X near, there exists grid points xgrid, x′grid such that

dH(x, xgrid), dH(x′, x′grid) 6 δ

and ∥∥∥(K̂(12)(x, x′)−K(12)(x, x′)
)∥∥∥ 6

∥∥∥(K̂(12)(xgrid, x
′
grid)−K(12)(xgrid, x

′
grid)

)∥∥∥
+
∥∥∥(K̂(12)(x, x′)− K̂(12)(xgrid, x

′
grid)

)∥∥∥
+
∥∥∥(K(12)(x, x′)−K(12)(xgrid, x

′
grid)

)∥∥∥ ,
and by Lemma C.2, under event Ē,∥∥∥(K̂(12)(x, x′)− K̂(12)(xgrid, x

′
grid)

)∥∥∥ 6 (L1L̄2 + L2L̄2)δ 6 t/8.

and by Jensen’s inequality and since
∥∥∥K(12)(x, y)−K(12)

Ē
(x, y)

∥∥∥ 6 t/8,∥∥∥(K(12)(x, y)−K(12)(xgrid, y)
)∥∥∥ 6 3t/8.

Therefore, conditional on Ē,
∥∥∥(K̂(12)(x, y)−K(12)(x, y)

)∥∥∥ < t with probability at least 1− ρ.

D Proof of Theorem 3

In all the rest of the proofs we fix X0 ∈ X s to be ∆-separated points, a0 ∈ Cs, and let u = (sign(a0), 0sd). We
denote X near

i = {x ∈ X ; dH(x, x0,i) 6 rnear} and X near = ∪iX near
i and X far = X\X near.

Since K is an admissible kernel, from (B.2) and (B.1) in the proof of Theorem 2 ηX0
satisfies
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(i) for all y ∈ X far, |ηX0(y)| 6 1− 1
2ε0,

(ii) for all y ∈ X near(i), −Re (sign(ai)D2 [ηX0
] (y)) < 1

2ε2Id and ‖Im (sign(ai)D2 [ηX0
] (y))‖ 6 (p2 ) 1

2ε2.

p
def.
=
√

(1− ε2r2
near/2)/(ε2r2

near/2) > 1,

since ε2r
2
near 6 1 by assumption of K being admissible. We aim to show that, for X close to X0, η̂X is

nondegenerate by showing that ‖Dr [η̂X ]−Dr [ηX0 ]‖ 6 cεr for some positive constant c sufficiently small.

D.1 Nondegeneracy of η̂X0

We first establish the nondegeneracy of η̂X0
, our proof can be seen as a generalisation of the techniques in Tang

et al. (2013) to the multidimensional setting with general sampling operators:

Theorem D.1. Let ρ > 0 and assume that the assumptions in Section 2.3 hold. Assume also that either (a) or
(b) holds:

(a) sign(a0) is a Steinhaus sequence and

m & C · s · log

(
Nd

ρ

)
log

(
s

ρ

)
(b) sign(a0) is an arbitrary sequence from the complex unit circle, and

m & C · s3/2 · log

(
Nd

ρ

)
where C,N are defined in the main paper. Then with probability at least 1 − ρ, the following hold: For
all y ∈ X far, |η̂X0

(y)| 6 1 − 7
16ε0, and for all y ∈ X near(i), −Re (sign(ai)D2 [η̂X0

] (y)) < 7
16ε2Id and

‖Im (sign(ai)D2 [η̂X0 ] (y))‖ 6 (p2 + p
8 ) 1

2ε2 and hence, η̂X0 is ( 7
16ε0,

7
16ε2)-nondegenerate.

Proof. Note that
8

7

(p
2

+
p

8

)
=

5

8
p <

√
1− 7ε2r2

near/16

7ε2r2
near/16

so η̂X0 is ( 7
16ε0,

7
16ε2)-nondegenerate by Lemma B.1

Let c def.
= 1/32. Observe that by assumption and Lemma C.4, P(Ē) 6 ρ/2. Therefore, it is sufficient to prove that

conditional on Ē, with probability at least 1− δ with δ def.
= ρ/2, η̂X0 is nondegenerate.

We will repeatedly use the fact that our assumptions (by Lemma C.4) also imply that

P(Ecω) 6
ε

m
, E[Li(ω)Lj(ω)1Ecω ] 6

ε

m

for all (i, j) ∈ {(0, 0), (1, 0), (0, 2), (1, 2)},

Step I: Proving nondegeneracy on a finite grid.

Let X far
grid ⊂ X far and X far

grid ⊂ X near, be finite point sets. Let

Qr(y)
def.
= ‖Dr [η̂X0

] (y)−Dr [ηX0
] (y)‖ , r = 0, 2.

We first prove that conditional on Ē, with probability at least 1 − δ where δ def.
= ρ/2, that Q0(y) 6 cε0 for all

y ∈ X far
grid and Q2(y) 6 cε2 for all y ∈ X far

grid.

Let us first recall some facts which were proven in the previous section: Let a, t ∈ (0, 1) and write f = (f̄j)
s(d+1)
j=1

and f̂ = (fj)
s(d+1)
j=1 . Let q0

def.
= Υ−1u, so ‖q0‖ 6 2

√
s. Let F be the event that



C. Poon, N. Keriven, G. Peyré

(a)
∥∥∥Υ−1 − Υ̂−1

∥∥∥ 6 t,

(b) ∀y ∈ X far
grid,

∥∥∥f̂X0
(y)− fX0

(y)
∥∥∥ 6 aε0,

(c) ∀y ∈ X near
grid , supq∈Cd, ‖q‖=1

√∑p
j=1

∥∥D2

[
fj − f̄j

]
(y)q

∥∥2
6 aε2,

Let G be the event that

(d) ∀y ∈ X far
grid,

∣∣∣(f̂X0
(y)− fX0

(y))>q0

∣∣∣ 6 2aε0

(e) ∀y ∈ X near
grid ,

∥∥∥D2

[
(f̂X0

− fX0
)>q0

]
(y)
∥∥∥ 6 2aε2

then provided that
P(Ecω) 6

u

u+ max{4
√
sBij , 6}

, E[Li(ω)Lj(ω)1Ecω ] 6
u

4s
(D.1)

where u = min{aεi, t}, we have

PĒ(F c) 64(d+ 1)s exp

(
− mt2

16sL̄2
01(3 + 2t)

)
+ 4sd

∣∣X far
grid
∣∣ exp

(
− m(aε0)2/8

s(L̄2
01(B11 + 1) + L̄2

01)

)
+ s(3d+ d2)

∣∣X near
grid

∣∣ exp

(
− m(aε2)2/8

s(L̄2
2B11 + L̄2

1B22) + L̄01L̄2)

)
PĒ(Gc) 62

∣∣X far
grid
∣∣ exp

(
− ma2ε2

0

s(8L̄2
0 + 4

3 L̄0L̄01aε0)

)
+ 2d

∣∣X near
grid

∣∣ exp

(
− ma2ε2

2

s(8L̄2
2 + 4

3 L̄2L̄01aε2)

)
,

(D.2)

where for PĒ(F c), the first term on the right is due to Proposition C.1, the second and third are due to Proposition
C.4 while the bound on PĒ(Gc) is due to Proposition C.2 (noting that, since this probability bound over the ωj
is valid for all fixed u, and the ωj and the signs are independent, it is valid with the same probability over both
ωj and u).

Observe that

‖Dj [η̂X0
] (y)−Dj [ηX0

] (y)‖ =
∥∥∥Dj [(α̂X0

− αX0
)>f̂X0

]
(y) + Dj

[
α>X0

(f̂X0
− fX0

)
]

(y)
∥∥∥

6
∥∥∥Dj [u> ((Υ̂−1 −Υ−1)f̂X0

+ Υ−1(f̂X0
− fX0

)
)]

(y)
∥∥∥ (D.3)

Step I (a): Random signs

We first bound (D.3) in the case where u is a Steinhaus sequence.

Let β1(y)
def.
= (Υ̂−1 − Υ−1)f̂X0

(y) and β2(y)
def.
= Υ−1(f̂X0

(y) − fX0
(y)). Then, event F implies that ‖β1(y)‖ 6

t(B0 + aε0) for all y ∈ X far
grid, and event G implies that

∣∣u>β2(y)
∣∣ 6 2aε0. So,

PĒ
(∣∣∃y ∈ X far

grid, u
>(β1 + β2)(y)

∣∣ > cε0

)
6 PF∩Ē

(
∃y ∈ X far

grid,
∣∣u>β1(y)

∣∣ > c

2
ε0

)
PĒ(F ) + PĒ (F c)

+ PG∩Ē
(
∃y ∈ X far

grid,
∣∣u>β2(y)

∣∣ > c

2
ε0

)
PĒ(G) + PĒ (Gc)

6 PF∩Ē
(
∃y ∈ X far

grid,
∣∣u>β1

∣∣ > c

2
ε0

)
+ PĒ (F c) + PĒ (Gc)

6 4
∣∣X far

grid
∣∣ e− (c/4)2ε20

8t2(B0+aε0)2 + PĒ(F c) + PĒ (Gc) .

(D.4)
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where we set a = c/4 for the second inequality and the last inequality follows from Lemma G.4 and because u
consists if random signs.

Now consider Q2(y) = D2

[
u>β

]
(y). Under event G,

∥∥D2

[
u>β2

]
(y)
∥∥ 6 c

2ε2. Writing M = (Υ̂−1 − Υ−1), we
have

D2

[
u>β1

]
(y) = D2

[
u>
(
M f̂X0

)]
(y) =

p∑
`=1

u`

 p∑
j=1

M`jD2 [fj ] (y)

 . (D.5)

We aim to bound (D.5) by applying the Matrix Hoeffding’s inequality (Corollary G.1): let

Y`
def.
= Re

 p∑
j=1

M`jD2 [fj ] (y)

 ∈ Rd×d

which is a symmetric matrix. Note that∥∥∥∥∥
p∑
`=1

Y 2
`

∥∥∥∥∥ = sup
q∈Rd,‖q‖=1

p∑
`=1

〈Y 2
` q, q〉 = sup

q∈Rd,‖q‖=1

d∑
`=1

‖Y`q‖2 6 sup
q∈Rd,‖q‖=1

∥∥∥∥∥∥
p∑
j=1

M`,j(D2 [fj ] (y)q)

∥∥∥∥∥∥
2

.

Then, for a vector q of unit norm, let Vj,n
def.
= (D2 [fj ] (y)q)n for j = 1, . . . , p and n = 1, . . . , d, then

p∑
`=1

∥∥∥∥∥∥
p∑
j=1

M`,j(D2 [fj ] (y)q)

∥∥∥∥∥∥
2

=

p∑
`=1

d∑
n=1

∣∣∣∣∣∣
p∑
j=1

M`,jVj,n

∣∣∣∣∣∣
2

=

d∑
n=1

‖MV·,n‖2 6 ‖M‖2
d∑

n=1

‖V·,n‖2

= ‖M‖2
d∑

n=1

p∑
j=1

|Vj,n|2 = ‖M‖2
p∑
j=1

‖D2 [fj ] (y)q‖2 .

Under event F , we have ‖M‖2
∑p
j=1 ‖D2 [fj ] (y)q‖2 6 t2(B2 + aε2)2. Then,

PF∩Ē
(∥∥∥D2

[
u>Re

(
M f̂X0

)]
(y)
∥∥∥ >

cε2√
2

)
6 2d exp

(
− (c/2)2ε2

2

4t2(B2 + aε2)2

)
.

By repeating this argument for the imaginary part, we obtain

PF∩Ē
(∥∥∥D2

[
u>Im

(
M f̂X0

)]
(y)
∥∥∥ >

cε2√
2

)
6 2d exp

(
− (c/2)2ε2

2

4t2(B2 + aε2)2

)
.

So,

PĒ
(
∃y ∈ X near

grid ,
∥∥D2

[
u>β(y)

]∥∥ > cε2

)
6 PF∩Ē

(
∃y ∈ X near

grid ,
∥∥∥D2

[
u>Re

(
M f̂X0

)]
(y)
∥∥∥ >

c

2
ε2

)
+ PĒ(F c) + PĒ(Gc)

6 4d
∣∣X near

grid
∣∣ exp

(
− (c/2)2ε2

2

4t2(B2 + aε2)2

)
+ PĒ(F c) + PĒ(Gc).

