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Abstract

Sparse regularization is a central technique for
both machine learning (to achieve supervised
features selection or unsupervised mixture
learning) and imaging sciences (to achieve
super-resolution). Existing performance guar-
anties assume a separation of the spikes based
on an ad-hoc (usually Euclidean) minimum
distance condition, which ignores the geome-
try of the problem. In this article, we study
the BLASSO (i.e. the off-the-grid version of
¢! LASSO regularization) and show that the
Fisher-Rao distance is the natural way to en-
sure and quantify support recovery, since it
preserves the invariance of the problem un-
der reparameterization. We prove that under
mild regularity and curvature conditions, sta-
ble support identification is achieved even in
the presence of randomized sub-sampled ob-
servations (which is the case in compressed
sensing or learning scenario). On deconvolu-
tion problems, which are translation invariant,
this generalizes to the multi-dimensional set-
ting existing results of the literature. For
more complex translation-varying problems,
such as Laplace transform inversion, this gives
the first geometry-aware guarantees for sparse
recovery.

1 Introduction

1.1 Sparse Regularization

In this work, we consider the general problem of estimat-
ing an unknown Radon measure pg € M(X) defined
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over some metric space X (for instance X = R? for a
possibly large d) from a few number m of randomized
linear observations y € C™, Let ® : M(X) — C™ be
defined by

o ([ <x>du<x>):1 |

where (wy,...,w.,) are identically and independently
distributed according to some probability distribution
Alw) on w € Q, and for w € Q, ¢, : X - Cis a
continuous function, denoted ¢, € € (X). We further
assume that ¢, (z) is normalized, that is

(1.1)

1

E. [l (2)]7]

The observations are y = ®ug + w, where w € C™
accounts for noise or modelling errors. Some represen-
tative examples of this setting include:

, Ve e X. (1.2)

— Off-the-grid compressed sensing: off-the-grid com-
pressed sensing, initially introduced in the special
case of 1-D Fourier measurements on X =T = R/Z
by (Tang et all 2013)), corresponds exactly to mea-
surements of the form . This is a “continuous”
analogous of the celebrated compressed sensing line
of works (Candes et al., |2006; [Donohol [2006]).

— Regression using a continuous dictionary: given a
set of m training samples (wg, yx)je,, one wants to
predicts the values y; € R from the features wy €
Q using a continuous dictionary of functions w +—
ww(x) (here x € X parameterizes the dictionary), as
Uk ~ [y Pu (x)dp(z). A typical example, studied for
instance by [Bach| (2017)) is the case of neural networks
with a single hidden layer made of an infinite number
of neurons, where () = X = R? and one uses ridge
functions of the form ¢, (z) = ¥({z, w)), for instance
using the ReLu non-linearity ¢ (u) = max(u, 0).

— Sketching miztures: the goal is estimate a (hopefully
sparse) mixture of density probability distributions
on some domain 7 of the form £(t) = >, a;&s, (1)
where the (£,)zcx is a family of template densities,
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and a; > 0, ZZ a; = 1. Introducing the measure
po = Y_; @0z, this mixture model is conveniently re-
written as £(t) = [, & (t)dpo(z). The most studied
example is the mixture of Gaussians, using (in 1-D for

2

simplicity, 7 = R) as &, (¢) « o~le™ 5% where the
parameter space is the mean and standard deviation
z = (r,0) € X = R xR*". In a typical machine
learning scenario, one does not have direct access
to £ but rather to n i.i.d. samples (t1,...,t,) € T"
drawn from £. Instead of recording this (possibly
huge, specially when 7 is high dimensional) set of
data, following |Gribonval et al.| (2017)), one computes
“online” a small set y € C™ of m sketches against
sketching functions 0,,(t), that is, for k =1,...,m,

diﬂl - L
Ye = n;%(%) [r 0., (£)E()dt.

These sketches exactly have the form when
defining the functions ¢, () = J7 0. ()E(t)dt. A
popular set of sketching functions, over 7 = R¢ are
Fourier atoms 6,,(t) = ¢! *) for which ¢.(z) is the
characteristic functions of £,, which can generally be

computed in closed form.

BLASSO. In all these applications, and many more,
one is actually interested in recovering a discrete and
s-sparse measure fiq of the form po = Y_7_, a;0,, where
(z4,a;) € X x C. An increasingly popular method to
estimate such a sparse measure corresponds to solving
a infinite-dimensional analogous of the Lasso regression
problem

. 1

Oy — yl|2 + Mul(X).
pe%?X)Q‘l 1= yllz + Alpl(X)

(Pr(y))

Following De Castro and Gamboa| (2012), we call this
method the BLASSO (for Beurling-Lasso). Here |u|(X)
is the so-called total variation of the measure u, and is
defined as

|ul(X) = sup {Re(f, u) ; f €€ X),|flo <1}

Note that on unbounded X, one needs to impose that
f vanishes at infinity. If X = {z;}; is a finite space,
then this corresponds to the classical finite-dimensional
Lasso problem (Tibshirani, [1996), because |u|(X) =

def.

llall, = >, lai| where a; = p({z;}). Similarly, if X is
possibly infinite but p = )", a;d,,, one also has that
|1l (X) = [lall;-

Previous Works. The BLASSO problem (P ()
was initially proposed by |[De Castro and Gamboa)
(2012), see also Bredies and Pikkarainen| (2013)). The
first sharp analysis of the solution of this problem is

provided by [Candés and Fernandez-Grandal (2014)) in
the case of Fourier measurement on T¢. They show
that if the spikes are separated enough, then pg is the
unique solution of