(D.6)

Therefore,

1− P
(
Q0(y0) 6 cε0 and Q2(y2) 6 cε2,∀y0 ∈ X far

grid,∀y2 ∈ X near
grid

)
6 4

∣∣X far
grid
∣∣ exp

(
− (c/2)2ε2

0

32t2(B0 + aε0)2

)
+ 4d

∣∣X near
grid

∣∣ exp

(
− (c/2)2ε2

2

16t2(B2 + aε2)2

)
+ 2PĒ(F c) + 2PĒ(Gc).
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The first 2 terms are each bounded by δ/7 by setting t such that

1

t2
= 213 log

(
112N̄d

δ

) (
B̄ + 1

)
c2ε2

where B̄ def.
= max{B0, B2}, ε

def.
= min{ε0, ε2} and N̄ = max

(∣∣X near
grid

∣∣ , ∣∣X far
grid

∣∣). The first term of (D.2) is bounded
by δ/7 if

m >
1

t2
log

(
28(d+ 1)s

δ

)
64sL̄2

01 = sL̄2
01

219
(
B̄ + 1

)
c2ε2

log

(
112N̄d

δ

)
log

(
28(d+ 1)s

δ

)
and the last 4 terms of (D.2) are each bounded by δ/7 provided that

m & log

(
28(s+ d)dN̄

δ

)
16s(L̄2

2B11 + L̄2
1B22 + L̄01L̄2)

c2ε2

So, to summarise, recalling that δ = ρ/2, η̂X0
is nondegenerate on X near

grid and X far
grid with probability at least 1− δ

(conditional on Ē) provided that

m & log

(
sdN

ρ

)
log

(
sd

ρ

)
s(L̄2

2B11 + L̄2
1B22 + B̄L̄2

01 + L̄01L̄2)

ε2

and
P(Ecω) .

ε

B̄3/2
√
s
√

log(N̄d/ρ)
and , E[Li(ω)Lj(ω)1Ecω ] .

ε

4s
√
B
√

log(N̄d/ρ)

Step I (b): Deterministic signs Assume now that u consists of arbitrary signs. We will show that (D.3)
can be bounded by cε when m is chosen as in condition (b) of this theorem. Let F ′ be the event that

(a’)
∥∥∥Υ− Υ̂

∥∥∥ 6 t
s1/4 and

∥∥∥Υ−1 − Υ̂−1
∥∥∥ 6 t

s1/4

(b’) ∀y ∈ X far
grid,

∥∥∥(f̂X0
(y)− fX0

(y))
∥∥∥ 6 aε0

s1/4

(c’) ∀y ∈ X near
grid , sup‖q‖=1

∥∥∥D2

[
(f̂X0 − fX0)>q

]
(y)
∥∥∥ 6 aε2

s1/4

(f)
∥∥∥(Υ− Υ̂)Υ−1u

∥∥∥
∗,∞

6 aε
∥∥Υ−1u

∥∥
∗,∞ 6 2aε.

Then, provided that
P(Ecω) 6

u

u+ 6s(B0 +B2)
and E[L01(ω)21Ēc ] 6

u

4B̄s3/2
,

with u = min{aεi, t} as before, we have

PĒ((F ′)c) 64(d+ 1)s exp

(
− mt2

16s3/2L̄2
01(3 + 2t)

)
+ 4sd

∣∣X far
grid
∣∣ exp

(
− m(aε0)2/8

s3/2(L̄2
01(B11 + 1) + L̄2

01)

)
+ s(3d+ d2)

∣∣X near
grid

∣∣ exp

(
− m(aε2)2/8

s3/2(L̄2
2B11 + L̄2

1B22 + L̄01L̄2)

)
+ 32s exp

(
− m4a2ε2

s
(
32L2

1 + 68aεL1L̄01

)) .
where the first bound is from Proposition C.1, the second and third are from Proposition C.4 and the final bound
is due to Proposition C.3.
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To bound (D.3), we first observe that if event G holds, then just as observed previously,
∣∣Dr [u>β2

]
(y)
∣∣ 6 2aεr.

To bound
∣∣u>β1(y)

∣∣, observe that

u>β1(y) = u>(Υ−1 − Υ̂−1)(f̂X0 − fX0) + u>(Υ−1 − Υ̂−1)fX0

= u>(Υ−1 − Υ̂−1)(f̂X0 − fX0) + u>Υ−1(Υ̂−Υ)Υ̂−1fX0

= u>(Υ−1 − Υ̂−1)(f̂X0
− fX0

) + u>Υ−1(Υ̂−Υ)(Υ̂−1 −Υ−1)fX0
+ u>Υ−1(Υ̂−Υ)Υ−1fX0

Under event F ′,

•
∣∣∣u>(Υ−1 − Υ̂−1)(f̂X0

− fX0
)
∣∣∣ 6 √s∥∥∥Υ−1 − Υ̂−1

∥∥∥∥∥∥f̂X0
− fX0

∥∥∥ 6 taε

•
∣∣∣u>Υ−1(Υ̂−Υ)(Υ̂−1 −Υ−1)fX0

∣∣∣ 6 √s · 2 · ∥∥∥Υ̂−Υ
∥∥∥∥∥∥Υ̂−1 −Υ−1

∥∥∥B0 6 2t2B0

•
∥∥∥Υ−1(Υ̂−Υ)Υ−1u

∥∥∥
∗,∞

6
∥∥Υ−1

∥∥
∗,∞

∥∥∥(Υ̂−Υ)Υ−1u
∥∥∥
∗,∞

6 4aε.

Finally, given any vector q such that ‖q‖∗,∞ 6 4aε, we have
∣∣q>fX0

∣∣ 6 4aεB0. Therefore,∣∣u>β1(y)
∣∣ 6 ta+ 2t2 + 4aεB0,

and in a similar manner, we can show that the same upper bound holds for
∥∥D2

[
u>β1

]
(y)
∥∥.

Therefore, ∥∥Dr [u>β] (y)
∥∥ 6 cεr (D.7)

if both F ′ and G hold, so conditional on Ē, (D.7) holds with probability at least 1− δ provided that

m & s3/2 · (L̄2
2B11 + L̄2

1B22 + B̄L̄2
01 + L̄01L̄2)

ε2
· log

(
N̄ds

ρ

)
and

P(Ecω) .
ε

B̄3/2s
√

log(N̄d/ρ)
and , E[Li(ω)Lj(ω)1Ecω ] .

ε

s3/2
√
B
√

log(N̄d/ρ)

Step II: Extending to the entire space To prove that η̂X0 is nondegenerate on the entire space X , we first
show that η̂X0 is locally Lipschitz (and hence determine how fine our grids X near

grid , X far
grid need to be): for x, x′ ∈ X

with dH(x, x′) 6 rnear,

‖Dr [η̂X0 ] (x)−Dr [η̂X0 ] (x′)‖ =
∥∥∥ 1

m

m∑
k=1

Dr
[
Re
(

(Υ̂−1
X u)>γ(ωk)ϕωk

)]
(x) (D.8)

−Dr
[
Re
(

(Υ̂−1
X u)>γ(ωk)ϕωk

)]
(x′)

∥∥∥
=

∥∥∥∥∥∥ 1

m

m∑
j=1

Re
((

(Υ̂−1
X u)>γ(ωk)

)
· (Dr [ϕωk ] (x)−Dr [ϕωk ] (x′))

)∥∥∥∥∥∥
6
∥∥∥Υ̂−1

X

∥∥∥ ‖u‖√sL̄01 ‖Dr [ϕωk ] (x)−Dr [ϕωk ] (x′)‖ (D.9)

6 4sL̄01dH(x, x′)Lr 6 cεr. (D.10)

where we have applied Lemma C.2 to obtain the last line.

Choosing X far
grid to be a δ0

def.
= cε0

4L0L̄01s
-covering of X near (of size at most O(RX /δ0)), X far

grid to be a δ2
def.
= cε2

4L2L̄01s
-

covering of X far (of size at most O(RX /δ2)). Then for any x ∈ X near and x′ ∈ X near
grid such that dH(x, x′) 6 δ0,

|η̂X0
(x)| 6 |η̂X0

(x′)|+ |η̂X0
(x)− η̂X0

(x′)| 6 1− ε0 + 2cε0.
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and given any x ∈ X far, let x′ ∈ X far
grid be such that dH(x, x′) 6 δ2, so

Re
(

sign(ai)D2 [η̂X0
] (x)

)
� Re

(
sign(ai)D2 [η̂X0

] (x′)
)

+ ‖D2 [η̂X ] (x)−D2 [η̂X ] (x′)‖ Id � (−ε2 + 2cε2)Id,

and ∥∥∥Im
(

sign(ai)D2 [η̂X0
] (x)

)∥∥∥ 6
∥∥∥Im

(
sign(ai)D2 [η̂X0

] (x′)
)∥∥∥+ cε2 6 (c2 + c)ε2.

D.2 Nondegeneracy transfer to η̂X .

We are now ready to prove Theorem 3, which we restate below for clarity.
Theorem D.2. Under the assumptions of Theorem D.1, the following holds with probability at least 1− ρ: for
all X such that

dH(X,X0) . min
(
rnear, εr(CHB

√
s)−1, εr(CHL̄12L̄r

√
s)−1

)
, (D.11)

we have

(i) for all y ∈ X far, |η̂X(y)| 6 1− 13
32ε0

(ii) for all y ∈ X near(i), −Re
(

sign(ai)D2 [η̂X ] (y)
)
< 13ε2

32 Id and
∥∥∥Im

(
sign(ai)D2 [η̂X ] (y)

)∥∥∥ 6 (p2 + 3p
16 ) 1

2ε2.

Hence, η̂X is ( 13
32ε0,

13
32ε2)-nondegenerate.

The proof essentially exploits the fact that Υ̂X , f̂X are locally Lipschitz in X with respect to the metric dH, and
consequently nondegeneracy of η̂X0 implies nondegeneracy of η̂X whenever dH(X,X0) is sufficiently small.

D.2.1 Proof of Theorem D.2

We begin with a lemma which shows that Υ̂X is locally Lipschitz in X.
Lemma D.1 (Lipschitz bound of Υ̂X). Let X0 ∈ X s be ∆-separated points. Assume that for all i+ j 6 3

P(Ecω) 6
1

1 + 16
√
sBij

, E[Li(ω)Lj(ω)1Ecω ] 6
1

16
√
s

for all i, j = 0, ..., 2. Let ρ > 0 and

m & s(L̄2
2B11 + L̄2

1B22 + L̄01L̄2)

(
log

(
sd

ρ

)
+ d log

(
sCH

3
max
i=0

L̄i

))
Then, conditional on event Ē, with probability at least 1− ρ, the following hold:

• (i) for all X such that dH(xi, x0,i) 6 rnear, we have∥∥∥Υ̂X − Υ̂X0

∥∥∥ . CHBdH(X,X0) .

• (ii) for all X such that dH(X,X0) . min
(
rnear,

1
CHB

)
, we have

∥∥∥Id− Υ̂X

∥∥∥ 6 3
4 and

∥∥∥G− 1
2

X Γ∗X

∥∥∥ . 1.

Proof. By Lemma C.8 and Lemma C.10, with probability at least 1 − ρ conditonal on Ē, for all (i, j) ∈
{(0, 0), (0, 1), (1, 1), (1, 2)} and all x, y ∈ X near,∥∥∥K̂(ij)(x, y)

∥∥∥ 6
∥∥∥K(ij)(x, y)

∥∥∥+
1√
s
,

note that this also holds for K̂(ji)(x, y) since K̂(ij)(x, y) = K̂(ij)(y, x).
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In particular, for all x, x′ such that dH(x, x′) > ∆/4, we have
∥∥∥K̂(ij)(x, x′)

∥∥∥ 6 2√
s
. Take any X such that

dH(xi, x0,i) 6 rnear, we have that both xi, x0,i are at least ∆/4-separated from xj and x0,j . Therefore, for
k, ` ∈ {0, 1}, using Lemma C.3:∥∥∥K̂(k`)(xi, xj)− K̂(k`)(xi,0, xj,0)

∥∥∥ .
CH√
s

√
dH(xi, x0,i)2 + dH(xj , x0,j)2∥∥∥K̂(k`)(xi, xi)− K̂(k`)(xi,0, xi,0)

∥∥∥ . CH (Bk+1,` +Bk,`+1) dH(xi, x0,i)

(D.12)

and therefore by Lemma G.6:

∥∥∥Υ̂X − Υ̂X0

∥∥∥2

6
s∑

i,j=1

1∑
k,`=0

∥∥∥K̂(k`)(xi, xj)− K̂(k`)(x0,i, x0,j)
∥∥∥2

6 2

s∑
i,j=1

1∑
k,`=0

∥∥∥K̂(k`)(xi, xj)− K̂(k`)(x0,i, xj)
∥∥∥2

+
∥∥∥K̂(`k)(xj , x0,i)− K̂(`k)(x0,j , x0,i)

∥∥∥2

. C2
H

 ∑
k,l∈{0,1,2}
k+`63

Bk`


2∑

i

dH(xi, x0,i)
2 +

1

s

∑
j 6=i

dH(xj , x0,j)
2

which yields the desired result.

For the second statement, using Proposition C.1, PĒ(
∥∥∥Υ̂X0

−ΥX0

∥∥∥ > 1
8 ) 6 ρ, so conditional on Ē, we have with

probability 1 − ρ,
∥∥∥Υ̂X − Υ̂X0

∥∥∥ 6 1
8 and the claim follows since ‖Id−ΥX0

‖ 6 1
2 (due to Lemma C.1) implies

that
∥∥∥Id− Υ̂X

∥∥∥ 6 3
4 and ∥∥∥Υ̂X

∥∥∥ 6 7/4 and
∥∥∥G− 1

2

X Γ∗X

∥∥∥ =

√∥∥∥Υ̂X

∥∥∥ .
√

7/2.

Proof of Theorem D.2. Since η̂X0 is nondegenerate with probability at least 1− ρ, the conclusion follows if we
prove that for all x ∈ X far and all y ∈ X near,

‖D2 [η̂X − η̂X0 ] (x)‖ 6 ε0/32 and ‖D2 [η̂X − η̂X0 ] (y)‖ 6 pε2/32 (D.13)

with probability at least 1− ρ. We first write

η̂X(y)− η̂X0
(y) = α̂>X(f̂X − f̂X0

) + (α̂X − α̂X0
)>f̂X0

(y).

Conditional on Ē, with probability at least 1− ρ/2, we have by Lemma D.1 (note that our assumptions imply
the assumptions of Lemma D.1), ‖ΥX −ΥX0

‖ . CHBdH(X,X0) and
∥∥Υ−1

X

∥∥ 6 4. So,∥∥∥Dr [(α̂X − α̂X0
)>f̂X0

]
(y)
∥∥∥ 6
√
s
∥∥Υ−1

X −Υ−1
X0

∥∥ 6 8
√
s
∥∥∥Υ̂X − Υ̂X0

∥∥∥ .
√
sCHBdH(X,X0).

By Lemma C.2, if Ē occurs, then∥∥∥Dr [α̂>X(f̂X − f̂X0
)
]

(y)
∥∥∥ 6 Cr ‖α̂X‖ dH(X,X0) 6 Cr

∥∥∥Υ̂−1
X

∥∥∥√sdH(X,X0) 6 4Cr
√
sdH(X,X0),

where Cr . (1 + CH)L̄rL̄12. Finally, since P(Ēc) 6 ρ/2, we have with probability at least 1− ρ, for all y ∈ X ,
(D.13) holds provided that (D.11) holds. Combining with the nondegeneracy of η̂X0

, the conclusion follows with
probability 1− 2ρ.
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E Supplementary results to the proof Theorem 1

Recall that in the proof of Theorem 1, we defined the function f : Cs ×X s × R+ × Cm by

f(u, v)
def.
= Γ∗X(ΦXa− ΦX0a0 − w) + λ

(
sign(a0)

0sd

)
where u = (a,X) and v = (λ,w). This function f is differentiable with

∂vf(u, v) =

((
sign(a0)

0sd

)
, −Γ∗X

)
∈ Cs(d+1)×m, (E.1)

and ∂uf(u, v) is

Γ∗XΓXJa +



01×s A11 0 · · · 0
01×s 0 A12 · · · 0
...

...
...

. . .
...

01×s 0 0 · · · A1s

0d×s A21 0 · · · 0
0d×s 0 A22 · · · 0
...

...
...

. . .
...

0d×s 0 0 · · · A2s


(E.2)

where A1j
def.
= ∇x〈ϕ(xj), z〉>, A2j

def.
= ∇2

x〈ϕ(xj), z〉, z
def.
= (ΦXa − ΦX0

a0 − w) and Ja ∈ Rs(d+1)×s(d+1) is a the
diagonal matrix:

Ja =


Ids×s 0

a1Idd×d
. . .

0 asIdd×d

 .

Letting u0 = (a0, X0) and v0 = (0, 0), ∂uf(u0, v0) = Γ∗X0
ΓX0Ja is invertible and f(u0, v0) = 0. Hence, by the

Implicit Function Theorem, there exists a neighbourhood V of v0 in C×Cm, a neighbourhood U of u0 in Cs×X s
and a Fréchet differentiable function g : V → U such that for all (u, v) ∈ U ×V , f(u, v) = 0 if and only if u = g(v).
To conclude, we simply need to bound the size of the region on which g is well defined, and to bound the error
between g(v) and g(0). Let us first remark that our assumptions imply that P(Ēc) 6 ρ/2 and

P(Ecω) 6
1

1 + 16
√
sBij

, E[Li(ω)Lj(ω)1Ecω ] 6
1

16
√
s
, (E.3)

for all i, j = 0, ..., 2. Therefore, it is sufficient to prove the existence of g conditional on event Ē:

Theorem E.1. Assume that for all i+ j 6 3

P(Ecω) 6
1

1 + 16
√
sBij

, E[Li(ω)Lj(ω)1Ecω ] 6
1

16
√
s

for all i, j = 0, ..., 2. Let ρ > 0 and suppose that

m & s(L̄2
2B11 + L̄2

1B22 + L̄01L̄2)

(
log

(
sd

ρ

)
+ d log (sCHL3)

)
where Lr

def.
= maxi6r Lr. Then, conditional on event Ē, with probability at least 1− ρ: there exists a C 1 function

g such that, for all v = (λ,w) such that ‖v‖ 6 r with r satisfying

r = O
(

1√
s

min
(

min{rnear,(CHB)−1}
mini|a0,i| , 1

L̄01L̄12(1+‖a0‖)
,
))

(E.4)
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we have f(g(v), v) = 0 and g(0) = u0. Furthermore, given (λ,w) in this ball, (a,X)
def.
= g((λ,w)) satisfies

‖a− a0‖+ dH(X,X0) 6

√
s(λ+ ‖w‖)
mini |a0,i|

. (E.5)

We begin with some preliminary results before presenting the proof of this theorem in Section E.2.

E.1 Preliminary results

Theorem E.2 (Quantitative implicit function theorem, adapted from Denoyelle et al. (2017)). Let F : H×Y → Cn
be a differentiable mapping where H is a Hilbert space, Y ⊆ Cs × Rsd, n = s(d+ 1), ‖·‖ be a norm on H. For
each y ∈ Y, suppose that there exists a positive definite matrix Gy, and let dG be the associated metric. Assume
that F (x0, y0) = 0, and that for x ∈ B‖·‖(x0, r1), y ∈ BdG(y0, r2), ∂yF (x, y) is invertible and we have∥∥∥G− 1

2
y ∂xF (x, y)

∥∥∥ 6 D1 and
∥∥∥G 1

2
y ∂yF (x, y)−1G

1
2
x

∥∥∥ 6 D2 .

Then, defining R = min
(

r2
D1D2

, r1

)
, there exists a unique Fréchet differentiable mapping g : B‖·‖(x0, R) →

BdG(y0, r2) such that g(x0) = y0 and for all x ∈ B‖·‖(x0, R), F (x, g(x)) = 0, and furthermore

dg(x) = −(∂yF (x, g(x)))−1∂xF (x, g(x))

and consequently
∥∥∥G 1

2

g(x)dg(x)
∥∥∥ 6 D1D2.

Proof. Let V ∗ = ∪V ∈VV , where V is the collection of all open sets V ∈ Rm such that

1. x0 ∈ V ,

2. V is star-shaped with respect to x0,

3. V ⊂ B‖·‖(x0, r1),

4. there exists a C1 function g : V → BdG(y0, r2) such that g(x0) = y0 and F (x, g(x)) = 0 for all x ∈ V .

Observe that V is non-empty by the (classical) Implicit Function Theorem. Moreover, V is stable by union:
indeed, all conditions expect the last one are easy to check. Now, let V, Ṽ ∈ V and g, g̃ be corresponding functions.
The set V = {x ∈ V ∩ Ṽ , g(x) = g̃(x)} is non-empty (it contains x0), and closed in V ∩ Ṽ . Moreover, it is
open: for any x ∈ V , by our assumptions ∂yF (x, g(x)) is invertible and the Implicit Function theorem applies at
(x, g(x)), and by the uniqueness of the mapping resulting from it we obtain an open set around x in which g and
g̃ coincide. Hence V is both closed and open in V ∩ Ṽ , and by the connectedness of it V = V ∩ Ṽ . Therefore,
there exists a function g′ defined on V ∪ Ṽ that satisfies condition 4. above (it is defined as g on V and g̃ on Ṽ ,
which is well-posed for their intersection), and V is indeed stable by union.

Hence V ∗ ∈ V , let g∗ be its corresponding function. It is unique by the arguments above, satisfies F (x, g∗(x)) = 0
and

G
1
2

g∗(x)dg
∗(x) = −G

1
2

g∗(x)(∂yF (x, g∗(x)))−1∂xF (x, g∗(x))

= −(G
− 1

2

g∗(x)∂yF (x, g∗(x))G
− 1

2

g∗(x))
−1G

− 1
2

g∗(x)∂xF (x, g∗(x))

for all x ∈ V ∗. Note that by our assumptions
∥∥∥G 1

2

g∗(x)dg
∗(x)

∥∥∥ 6 D1D2.

We finish the proof by showing that V ∗ contains a ball of radius r2/(D1D2). Let x ∈ Rm with ‖x‖ = 1,
Rx = sup{R, x0 +Rx ∈ V ∗}, and x∗ = x0 +Rxx ∈ ∂V ∗. Clearly 0 < Rx 6 r1 since V ∗ is open, assume Rx < r1.
Our goal is to show that in that case Rx > r1

D1D2
. Since dg∗ is bounded, g∗ is uniformly continuous on V ∗ and

it can be extended on ∂V ∗, and by continuity F (x∗, g∗(x∗)) = 0. By contradiction, if g∗(x∗) ∈ BdG(y0, r2), by
our assumptions we can apply the Implicit Function Theorem at (x∗, g∗(x∗)), and therefore extend g∗ on an
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open set V that is not included in V ∗ such that V ∪ V ∗ ∈ V, which contradicts the maximality of V ∗. Hence
dG(g∗(x∗), y0) = r2. Let γ : [0, 1]→ Y be defined by γ(t)

def.
= g∗(x∗ + t(x0 − x∗)), so γ′(t) = dg∗(γ(t))(x0 − x∗).

Then,

r2 = dG(g∗(x∗), g∗(x0)) 6

√∫ 1

0

〈Gg∗(γ(t))γ′(t), γ′(t)〉dt

=

√∫ 1

0

∥∥∥G 1
2

g∗(γ(t))dg
∗(γ(t))(x0 − x∗)

∥∥∥2

dt 6 D1D2Rx.

Lemma E.1. Asssume that event Ē occurs. Then, for all X such that dH(xi, x0,i) 6 rnear,

‖ΠXΓX0
a‖ .

{
L̄2 ‖a‖1 maxi dH(xi, x0,i)

2

L̄2 ‖a‖∞ dH(X,X0)2

Proof. Recall that Im(ΓX) = {ϕ(xi), Jϕ(xi)}i, and ΠX is a projector on Im(ΓX)⊥. Also note that for
dH(xi, x0,i) 6 rnear, we have

∥∥∥H− 1
2

x0,iH
1
2
xi

∥∥∥ . 1, and therefore under Ē:∥∥∥H− 1
2

x0,i∇2ϕωj (xi)H
− 1

2
x0,i

∥∥∥ .
∥∥D2

[
ϕωj
]

(xi)
∥∥ 6 L̄2

Let γi : [0, 1] → X be any piecewise smooth curve such that γi(1) = x0,i and γi(0) = xi. Then, by Taylor
expanding ϕ(γi(t)) about t = 0, we obtain

ϕ(x0,i) = ϕ(xi) + 〈∇ϕ(xi), γ
′
i(0)〉+

∫ 1

0

1

2
〈∇2ϕ(γi(t))γ

′
i(t), γ

′
i(t)〉dt.

Therefore,

ΠXΓX0
a = ΠX

(
s∑
i=1

aiϕ(x0,i)

)
= ΠX

(
s∑
i=1

ai
2

∫ 1

0

〈∇2ϕ(γi(t))γ
′
i(t), γ

′
i(t)〉dt

)

Taking the norm implies

‖ΠXΓX0a‖ 6
s∑
i=1

|ai|
2

∫ 1

0

L̄2

∥∥Hγi(t)γ
′
i(t)
∥∥2

dt

and taking the infimum over all paths γi yields

‖ΠXΓX0
a‖ 6 L̄2

∑
i

|ai| dH(xi, x0,i)
2.

E.2 Proof of Theorem E.1

Our goal is to apply Theorem E.2. Let u = (a,X), u0 = (a0, X0), v = (λ,w) and v0 = (0, 0). We must control∥∥∥G− 1
2

X ∂vf(u, v)
∥∥∥ and

∥∥∥G 1
2

X∂uf(u, v)−1G
1
2

X

∥∥∥ for (u, v) sufficiently close to (u0, v0). Using Lemma D.1, conditional
on event Ē, with probability 1− ρ we have∥∥∥G− 1

2

X ∂vf(u, v)
∥∥∥ 6 ‖u‖+

∥∥∥G− 1
2

X ΓX

∥∥∥ .
√
s
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To control
∥∥∥G 1

2

X∂uf(u, v)−1G
1
2

X

∥∥∥, first observe that

G
−1/2
X ∂uf(u, v)G

−1/2
X =

(
G
−1/2
X Γ∗XΓXG

−1/2
X +M(u, v)

)
Ja

where

M(u, v)
def.
=



01×s
1
a1

(
H
− 1

2
x1 ∇[〈ϕ, z〉](x1)

)>
· · · 0

...
...

. . .
...

01×s 0 · · · 1
as

(
H
− 1

2
xs ∇[〈ϕ, z〉](xs)

)>
0d×s

1
a1
H
− 1

2
x1 ∇2[〈ϕ, z〉](x1)H

− 1
2

x0,1 · · · 0
...

...
. . .

...
0d×s 0 · · · 1

as
H
− 1

2
xs ∇2[〈ϕ, z〉](xs)H

− 1
2

x0,s


, (E.6)

where z = (ΦXa− ΦX0a0 − w). Now, let us study the invertibility of G−
1
2

X Γ∗XΓXG
− 1

2

X +M(u, v) and bound the
norm of its inverse.

Lemma E.2 (Bound on M(u, v)). Let u = (a,X), v = (λ,w) and let M(u, v) be as defined in (E.6). Assume
that Ē occurs and given ε > 0, let cε

def.
=

ε mini|a0,i|
2L̄12

. Then, for all X ∈ X s, a ∈ Rs and w ∈ Cm such that

‖a− a0‖ 6
cε

3L̄0
, ‖w‖ 6 cε/3 and dH(X,X0) 6 min

(
rnear,

cε
3L̄1 ‖a0‖

)
,

we have
‖M(u, v)‖ 6 ε and ‖M(u, v)‖∗,∞ 6 ε

Proof. First note that for r ∈ N0,

∥∥Dr [ϕ>z] (xi)
∥∥ 6

1√
m

m∑
j=1

∥∥zjDr [ϕωj ] (xi)
∥∥ 6 Lr ‖z‖

Now, for q̄ = [q1, . . . , qs, Q1, . . . , Qs] ∈ Cs(d+1), where qi ∈ C and Qi ∈ Cd, and ‖q̄‖ = 1, we have

‖M(u, v)q̄‖2 =

s∑
i=1

∣∣∣∣ 1

ai

(
H
− 1

2
xi ∇[ϕ>z](xi)

)>
Qi

∣∣∣∣2 +

∥∥∥∥ 1

ai
H
− 1

2
xi ∇2[ϕ>z](xi)H

− 1
2

xi Qi

∥∥∥∥2

6
4

mini |a0,i|2
‖q‖2 max

i

(∥∥∥H− 1
2

xi ∇[ϕ>z](xi)
∥∥∥2

+
∥∥∥H− 1

2
xi ∇2[ϕ>z](xi)H

− 1
2

xi

∥∥∥2
)

=
4

mini |a0,i|2
max
i

(∥∥D1

[
ϕ>z

]
(xi)

∥∥2
+
∥∥D2

[
ϕ>z

]
(xi)

∥∥2
)

6
4

mini |a0,i|2
(L̄2

1 + L̄2
2) ‖z‖2

where we have used the fact that mini |ai| > mini |a0,i| /2. If ‖q̄‖∗,∞ = 1, then

‖M(u, v)q̄‖∗,∞ = max
i
{
∣∣∣∣(H− 1

2
xi ∇[ϕ>z](xi)

)>
Qi

∣∣∣∣ ,∥∥∥H− 1
2

xi ∇[ϕ>z](xi)H
− 1

2
xi Qi

∥∥∥2

}

6 max
i
{
∥∥∥H− 1

2
xi ∇[ϕ>z](xi)

∥∥∥ ,∥∥∥H− 1
2

xi ∇[ϕ>z](xi)H
− 1

2
xi

∥∥∥2

}

and the same bound holds.
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Now it remains to bound ‖z‖. Writing ϕ(x)
def.
= (ϕωk(x))

m
k=1, we have

‖z‖ =

∥∥∥∥∥∑
i

(aiϕ(xi)− a0,iϕ(x0,i))− w

∥∥∥∥∥
6 L̄0 ‖a− a0‖+ ‖a0‖max

k

√∑
i

|ϕωk(xi)− ϕωk(x0,i)|2 + ‖w‖

6 L̄0 ‖a− a0‖+ ‖a0‖ L̄1dH(X,X0) + ‖w‖

where the last inequality follows from Lemma C.2.

The bound on ‖M(u, v)‖ from Lemma E.2 allows us to conclude that under event Ē, taking

c
def.
=

mini |a0,i|
16L̄12

(E.7)

for all X ∈ X s, a ∈ Rs and w ∈ Cm such that

‖a− a0‖ 6
c

3L̄0
, ‖w‖ 6 c/3 and dH(X,X0) 6 min

(
rnear,

c

3L̄1 ‖a0‖

)
,

we have ‖M(u, v)‖ 6 1
8 . Combining this with Lemma D.1 gives∥∥∥Id− (G
− 1

2

X Γ∗XΓXG
− 1

2

X +M(u, v))
∥∥∥ 6

∥∥∥Id−G
− 1

2

X Γ∗XΓXG
− 1

2

X

∥∥∥+ ‖M(u, v)‖ < 7

8

and therefore it is invertible and∥∥∥(G
− 1

2

X Γ∗XΓXG
− 1

2

X +M(u, v))−1
∥∥∥ 6

1

1−
∥∥∥Id− (G

− 1
2

X Γ∗XΓXG
− 1

2

X +M(u, v))
∥∥∥ = O (1) .

In this case, ∂uf(u, v) is invertible, and we have∥∥∥(G
− 1

2

X ∂uf(u, v)G
− 1

2

X )−1
∥∥∥ =

∥∥∥J−1
a (G

− 1
2

X Γ∗XΓXG
− 1

2

X +M(u, v))−1
∥∥∥ .

1

mini |a0,i|

since ‖a− a0‖ . mini |a0,i| by assumption.

Therefore we can apply Theorem E.2 with (recalling the definition of c in (E.7))

r1 = c, D1 = O
(√
s
)
, r2 = O

(
min

(
rnear,

c
L̄1‖a0‖

, c
L̄0
, 1
CHB

))
, D2 = O

(
1

mini|a0,i|

)
with B =

∑
i+j63Bij , we obtain that g(v) is defined for v ∈ V def.

= B‖·‖2 (0, r) with

r
def.
= min

(
r2

D1D2
, r1

)
= r2

D1D2
= O

(
min

(
rnear√

smini|a0,i|
, 1√

sL̄1L̄12‖a0‖
, 1√

sL̄12L̄0
, 1√

smini|a0,i|CHB

))
such that g is C1, f(g(v), v) = 0, g(v0) = u0, where we recall that u0 = (a0, X0) and v0 = (0, 0).

Finally, from Theorem E.2 we also have that

‖GXdg(v)‖ 6 D1D2 .

√
s

mini |a0,i|

and by defining γ(t) = g(v0 + t(v − v0)) for t ∈ [0, 1], we have the following error bound between u = g(v) and
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u0 = g(v0):

dG(u, u0) =

√
‖a− a0‖22 + dH(X,X0)2 6

√∫ 1

0

〈Gγ(t)γ′(t), γ′(t)〉dt

=

√∫ 1

0

〈Gγ(t)dg(tv)v, dg(tv)v〉dt

6

√
s

mini |a0,i|
‖v‖ .

F Examples

F.1 Fejér kernel

Let f ∈ N and X ∈ Td the d-dimensional torus. We consider the Fejér kernel

K(x, x′) =

d∏
i=1

κ(xi − x′i),

where κ(x)
def.
=

 sin

((
f
2 +1

)
πx

)
(
f
2 +1

)
sin(πx)

4

, with constant metric tensor

Hx = Cf Id and dH(x, x′) = C
− 1

2

f ‖x− x′‖2 .

where Cf
def.
= −κ′′(0) = π2

3 f(f + 4) ∼ f2. Note that K(ij) = C
−(i+j)/2
f ∇i1∇

j
2K and since the metric is constant,

we can set CH
def.
= 0.

F.1.1 Discrete Fourier sampling

A random feature expansion associated with the Fejér kernel is obtained by choosing Ω =
{
ω ∈ Zd ; ‖ω‖∞ 6 f

}
,

ϕω(x)
def.
= ei2πω>x, and Λ(ω) =

∏d
j=1 g(ωj) where g(j) = 1

f

∑min(j+f,f)
k=max(j−f,−f)(1− |k/f |)(1− |(j − k)/f |). Note that

this corresponds to sampling discrete Fourier frequencies. In this case, the derivatives of the random features are
uniformly bounded with

∥∥∇jϕω(x)
∥∥ = ‖ω‖j = O(C

j/2
f dj/2). So, we can set L̄i = O(di/2).

F.1.2 Admissibility of the kernel

Theorem F.1. Suppose that f > 128. Then, K is an admissible kernel with rnear = 1/(8
√

2), ε2 = 0.941,
ε0 = 0.00097, h = O(d−1/2) and ∆ = O(d1/2s

1/4
max), B00 = B11 = B20 = O(1), B01 = O(d1/2) and B22 = O(d).

The remainder of this section is dedicated to proving this theorem. The uniform bounds on Bij are due to Lemma
F.4 (uniform bounds), and the bound on ∆ and h are due to Lemma F.3. From Lemma F.1, we see that by setting
rnear

def.
= 1

8
√

2
, for all dH(x, x′) 6 rnear, K(20)(x, x′) ≺ −ε2Id with ε2 = (1− 6r2

near)(1− r2
near/(2− r2

near)− r2
near) >

0.941. Finally, from Lemma F.2, we have that for for all dH(x, x′) > rnear, |K| 6 1 − 1/(83 · 2), so we can set
ε0

def.
= 0.00097.

Before proving these lemmas, we first summarise in Section F.1.3 some key properties of the univariate Fejér
kernel κ when f > 128 which were derived in Candès and Fernandez-Granda (2014).

For notational convenience, write ti
def.
= xi − x′i, κi

def.
= κ(ti), κ′i

def.
= κ′(ti), and so on. Let

Ki
def.
=

d∏
k=1
k 6=i

κk, Kij
def.
=

d∏
k=1
k 6=i,j

κk and Kij`
def.
=

d∏
k=1
k 6=i,j,`

κk.
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With this, we have:

∂1,iK(x, x′) = κ′iKi

∂1,i∂2,iK(x, x′) = − κ′′iKi, and ∀i 6= j, ∂1,i∂2,jK(x, x′) = −κ′iκ′jKij .

Where convenient, we sometimes write K(t) = K(x− x′) def.
= K(x, x′).

F.1.3 Properties of κ

From (Candès and Fernandez-Granda, 2014, Equations (2.20)-(2.24) and (2.29)), for all t ∈ [−1/2, 1/2] and
` = 0, 1, 2, 3:

1− Cf
2
t2 6 κ(t) 6 1− Cf

2
t2 + 8

(
1 + 2/f

1 + 2/(2 + f)

)2

C2
f t

4 6 1− Cf
2
t2 + 8C2

f t
4

|κ′(t)| 6 Cf t, |κ′′(t)| 6 Cf , |κ′′′(t)| 6 3

(
1 + 2/f

1 + 2/(2 + f)

)2

C2
f t 6 12C2

f t

κ′′ 6 −Cf +
3

2

(
1 + 2/f

1 + 2/(2 + f)

)2

C2
f t

2 6 −Cf + 6C2
f t

2.

(F.1)

By (Candès and Fernandez-Granda, 2014, Lemma 2.6),

∣∣∣κ(`)(t)
∣∣∣ 6


π`H`(t)

(f+2)4−`t4
, t ∈ [ 1

2f ,
√

2
π ]

π`H∞`
(f+2)4−`t4

, t ∈ [
√

2
π ,

1
2 ),

where H∞0
def.
= 1, H∞1

def.
= 4, H∞2

def.
= 18 and H∞3

def.
= 77, and H`(t)

def.
= α4(t)β`(t), with

α(t)
def.
=

2

π(1− π2t2

6 )
, β̄(t)

def.
=

α(t)

ft
=

2

ftπ(1− π2t2/6)

and β0(t)
def.
= 1, β1(t)

def.
= 2 + 2β̄(t), β2

def.
= 4 + 7β̄(t) + 6β̄(t)2 and β3(t)

def.
= 8 + 24β̄ + 30β̄(t)2 + 15β̄(t)3. Let us first

remark that β̄ is decreasing on I def.
= [ 1

2f ,
√

2
π ], so

∣∣β̄(t)
∣∣ 6 ∣∣β̄(1/(2f))

∣∣ ≈ 1.2733, and a(t) 6 a(
√

2/π) = 3
π on I.

Therefore, on I, H0(t) 6 3
π , H1(t) 6 3.79, H2(t) 6 18.83 and H3(t) 6 98.26, and we can conclude that on [ 1

2f ,
1
2 ),

we have ∣∣∣κ(`)(t)
∣∣∣ 6 π`H̄∞`

(f + 2)4−`t4

where H̄∞0 = 1, H̄∞1
def.
= 4, H̄∞2

def.
= 19, H̄∞3

def.
= 99. Combining with (F.1), we have

∥∥κ(`)
∥∥
∞ 6 κ∞` where κ∞0

def.
= 1,

κ∞2
def.
= Cf ,

κ∞1
def.
=
√
Cf max

(
2π4

( 1
2 + 1

f )3

f√
Cf

,

√
Cf

2f

)
= O(

√
Cf )

κ∞3
def.
= (Cf )3/2 max

 99π3

( 1
2 + 1

f )

(
2f√
Cf

)4

,
6
√
Cf

f

 = O((Cf )3/2).

Finally, given p ∈ (0, 1),

(f + 2)4t4 > (1 + p(f + 2)2t2)2, ∀ t > 1√
(1− p)(f + 2)

.
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Choosing p = 1
2 and using (f + 2)2 = ( 3

π2Cf + 4) > 3
π2Cf , we have∣∣∣κ(`)(t)

∣∣∣ 6 κ∞`
(1 + 3

2π2Cf t2)2
, ∀ t2 >

2π2

3Cf
, (F.2)

F.1.4 Bounds in neighbourhood of x′ = x

Lemma F.1. Suppose that Cf ‖t‖22 6 c with c > 0 such that

ε
def.
= (1− 6c)

(
1− c

2− c

)
− c > 0

Then, K̂02(t) � −εId.

Proof. We need to show that λmin(−K(02)(t)) > b. Let q ∈ Rd, and note that

−〈∇2
2Kq, q〉 = −

∑
i

qiκ′′iKi − κ′i
∑
j 6=i

qjκ
′
jKij

 qi

= −

∑
i

q2
i κ
′′
iKi −

∑
i

qiκi
∑
j 6=i

qjκjKij


> ‖q‖2

−max
i
{κ′′iKi} −

∑
j

∣∣κ′j∣∣2
 .

(F.3)

We first consider κ′′iKi:

κ′′i 6 −Cf + 6C2
f t

2
i ,

Ki >
∏
j 6=i

(
1− Cf

2
t2i

)
> 1− Cf

2
‖t‖22 −

(
Cf
2
‖t‖22

)3

−
(
Cf
2
‖t‖22

)5

− · · ·

> 1−
Cf ‖t‖22

2(1− Cf
2 ‖t‖

2
2)
.

and hence,

κ′′iKi 6
(
−Cf + 6C2

f ‖t‖
2
2

)(
1−

Cf ‖t‖22
2(1− Cf

2 ‖t‖
2
2)

)
For the second term, ∑

j

∣∣κ′j∣∣2 6 C2
f ‖t‖

2
2 .

Therefore,

λmin(−K(02)(t)) >
(

1− 6Cf ‖t‖22
)(

1−
Cf ‖t‖22

2(1− Cf
2 ‖t‖

2
2)

)
− Cf ‖t‖22

Lemma F.2. Assume that 1

8
√
Cf

> ‖t‖2 Then,

K(t) 6 1− Cf
4
‖t‖22 + 16C2

f ‖t‖
4
2 .
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Consequently, for all

0 < c 6
1

8
√

2Cf
,

and all t such that ‖t‖2 > c,

|K(t)| 6 1− Cf
8
c2.

Proof. First note that

|κ(u)| 6 1− Cf
2
u2 + 32C2

fu
4 = 1− u2g(u)

where
g(u)

def.
= Cf

(
1

2
− 32Cfu

2

)
,

and note that g(u) ∈ (0,
Cf
2 ) for u ∈ (0, 1/(8

√
Cf ). So, writing t = (ti)

d
i=1 and gj

def.
= g(tj), we have

K(t) =

d∏
j=1

κ(ti) 6
d∏
j=1

(
1− t2j · g(tj)

)
= 1−

d∑
j=1

t2jgj +
∑
j 6=k

t2j t
2
kgjgk −

∑
j 6=k 6=`

t2j t
2
kt

2
`gjgkg` + · · ·

Note that

−
∑
j 6=k 6=`

t2j t
2
kt

2
` · gjgkg` +

∑
j 6=k 6= 6̀=n

t2j t
2
kt

2
` t

2
n · gjgkg`gn

6 −
∑
j 6=k 6=`

t2j t
2
kt

2
` · gjgkg` +

 ∑
j 6=k 6=`

t2j t
2
kt

2
` · gjgkg`

(∑
n

t2ngn

)

6 −
∑
j 6=k 6=`

t2j t
2
kt

2
` · gjgkg`

(
1− Cf

2
‖t‖22

)
< 0

since
(

1− Cf
2 ‖t‖

2
2

)
> 0. Also,

d∑
j=1

t2jgj 6
Cf
2

d∑
j=1

t2j < 1,

by assumption. So,

K(t) 6 1−
d∑
j=1

t2jgj +
∑
j 6=k

t2j t
2
kgjgk

6 1−
d∑
j=1

t2jgj +
1

2

∑
j

t2jgj

2

6 1− 1

2

d∑
j=1

t2jgj

6 1− Cf
2

1

2

d∑
j=1

t2j − 32Cf

d∑
j=1

t4j

 6 1− Cf
4
‖t‖22 + 16C2

f ‖t‖
4
2 .

Finally, observe that the function

q(z)
def.
=

Cf
4
z2 − 16C2

fz
4
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is positive and increasing on the interval [0, 1

8
√

2Cf
]. So, for t satisfing

c 6 ‖t‖2 6
1

8
√

2Cf
, (F.4)

we have |K(t)| 6 1 − q(c) 6 1 − Cf
8 c

2. Finally, since |K(t)| is decreasing as t increases, we trivially have that
|K(t)| 6 1− q(c) for all t with ‖t‖2 > c.

F.1.5 Bounds under separation

Lemma F.3. Let i, j ∈ {0, 1, 2} with i + j 6 3. Let Ā >
√

4π2

3 and ‖t‖2 > Ā
√
ds

1/4
max/

√
Cf . Then, we have∥∥K(ij)(t)

∥∥ 6 d
i+j−4

2 (Ā4smax)−1.

Proof. Write t = (tj)
d
j=1. To bound K(t) =

∏d
j=1 κ(aj), we want to make use of the form (F.2). We can do

this for each tj such that |tj | >
√

2π2

3Cf
. Note that there exists at least one such tj since ‖t‖∞ > ‖t‖2 /

√
d >

Ās
1/4
max/

√
Cf >

√
2π2

3Cf
. If {|tj |}kj=1 ⊂ [0,

√
2π2

3Cf
) for k 6 d− 1, then

k
2π2

3Cf
+

d∑
j=k+1

t2j > ‖t‖
2
2 >

Ā2ds
1/2
max

Cf
,

which implies that
∑d
j=k+1 t

2
j >

1
Cf

(
Ā2ds

1/2
max − 2π2(d−1)

3

)
> Ā2ds1/2

max

2Cf
, by our assumptions on Ā. Therefore, we

may assume that we have some d > p > 1 such that {bj}pj=1 ⊆ {tj} with |bj | >
√

2π2

3Cf
and ‖b‖2 > Ā

√
d 4
√
smax√

2Cf
.

Observe that
p∏
j=1

(1 +
3Cf
2π2

b2j ) > 1 +
3Cf
2π2

p∑
j=1

b2j = 1 +
3Cf
2π2
‖b‖22 > 1 +

3

4π2
Ā2d
√
smax.

So, by applying the fact that |κ| 6 1, κ∞0 = 1 and (F.2), we have

|K(t)| 6
p∏
j=1

|κ(bj)| 6
p∏
j=1

1(
1 +

3Cf
2π2 b2j

)2 6
1(

1 + 3
4π2 Ā2d

√
smax

)2 .

For |κ′iKi|, if i 6∈
{
j ; |tj | >

√
2π2

3Cf

}
, then

|κ′iKi| 6 ‖κ′i‖∞
p∏
j=1

|κ(bj)| 6
‖κ′i‖∞(

1 + 3
4π2 Ā2d

√
smax

)2 ,
and otherwise, we have |κ′iKi| 6 |κ′(ti)|

∏
j 6=i |κ(bj)| 6 κ∞1

(1+ 3
4π2 Ā

2d
√
smax)

2 , In a similar manner, writing V def.
=(

1 + 3
4π2 Ā

2d
√
smax

)−2, we can deduce that

|κ′iKi| 6 κmax
1 V, |κ′′iKi| 6 κmax

2 V,
∣∣κ′iκ′jKij

∣∣2 6 (κmax
1 )2V

|κ′′′i Ki|
3
6 κmax

3 V,
∣∣κ′′i κ′jKij

∣∣3 6 κmax
2 κmax

1 V,
∣∣κ′iκ′jκ′`Kij`

∣∣ 6 (κmax
1 )3V.

Therefore, ∥∥∥K(10)
∥∥∥ =

1√
Cf
‖∇1K‖ 6

1√
Cf

√√√√ d∑
j=1

∣∣κ′jKj

∣∣2 6
κ∞1√
Cf

V
√
d .

1

Ā4d3/2smax
.
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Using Gershgorin theorem, we have∥∥∇2
2K(x, x′)

∥∥ 6 max
16i6d

{|κ′′iKi|+ |κ′i|
∑
j 6=i

∣∣κ′j∣∣ |Kij |}

and hence, ∥∥∥K(02)
∥∥∥ =

1

Cf

∥∥∇2
2K
∥∥ 6

1

Cf

d
max
i=1
{|κ′′iKi|+ |κ′i|

∑
j 6=i

∣∣κ′jKij

∣∣}
6

1

Cf
V
(
κmax

2 + (κmax
1 )2(d− 1)

)
6

max{κ∞2 , (κ∞1 )2}
Cf

V d .
1

Ā4dsmax
.

Note also that
∥∥K(11)

∥∥ =
∥∥K(02)

∥∥. Finally, since
∥∥∂1,i∇2

2K(x, x′)
∥∥ 6 max

{
|κ′′′i Ki|+ |κ′′i |

∑
j 6=i

∣∣κ′j∣∣ |Kij | ,

max
j 6=i
{
∣∣κ′′j κ′iKij

∣∣+
∣∣κ′jκ′′iKij

∣∣+ |κ′i|
∣∣κ′j∣∣ ∑

l 6=i,j

|κ′l| |Kij`|}

}
,

we have ∥∥∥K(12)
∥∥∥ =

1

C
3/2
f

∥∥∇1∇2
2K
∥∥

6
1

C
3/2
f

√
dV max

(
κmax

3 + κmax
2 κmax

1 (d− 1), 2κmax
2 κ∞1 + (d− 1)(κ∞1 )3

)
6 d3/2 max{κ∞3 , κ∞1 κ∞2 , (κ∞1 )3} 1

C
3/2
f

V .
1

Ā4d1/2smax

F.1.6 Uniform bounds

Lemma F.4. If rnear ∼ 1/
√
Cf , then B0 = O(1), B01 = O(

√
d), B02 = B12 = B11 = O(1) and B22 = O(d).

Proof. We have |K| 6 1, and
‖∇K‖2 6

∑
i

|κi|2 |Ki|2 6 d(κ∞1 )2 . Cfd,

so B01 = O(
√
d).

From (F.3), for all ‖q‖ = 1,

〈∇2
2K(t)q, q〉 6 max

i
|κ′′i | ‖q‖

2
2 + ‖q‖22

∑
i

|κi|2 6 Cf + C2
f ‖t‖

2
= O(Cf ),

for ‖t‖ . 1/
√
Cf . So, since rnear 6 2/

√
Cf ,

∥∥K02(t)
∥∥ 6 2

def.
= B02. The norm bound for K11 is the same.
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∥∥∥K(12)
∥∥∥ = sup

‖q‖=‖p‖=1

1

C
3/2
f

(∑
k

∑
k 6=i

∂1,i

(
∂2

2,kKpiq
2
k + ∂1,i∂2,i∂2,kKpiqiqk

)
+
∑
i

∑
k

∑
j

∂1,i∂2,j∂2,kpipjpk +
∑
i

∑
j 6=i

∂1,i∂2,i∂2,jKpiqiqj +
∑
i

∂1,i∂
2
2,jKpiq

2
i

)

= sup
‖q‖=‖p‖=1

1

C
3/2
f

(∑
k

∑
k 6=i

κ′iκ
′′
kKikpiq

2
k + κ′′i κ

′
kKikpiqiqk

+
∑
i

∑
k

∑
j

κ′iκ
′
kκ
′
jKijkpipjpk +

∑
i

∑
j 6=i

κ′′i κ
′
jKijpiqiqj +

∑
i

κ′iκ
′′
jKijpiq

2
i

)

6
1

C
3/2
f

(
3 ‖κ′′‖∞

√∑
i

|κ′k|
2

+

(∑
i

|κ′k|
2

)3/2

+ ‖κ′‖∞ ‖κ
′′‖∞

)

6
1

C
3/2
f

(
3C2

f ‖t‖+ C3
f ‖t‖

3
+O(C

3/2
f )

)
= O(1)

for ‖t‖ 6 1/C
1/2
f .

We finally consider K(22)(x, x): for ‖p‖ = 1,∑
i

∑
k

∑
j

∂1,k∂1,i∂2,j∂2,iKpjpk =
∑
i

∑
k 6=i

κ′′i κ
′′
kp

2
jKik +

∑
i

∑
k 6=i

κ′′′i κ
′
kpipkKik

+
∑
i

∑
k

∑
j

κ′′i κ
′
jκ
′
kKijkpjpk +

∑
i

∑
j

κ′′′i κ
′
jpjpiKij +

∑
i

κ′′′′i p2
iKi

=
∑
i

∑
k 6=i

κ′′i κ
′′
kp

2
jKik +

∑
i

κ′′′′i p2
i

= dO(C2
f )

since κ′(0) = κ′′′(0) = 0 and |κ′′(0)| = O(Cf ), |κ′′′′(0)| = O(C2
f ). So, B22 = O(d).

F.2 The Gaussian kernel

We consider the Gaussian kernel K(x, x′) = exp
(
− 1

2 ‖x− x
′‖2Σ−1

)
in Rd. Note that K is translation invariant, so

that Hx will be constant and equal to −∇2K(x, x). For simplicity define t = x− x′, K̂Σ(t) = exp
(
− 1

2 ‖t‖
2
Σ−1

)
and for u ∈ R, κ(u) = exp

(
− 1

2u
2
)
. Denote by {ei} the canonical basis of Rd, and by fi = Σ−1ei the ith row of

Σ−1. We have the following:

∇K̂Σ(t) = − Σ−1tK̂Σ(t)

∇2K̂Σ(t) =
(
−Σ−1 + Σ−1tt>Σ−1

)
K̂Σ(t)

∂1,i∇2K̂Σ(t) =
(
Σ−1tf>i + fit

>Σ−1 − (−Σ−1 + Σ−1tt>Σ−1)(t>fi)
)
K̂Σ(t)

Hence we have Hx = −∇2K̂Σ(0) = Σ−1, and, defining dH(x, x′) = ‖x− x′‖Σ−1 =
∥∥∥Σ−

1
2 (x− x′)

∥∥∥, we have
CK̂ = 1, CH = 0 (that is, the metric tensor of the kernel is constant, and dH is defined as the corresponding
normalized norm).
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Then, we have ∥∥∥K(10)(x, x′)
∥∥∥ =

∥∥∥K(01)(x, x′)
∥∥∥ = dH(x, x′)κ(dH(x, x′))∥∥∥K(02)(x, x′)

∥∥∥ =
∥∥∥K(11)(x, x′)

∥∥∥ 6 (dH(x, x′)2 + 1)κ(dH(x, x′))

K(02)(x, x′) 4 (dH(x, x′)2 − 1)κ(dH(x, x′))Id

and for q ∈ Rd with ‖q‖ = 1, since∑
i

(Σ
1
2∇ϕω)iqi = ∇ϕ>ω (Σ

1
2 q) =

∑
i

∂iϕω(q>Σ
1
2 ei)

we can write

K(12)(x, x′)q =

d∑
i=1

(q>Σ
1
2 ei)Σ

1
2 ∂1,i∇2K̂Σ(t)Σ

1
2

Thus we examine each term in ∂1,i∇2K̂Σ. We have

∑
i

(q>Σ
1
2 ei)Σ

1
2 Σ−1tf>i Σ

1
2 = Σ−

1
2 t

(∑
i

q>Σ
1
2 eie

>
i Σ−

1
2

)
= Σ−

1
2 tq>

and similarly
∑
i(q
>Σ

1
2 ei)Σ

1
2 fit

>Σ−1Σ
1
2 = qt>Σ

1
2 . Then∑

i

(q>Σ
1
2 ei)(t

>Σ−1ei)Σ
1
2 Σ−1Σ

1
2 = t>Σ−1(

∑
i

eie
>
i )Σ

1
2 q = (t>Σ

1
2 q)Id

and similarly
∑
i

∑
i(q
>Σ

1
2 ei)(t

>Σ−1ei)Σ
1
2 Σ−1tt>Σ−1Σ

1
2 = (t>Σ

1
2 q)Σ−

1
2 tt>Σ−

1
2 .

Hence at the end of the day ∥∥∥K(12)(x, x′)
∥∥∥ 6 (3dH(x, x′) + dH(x, x′)3)κ(dH(x, x′))

and this bound is automatically valid for K(21) as well.

Finally, note that ∥∥∥K(22)(x, x)
∥∥∥ = sup

‖p‖61

〈Σ1/2∇2∇2 ·
(

Σ1/2K(2,0)(x, x)p
)
, p〉

where ∇2· is the divergence operator on the 2nd variable, and one can show that
∥∥K(22)(x, x)

∥∥ = (d+ 1).

We are then going to use the fact that for any q > 1 the function f(r) = rqe−
1
2 r

2

defined on R+ is increasing on
[0,
√
q] and decreasing after, and its maximum value is f(

√
q) =

(
q
e

)q/2. Furthermore, it is easy to see that we

have f(r) = rqe−r
2/2 6

(
2q
2

) q
2 e−r

2/4 and therefore f(r) 6 ε if r > 2
(
log
(

1
ε

)
+ q

2 log
(

2q
e

))
.

We define rnear = 1/
√

2 and ∆ = C1

√
log(smax) + C2 for some C1 and C2.

1. Global Bounds. From what preceeds, we have

∥∥∥K(10)
∥∥∥ 6

1√
e
,
∥∥∥K(02)

∥∥∥ 6
2

e
+ 1,

∥∥∥K(12)
∥∥∥ 6

3√
e

+

(
3

e

) 3
2

and note that
∥∥K(11)

∥∥ =
∥∥K(02)

∥∥, so for all i+ j 6 3 Bij = O (1).

2. Near 0 For dH(x, x′) 6 rnear, we have

K(02) 4 −e
− 1

4

2
Id
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and for dH(x, x′) > 1
2 ,

|K| 6 e−
1
4 = 1− (1− e− 1

4 )

and
∥∥K(22)(x, x)

∥∥ = d+ 1, so we have also εi = O (1), so Bi = B0i +B1i + 1 = O (1) and B22 = d+ 1.

3. Separation. Since εi = O (1) and Bij = O (1), every condition
∥∥K(ij)

∥∥ . 1
smax

is satisfied if ∆ >

C1

√
log(smax) + C2 for some constant C1 and C2.

F.2.1 Fourier measurements with Gaussian frequencies

The random feature expansion for K is ϕω(x) = eiω
>x and Λ = N (0,Σ−1). We have immediately L0 = 1. For

j > 1, we have Dj [ϕω] (x)[q1, . . . , qj ] =
(∏

i ω
>(Σ

1
2 qi)

)
ϕω(x) and therefore

‖Dj [ϕω]‖ 6 ‖ω‖jΣ

Now, we use ‖ω‖jΣ = (
∥∥∥Σ

1
2ω
∥∥∥2

)
j
2 = W

j
2 where W is a χ2 variable with d degrees of freedom. Then, we use the

following Chernoff bound (Dasgupta and Gupta, 2003): for x > d, we have

P(W > x) 6
(ex
d
e−

x
d

) d
2

6

(
e

(√
x

d

)2

e−
1
2 ·(
√

x
d )

2

e−
x
2d

) d
2

6 2
d
2 e−

x
4

by using x2e−
x2

2 6 2
e .

Hence we can define the Fj such that, for all t > dj/2, P(Lj(ω) > t) 6 Fj(t) = 2
d
2 exp

(
− t

2
j

4

)
, and Fj(L̄j) is

smaller than some δ if L̄j ∝
(
d+ log 1

δ

) j
2 . Then we must choose the Lj such that

∫
L̄j
tFj(t)dt is bounded by

some δ. Taking Lj > dj/2 in any case, we have∫
L̄j

tFj(t)dt = 2
d
2

∫
L̄j

t exp

(
− t

2
j

4

)
dt = 2

d
2

∫
L̄

2
j
j

(j/2)tj−1 exp

(
− t

4

)
dt

= 2
d
2 (j/2)

∫
L̄

2
j
j

(
tj−1 exp

(
− t

8

))
exp

(
− t

8

)
dt 6 2

d
2 (j/2)

(
8(j − 1)

e

)j−1 ∫
L̄

2
j
j

exp

(
− t

8

)
dt

= 2
d
2 j

(
8(j − 1)

e

)j−1

8 exp

(
−L̄

2
j

j /8

)

Hence this quantity is bounded by δ if L̄j ∝
(
d+ log

(
1
δ

)) j
2 . Then we have L̄2

jFi(L̄i) = L̄2
j2

d
2 exp

(
− L̄

2
i
i

4

)
which

is also bounded by δ if L̄j ∝
(
d+

(
log d

δ

)2) j2
. At the end of the day, our assumptions are satisfied for

L̄j ∝

(
d+

(
log

dm

ρ

)2
) j

2

F.2.2 Gaussian mixture model learning

We apply the mixture model framework with the base distribution:

Pθ = N (θ,Σ)

The random features on the data space are ϕ′ω(x) = Ceiω
>x with Gaussian distribution ω ∼ Λ = N (0, A) for some

constant C and matrix A. Then, the features on the parameter space are ϕω(θ) = Ex∼Pθϕ′ω(x) = Ceiω
>θe−

1
2‖ω‖

2
Σ
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(that is, the characteristic function of Gaussians). Then, it is possible to show (Gribonval et al., 2017) that the
kernel is

K(θ, θ′) = C2

∣∣A−1
∣∣ 1

2

|2Σ +A−1|
1
2

e
− 1

2‖θ−θ′‖2(2Σ+A−1)−1

Hence we choose A = cΣ−1, C = (1 + 2c)
d
4 , and we come back to the previous case K(θ, θ′) = e−

1
2‖θ−θ′‖2Σ̃−1 with

covariance Σ̃ = (2 + 1/c)Σ. Hence εi = O (1), Bij = O (1), dH(θ, θ′) = ‖θ − θ′‖Σ̃−1 = 1√
2+1/c

‖θ − θ′‖Σ−1 .

Admissible features. Unlike the previous case, the features are directly bounded and Lipschitz. We have

|ϕω(θ)| 6 C
def.
= L0,

‖Dj [ϕω(θ)]‖ = C
∥∥∥Σ̃

1
2ω
∥∥∥j e− ‖ω‖2Σ2 = C (2 + 1/c)

j
2

∥∥∥Σ
1
2ω
∥∥∥j e− ‖ω‖2Σ2 6 C (2 + 1/c)

j
2

(
j

e

) j
2

def.
= Lj

Hence all constants Lj are in O
(
C(2 + 1/c)

j
2

)
by choosing c = 1

d they are in O
(
d
j
2

)
.

F.3 The Laplace transform kernel

Let α ∈ Rd+ and let X ⊂ Rd+ be a compact domain. Define for x ∈ X and ω ∈ Rd+,

ϕω(x)
def.
= exp(−〈x, ω〉)

d∏
i=1

√
(xi + αi)

αi
and Λ(ω)

def.
= exp(−〈2α, ω〉)

d∏
i=1

(2αi),

The associated kernel is K(x, x′) =
∏d
i=1 κ(xi + αi, x

′
i + αi) where κ is the 1D Laplace kernel

κ(u, v)
def.
= 2

√
uv

(u+ v)
.

A direct computation shows that Hx ∈ Rd×d is the diagonal matrix with (hxi+αi)
d
i=1 where hx

def.
= ∂x∂x′κ(x, x) =

(2x)−2. Note that

dκ(s, t) =

∫ max{s,t}

min{s,t}
(2x+ 2α)−1dx =

∣∣∣∣log

(
t+ α

s+ α

)∣∣∣∣ (F.5)

and so, dH(x, x′) =

√∑d
i=1

∣∣∣log
(
xi+αi
x′i+αi

)∣∣∣2.
We have the following results concerning the boundedness of ‖Dj [ϕω]‖ and the admissiblity of K:

Theorem F.2 (Stochastic gradient bounds). Assume that the αi’s are all distinct. Then, L̄0(ω) 6 L̄0
def.
=(

1 + RX
mini αi

)d
and for j = 1, 2, 3,

P(Lj(ω) > t) 6 Fj(t)
def.
=

d∑
i=1

βi exp

(
−αi

(
1

2(RX + ‖α‖∞)

(
t

L̄0

)1/j

−
√
d

))

and we have that
∑
i Fj(L̄j) 6 δ and L̄2

j

∑
i Fi(L̄i) + 2

∫∞
L̄j
tFj(t)dt 6 δ provided that

L̄j ∝ L̄0(RX + ‖α‖∞)j
(√

d+ max
i

1

αi
log

(
dβiL̄0(RX + ‖α‖∞)

δαi

))j
.

where βi =
∏
j 6=i

αj
αj−αi . Note that αi ∼ d implies that L̄0 ∼ (1 +RX /d)d ∼ eRX .

Theorem F.3 (Admissiblity of K). The Laplace transform kernel K is admissible with rnear = 0.2, CH = 1.25,
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ε0 = 0.005, ε2 = 1.52. For all i+ j 6 3, Bij = O(1), B22 = O(d), ∆ = O(d+ log
(
d3/2smax

)
) and h = O(1).

The first result Theorem F.2 is proved in Section F.3.1 and the second result, Theorem F.4 is a direct consequence
of Theorem F.4 and Lemma F.5 in Section F.3.2.

F.3.1 Stochastic gradient bounds

Proof of Theorem F.2. Let V def.
= (1− 2(xi + αi)ωi)

d
i=1 ∈ Rd. Then,

‖V ‖ =

√∑
i

(1− 2(xi + αi)ωi)2

6

√∑
i

1 + 4(xi + αi)2ω2
i 6

√
d+ 4(RX + ‖α‖∞)2 ‖w‖2

6
√
d+ 2(RX + ‖α‖∞) ‖w‖

We have the following bounds:

|ϕω(x)| 6
d∏
i=1

√
1 +

xi
αi

6

(
1 +

RX
mini αi

)d
def.
= L̄0,

D1 [ϕω] (x) = ϕω(x)V =⇒ ‖D1 [ϕω] (x)‖ 6 L̄0 ‖V ‖

D2 [ϕω] (x) = ϕω(x)(V V > − 2Id) =⇒ ‖D2 [ϕω] (x)‖ 6 L̄0 min{‖V ‖2 , 2}.

and given u, q ∈ Rd,

D3 [ϕω] (x)[q, q, u] = ϕω(x)

(
〈u, V 〉〈q, V 〉2 − 2 ‖q‖2 − 4〈u, q〉〈q, V 〉+ 8

∑
i

q2
i ui

)
,

so
‖D3 [ϕω] (x)‖ 6 |ϕω(x)|

(
‖V ‖3 + 10 + 4 ‖V ‖

)
6 L̄05(‖V ‖3 + 3),

And therefore, in general,

‖Dj [ϕω] (x)‖ 6 Lj(ω)
def.
= R̄j+1

X

(√
d+ ‖ω‖

)j
‖Dj [ϕω] (x)‖ . Lj(ω)

def.
= L̄0

(√
d+ 2(RX + ‖α‖∞) ‖w‖

)j
Assuming for simplicity that all αj are distinct, we have Akkouchi:

P(‖w‖ > t) 6 P(‖ω‖1 > t) =

d∑
i=1

βie
−αit

where βi =
∏
j 6=i

αj
αj−αi , using the fact that ‖ω‖1 is a sum of independent exponential random variable.

Hence, for all 1 6 j 6 3 and t > d
j
2 we have

P(Lj(ω) > t) 6 P

(
‖w‖ > 1

2(RX + ‖α‖∞)

(
t

L̄0

)1/j

−
√
d

)

6 Fj(t)
def.
=

d∑
i=1

βi exp

(
−αi

(
1

2(RX + ‖α‖∞)

(
t

L̄0

)1/j

−
√
d

))
6 δ
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and Fj(L̄j) 6 δ if

L̄j > L̄0

(
2j(RX + ‖α‖∞)j

(√
d+ max

i

1

αi
log

(
dβi
δ

))j)
Next, in a similar manner to the Gaussian case, we compute∫

L̄j

tFj(t)dt =

d∑
i=1

βi

∫
L̄j

t exp

(
−αi

(
1

2(RX + ‖α‖∞)

(
t

L̄0

)1/j

−
√
d

))
dt

= L̄2
0j

d∑
i=1

eαi
√
dβi

∫
(L̄j/L̄0)1/j

exp

(
−αiu

2(RX + ‖α‖∞)

)
u2j−1du

6

(
(2j − 1)4(RX + ‖α‖∞)

eαi

)2j−1

L̄2
0j

d∑
i=1

eαi
√
dβi

∫
(L̄j/L̄0)1/j

exp

(
−αiu

4(RX + ‖α‖∞)

)
du

6

(
4(RX + ‖α‖∞)

αi

)2j (
2j − 1

e

)2j−1

L̄2
0j

d∑
i=1

eαi
√
dβi exp

(
−αi(L̄j/L̄0)1/j

4(RX + ‖α‖∞)

)
6 δ

if for all i = 1, . . . , d,

4(RX + ‖α‖∞)

αi

(
2j log

(
4(2j − 1)(RX + ‖α‖∞)

eαi

)
+ log(L̄2

0j) + αi
√
d+ log

(
dβi
δ

))
6

(
L̄j
L̄0

)1/j

that is,

L̄j & L̄0

(
2j(RX + ‖α‖∞)j

(√
d+ max

i

1

αi
log

(
dβi
δ

))j)
.

It remains to bound L̄jF`(L̄`) with `, j ∈ {0, 1, 2, 3}: Let L̄` > L̄0M
` for some M to be determined. Then,

L̄jF`(L̄`) 6 L̄0M
j

d∑
i=1

βi exp

(
−αi

2(RX + ‖α‖∞)
M + αi

√
d

)

= L̄0

d∑
i=1

βiM
j exp

(
−αi

4(RX + ‖α‖∞)
M

)
exp

(
−αi

4(RX + ‖α‖∞)
M

)
eαi
√
d

6 L̄0e
−j

d∑
i=1

(
4j(RX + ‖α‖∞)

αi

)j
βi exp

(
−αi

4(RX + ‖α‖∞)
M

)
eαi
√
d

6 L̄0e
−3

d∑
i=1

(
12(RX + ‖α‖∞)

αi

)3

βi exp

(
−αi

4(RX + ‖α‖∞)
M

)
eαi
√
d 6 δ

if for each i = 1, . . . , d

M > 4(RX + ‖α‖∞)

(
√
d+ max

i

1

αi
log

(
L̄0dβi
δe3

(
12(RX + ‖α‖∞)

αi

)3
))

.

Therefore, similar to the Gaussian case, the conclusion follows for L̄0 =
(

1 + RX
mini αi

)d
, and for j = 1, 2, 3,

L̄j ∝ L̄0(RX + ‖α‖∞)j
(√

d+ max
i

1

αi
log

(
dβiL̄0(RX + ‖α‖∞)

δαi

))j
.



Support Localization and the Fisher Metric for off-the-grid Sparse Regularization

F.3.2 Admissiblity of the kernel

Metric variation We have the following lemma on the variation of the Fisher metric:

Lemma F.5. Suppose that dH(x, x′) 6 c, then
∥∥∥Id−H

1/2
x Hx′

∥∥∥ 6 (1 + cec)dH(x, x′) .

Proof. Note that |1− |(xi + αi)/(x
′
i + αi)|| 6 max{edκ(xi,x

′
i) − 1, 1 − e−dκ(xi,x

′
i)} 6 dκ(xi, x

′
i)(1 + cec) for all

dκ(xi, x
′
i) 6 c. Therefore,

‖Id−HxHx′‖2 =
∑
i

|1− |(xi + αi)/(x
′
i + αi)||

2
6 (1 + cec)dH(x, x′)

provided that dH(x, x′) 6 c.

Admissiblity of the kernel The following theorem provides bounds for K and its normalised derivatives.

Theorem F.4. 1. |K(x, x′)| 6 min{2de− 1
2dH(x,x′), 8

8+dH(x,x′)2 }.

2.
∥∥K(10)(x, x′)

∥∥ 6 min{2
√
d |K| ,

√
2}.

3.
∥∥K(11)

∥∥ 6 min{9d |K| , 8}

4.
∥∥K(20)

∥∥ 6 min{10d |K| , 8} and λmin(−K(20)) >
(
2− 12dH(x, x′)2

)
K.

5.
∥∥K(12)

∥∥ 6 min{66 |K| d3/2, 16
√
d+ 49} and

∥∥K(12)(x, x′)
∥∥ 6 34 if dH(x, x′) 6 1.

6.
∥∥K(22)

∥∥ 6 16d+ 9.

In particular, for dH(x, x′) > 2d log(2) + 2 log
(

52d3/2smax

h

)
, we have

∥∥K(ij)(x, x′)
∥∥ 6 h

smax
.

To prove this result, we first present some bounds for the univariate Laplace kernel in Section F.3.3 before
applying these bounds in Section F.3.4.

F.3.3 1D Laplace kernel

In the following κ(ij)(x, x′)
def.
= h

−i/2
x h

−j/2
x′ ∂ix∂

j
x′κ(x, x′).

Lemma F.6. We have

(i) κ(x, x′) = sech
(
dκ(x,x′)

2

)
6 2e−

1
2dκ(x,x′),

(ii)
∣∣κ(10)(x, x′)

∣∣ = 2
∣∣∣tanh

(
dκ(x,x′)

2

)
κ(x, x′)

∣∣∣ , and ∣∣κ(10)
∣∣ 6 2 |κ|.

(iii)
∣∣κ(11)

∣∣ 6 4 |κ|3 + 4 |κ|

(iv)
∣∣κ(20)

∣∣ 6 6 |κ| and −κ(20) > 2κ(x, x′)
(

1− 2 tanh
(
dκ(x,x′)

2

))
.

(v)
∣∣κ(12)

∣∣ 6 49 |κ|.

(vi) κ(22)(x, x) = 9 for all x.
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Proof. We first state the partial derivatives of κ:

κ(x, x′) =
2
√
xx′

x+ x′
,

∂xκ(x, x′) =
x′(x′ − x)√
xx′(x+ x′)2

∂x∂x′κ(x, x′) =
−x2 + 6xx′ − (x′)2

2
√
xx′(x+ x′)3

∂2
xκ(x, x′) = −

(x′)2
(
(x+ x′)2 + 4x(x′ − x)

)
2 (xx′)

3/2
(x+ x′)3

= − (x′)2

2 (xx′)
3/2

(x+ x′)
− 2x′(x′ − x)

(xx′)
1/2

(x+ x′)3

∂x∂
2
x′κ(x, x′) =

x3 + 13x2x′ − 33x(x′)2 + 3(x′)3)

4x′(xx′)1/2(x+ x′)4

∂2
x∂

2
x′κ(x, x′) = −3x4 + 60x3x′ − 270x2(x′)2 + 60x(x′)3 + 3(x′)4

8xx′(xx′)1/2(x+ x′)5

(i)

κ(x, x′) = 2

(√
x

x′
+

√
x′

x

)−1

=
2

e−
dκ(x,x′)

2 + e
dκ(x,x′)

2

=
1

cosh(dκ(x,x′)
2 )

6 2e−
1
2dκ(x,x′),

(ii) We have, assuming that x > x′,

κ(10)(x, x′) = 2x∂xκ(x, x′) = 2
x′ − x
x+ x′

κ(x, x′)

= 2

(
1

x
x′ + 1

− 1

1 + x′

x

)
κ(x, x′)

= 2

(
1

1 + exp(dκ(x, x′))
− 1

1 + exp(−dκ(x, x′))

)
= 2

(
exp(−dκ(x, x′))− exp(dκ(x, x′))

2 + exp(dκ(x, x′)) + exp(dκ(x, x′))

)
=
−2 sinh(dκ(x, x′))

1 + cosh(dκ(x, x′))
κ(x, x′)

= −2 tanh(dκ(x, x′)/2)κ(x, x′),

(iii)

κ(11) = 4xx′∂x′∂xκ(x, x′) = 4xx′
4xx′ − (x− x′)2

2
√
xx′(x+ x′)3

= 4κ(x, x′)3 − 4(x− x′)2

(x+ x′)2
κ(x, x′)

= κ(x, x′)
(
4κ(x, x′)2 − 4 tanh2(dκ(x, x′)/2)

)
so
∣∣κ(11)

∣∣ 6 4 |κ|3 + 4 |κ|.
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(iv)

κ(20) = 4x2∂2
xκ(x, x′) = −

4 (xx′)
1/2 (

(x+ x′)2 + 4x(x′ − x)
)

2(x+ x′)3

= −2κ(x, x′)

(
1 +

2x(x′ − x)

(x+ x′)2

)
so
∣∣κ20

∣∣ 6 6 |κ|. Also,

−κ(20) > 2κ(x, x′) (1− 2 tanh(dκ(x, x′)/2))

(v)

κ(12) = 2x(2x′)2∂x∂
2
x′κ(x, x′)

= κ(x, x′)

(
1 +

2v(5u2 − 18uv + v2)

(u+ v)3

)
so
∣∣κ(12)

∣∣ 6 49 |κ|.

(vi)

κ(22) = 16(xx′)2∂2
x∂

2
x′κ(x, x′)

= −3− 48xx′(x2 − 6xx′ + (x′)2)

(x+ x′)4

and κ(22)(x, x) = 9 .

F.3.4 Proof of Theorem F.4

Let d`
def.
= dκ(x` + α`, x

′
` + α`) and note that dH(x, x′) =

√∑
` d2

` . Define g =
(
2 tanh(d`

2 )
)d
`=1

. We first prove
that

(i) |K(x, x′)| 6
∏d
`=1 sech(d`/2) 6

∏d
`=1

1
1+d2

`/8
6 1

1+ 1
8dH(x,x′)2 .

(ii)
∥∥K(10)(x, x′)

∥∥ 6 ‖g‖2 |K|.

(iii)
∥∥K(11)

∥∥ 6 |K|
(
‖g‖22 + 5

)
(iv)

∥∥K(20)
∥∥ 6 |K|

(
‖g‖22 + 6

)
and λmin

(
K(20)

)
> K

(
2− 3 ‖g‖22

)
.

(v)
∥∥K(12)

∥∥ 6 |K|
(
‖g‖32 + 16 ‖g‖2 + 49

)
(vi)

∥∥K(22)
∥∥ 6 16d+ 9.

The result would then follow because

• sech(x) 6 2e−x and sech(x) 6 (1 + x2/2)−1.

• |tanh(x)| 6 min{x, 1}, so ‖g‖ 6 min{dH(x, x′), 2
√
d},

For example,
∥∥K(12)

∥∥ 6 1
1+ 1

8dH(x,x′)2

(
dH(x, x′)3 + 16dH(x, x′) + 24

)
6 8dH(x, x′) +

√
8

2 + 24 6 34 when
dH(x, x′) 6 1.

In the following, we write κ(ij)
`

def.
= κ(ij)(x` + α`, x

′
` + α`) and κ`

def.
= κ

(00)
` and Ki

def.
=
∏
j 6=i κj . Moreover, we will

make use of the inequalities for κ(ij) derived in Lemma F.6.
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(i) We have

|K(x, x′)| 6
d∏
`=1

sech(d`) 6
d∏
`=1

(
1 +

d2
`

2

)−1

6
1

1 + dH(x, x′)2
.

(ii)

K(10)(x, x′) =
(
κ

(10)
` K`

)d
`=1

=⇒
∥∥∥K(10)(x, x′)

∥∥∥ 6 ‖g‖2 |K| .

(iii) For i 6= j ∣∣∣K(11)
ij

∣∣∣ =
∣∣∣κ(10)
i κ

(01)
j Kij

∣∣∣ 6 4 tanh

(
di
2

)
tanh

(
dj
2

)
|K| ,

and
∣∣∣K(11)

ii

∣∣∣ =
∣∣∣κ(11)
i Ki

∣∣∣ 6 5 |K|. So, given p ∈ Rd of unit norm,

〈K(11)p, p〉 =

d∑
i=1

∑
j 6=i

κ
(10)
i κ

(01)
j Kijpipj +

d∑
i=1

p2
iκ

(11)
i Ki

6 |K|

 d∑
i=1

∑
j 6=i

4 tanh(di/2) tanh(dj/2)pipj + 5

d∑
i=1

p2
i


6 |K|

(
‖g‖22 + 5

)
(iv) For i 6= j, K(20)

ij = κ
(10)
i κ

(10)
j Kij , and

∣∣∣K(20)
ii

∣∣∣ =
∣∣∣κ(20)
i Ki

∣∣∣ 6 6 |K| and −K(20)
ii > 2K

(
1− 2 tanh

(
di
2

))
.

〈K(20)p, p〉 =

d∑
i=1

∑
j 6=i

κ
(10)
i κ

(10)
j Kijpipj +

d∑
i=1

p2
iκ

(20)
i Ki

6 |K|

 d∑
i=1

∑
j 6=i

4 tanh(di/2) tanh(dj/2)pipj + 6

d∑
i=1

p2
i


6 |K|

(
‖g‖22 + 6

)
,

and

〈−K(20)p, p〉 > K
(

2− 2 ‖g‖∞ − ‖g‖
2
2

)
(v) For i, j, ` all distinct,

K
(12)
ij` = κ

(10)
i κ

(01)
j κ

(01)
` Kij` 6 8 tanh

(
di
2

)
tanh

(
dj
2

)
tanh

(
d`
2

)
K,

for all i, `,

K
(12)
ii` = 8κ

(11)
i κ

(01)
` Ki` 6 10 tanh

(
d`
2

)
K

K
(12)
iji = κ

(11)
i κ

(01)
j Kij 6 10 tanh

(
dj
2

)
K,
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K
(12)
ijj = κ

(10)
i κ

(02)
` Kij 6 12 tanh

(
di
2

)
K, and K(12)

iii = κ
(12)
i Ki 6 26K. So, for p, q ∈ Rd of unit norm,

∑
i

∑
j

∑
`

K
(12)
ij` pjp`qi =

∑
i

∑
j 6=i

∑
`

K
(12)
ij` pjp`qi +

∑
`

K
(12)
ii` pip`qi


=
∑
i

∑
j 6=i

 ∑
` 6∈{i,j}

K
(12)
ij` pjp`qi +K

(12)
iji pjpiqi +K

(12)
ijj p

2
jqi


+
∑
i

∑
` 6=i

K
(12)
ii` pip`qi +

∑
i

K
(12)
iii p2

i qi

6 |K|
(
‖g‖32 + 16 ‖g‖2 + 49

)
.

(vi)

∥∥∥K(22)(x, x)
∥∥∥ = sup

‖p‖=1

E[〈H−1/2
x ∇2ϕω(x)H−1/2

x p, H−1/2
x ∇2ϕω(x)H−1/2

x p〉]

6 sup
‖p‖=1

∑
i

∑
k 6=i

κ
(11)
i κ

(11)
k p2

i +
∑
i

∑
k 6=i

κ
(12)
i κ

(10)
k pipk +

∑
i

∑
k 6=i

∑
j 6∈{i,k}

κ
(11)
i κ

(10)
k κ

(01)
j pkpj

+
∑
i

∑
j 6=i

κ
(21)
i κ

(01)
j pjpi +

∑
i

κ
(22)
i p2

i

= sup
‖p‖=1

∑
i

∑
k 6=i

κ
(11)
i κ

(11)
k p2

i +
∑
i

κ
(22)
i p2

i

6 d
∥∥∥κ(11)

∥∥∥
∞

+
∥∥∥κ(22)

∥∥∥
∞

6 16d+
∥∥∥κ(22)

∥∥∥
∞
.

since κ(10)(x, x) = κ(01)(x, x) = 0, and κ(11)(x, x) = 4 from the proof of (iii) in Lemma F.6.

G Tools

G.1 Probability tools

Lemma G.1 (Bernstein’s inequality (Sridharan (2002), Thm. 6)). Let x1, . . . , xn ∈ C be i.i.d. bounded random
variables such that Exi = 0, |xi| 6M and V ar(xi)

def.
= E[|xi|2] 6 σ2 for all i’s.

Then for all t > 0 we have

X

(
1

n

n∑
i=1

xi > t

)
6 4 exp

(
− nt2/4

σ2 +Mt/(3
√

2)

)
. (G.1)

Lemma G.2 (Matrix Bernstein (Tropp (2015), Theorem 6.1.1)). Let Y1, ..., Ym ∈ Cd1,d2 be complex random
matrices with

EYj = 0, ‖Yj‖ 6 L, v(Yj) := max(
∥∥EYjY ∗j ∥∥ ,∥∥EY ∗j Yj∥∥) 6M

for each index 1 6 j 6 m. Introduce the random matrix

Z =
1

m

∑
j

Yj .

Then
P (‖Z‖ > t) 6 2(d1 + d2)e−

mt2/2
M+Lt/3 (G.2)

Lemma G.3 (Vector Bernstein for complex vectors Minsker (2017)). Let Y1, . . . , YM ∈ Cd be a sequence of



C. Poon, N. Keriven, G. Peyré

independent random vectors such that E[Yi] = 0, ‖Yi‖2 6 K for i = 1, . . . ,M and set

σ2 def.
=

M∑
i=1

E ‖Yi‖22 .

Then, for all t > (K +
√
K2 + 36σ2)/M ,

P

(∥∥∥∥∥ 1

M

M∑
i=1

Yi

∥∥∥∥∥
2

> t

)
6 28 exp

(
− Mt2/2

σ2/M + tK/3

)

Lemma G.4 (Hoeffding’s inequality ((Tang et al., 2013), Lemma G.1)). Let the components of u ∈ Ck be drawn
i.i.d. from a symmetric distribution on the complex unit circle or 0, consider a vector w ∈ Ck. Then, with
probability at least 1− ρ, we have

P (|〈u, w〉| > t) 6 4e
− t2

4‖w‖2 (G.3)

Lemma G.5. (Tropp, 2015, Theorem 4.1.1) Let the components of u ∈ Rk be a Rademacher sequence and let
Y1, . . . , YM ∈ Cd×d be self-adjoint matrices. Set σ2 def.

=
∥∥∥∑M

`=1 Y
2
`

∥∥∥. Then, for t > 0,

P

(∥∥∥∥∥
M∑
`=1

u`Y`

∥∥∥∥∥ > t

)
6 2d exp

(
− t2

2σ2

)
. (G.4)

We were only able to find a reference for this result in the case where u is a Rademacher sequence, however,
by the contraction principle (see (Ledoux and Talagrand, 2013, Theorem 4.4)), a similar statement is true for
Steinhaus sequences (we write only for the case of real symmetric matrices because this is all we require in this
paper, but of course, the same argument extends to complex self-adjoint matrices):

Corollary G.1. Let the components of u ∈ Ck i.i.d. from a symmetric distribution on the complex unit circle or
0 and let B1, . . . , BM ∈ Rd×d be symmetric matrices. Set σ2 def.

=
∥∥∥∑M

`=1B
2
`

∥∥∥. Then, for t > 0,

P

(∥∥∥∥∥
M∑
`=1

u`B`

∥∥∥∥∥ > t

)
6 4d exp

(
− t2

4σ2

)
. (G.5)

Proof. By the union bound,

P

(∥∥∥∥∥
M∑
`=1

u`B`

∥∥∥∥∥ > t

)
6 P

(∥∥∥∥∥
M∑
`=1

Re (u`)B`

∥∥∥∥∥ >
t√
2

)
+ P

(∥∥∥∥∥
M∑
`=1

Im (u`)B`

∥∥∥∥∥ >
t√
2

)
.

By the contraction principle (Ledoux and Talagrand, 2013, Theorem 4.4),

P

(∥∥∥∥∥
M∑
`=1

Re (u`)B`

∥∥∥∥∥ >
t√
2

)
6 P

(∥∥∥∥∥
M∑
`=1

ξ`B`

∥∥∥∥∥ >
t√
2

)

where ξ is a Rademacher sequence, and the same argument applies to the case of Im (u`). Therefore by Lemma
G.5, we have P

(∥∥∥∑M
`=1 u`B`

∥∥∥ > t
)
6 4d exp

(
− t2

4σ2

)
.

G.2 Linear algebra tools

The following simple lemma will be handy.

Lemma G.6. For 1 6 i, j 6 s, take any scalars aij ∈ R, vectors Qij , Rij ∈ Rd and square matrices Aij ∈ Rd×d.
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1. Let M ∈ Rsd×sd be a matrix formed by blocks :

M =

A11 . . . A1s

...
. . .

...
As1 . . . Ass


Then we have

‖M‖block = sup
‖x‖block=1

‖Mx‖block 6 max
16i6s

s∑
j=1

‖Aij‖ (G.6)

Now, let P ∈ Rsd×s be a rectangular matrix formed by stacking vectors Qij ∈ Rd:

M =

Q11 . . . Q1s

...
. . .

...
Qs1 . . . Qss


Then,

‖M‖∞→block 6 max
16i6s

s∑
j=1

‖Qij‖2 ,
∥∥M>∥∥block→∞ 6 max

16i6s

s∑
j=1

‖Qji‖2 (G.7)

2. Consider A ∈ Rs(d+1)×s(d+1) decomposed as

M =



a11 . . . a1s Q>11 . . . Q>1s
...

. . .
...

...
. . .

...
as1 . . . ass Q>s1 . . . Q>ss
R11 . . . R1s A11 . . . A1s

...
. . .

...
...

. . .
...

Rs1 . . . Rss As1 . . . Ass


Then,

‖M‖ 6
√∑

i,j

a2
ij + ‖Qij‖2 + ‖Rij‖2 + ‖Aij‖2,

‖M‖Block 6 max
i
{
∑
j

|aij |+ ‖Qij‖,
∑
j

‖Rij‖+ ‖Aij‖}

Proof. The proof is simple linear algebra.

1. Let x be a vector with ‖x‖block 6 1 decomposed into blocks x = [x1, . . . , xs] with xi ∈ Rd, we have

‖Mx‖2block = max
16i6s

∥∥∥∥∥∥
s∑
j=1

Aijxj

∥∥∥∥∥∥ 6 max
i

∑
j

‖Aij‖ ‖xj‖ 6 max
i

∑
j

‖Aij‖

2. Similarly, ∥∥M>x∥∥∞ = max
16i6s

∥∥∥∥∥∥
s∑
j=1

Q>jixj

∥∥∥∥∥∥ 6 max
i

∑
j

‖Qji‖ ‖xj‖ 6 max
i

∑
j

‖Qji‖

Then, taking x ∈ Rs such that ‖x‖∞ 6 1, we have

‖Mx‖block = max
16i6s

∥∥∥∥∥∥
s∑
j=1

xjQij

∥∥∥∥∥∥ 6 max
i

∑
j

‖Qij‖
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3. Taking x = [x1, . . . , xs, X1, . . . , Xs] ∈ Rs(d+1) with ‖x‖ = 1, we have

‖Mx‖2 =

s∑
i=1

 s∑
j=1

aijxj +Q>ijXj

2

+

∥∥∥∥∥∥
s∑
j=1

Rijxj +AijXj

∥∥∥∥∥∥
2

6
s∑
i=1

‖x‖
√√√√ s∑

j=1

a2
ij + ‖Qij‖2

2

+

‖x‖
√√√√ s∑

j=1

‖Rij‖2 + ‖Aij‖2
2

6
∑
i,j

a2
ij + ‖Qij‖2 + ‖Rij‖2 + ‖Aij‖2

Now, if ‖x‖Block = 1, we have

‖Mx‖Block = max
i

∣∣∣∣∣∣
s∑
j=1

aijxj +Q>ijXj

∣∣∣∣∣∣ ,
∥∥∥∥∥∥

s∑
j=1

Rijxj +AijXj

∥∥∥∥∥∥


6 max
i

 s∑
j=1

|aij |+ ‖Qij‖ ,
s∑
j=1

‖Rijxj +AijXj‖
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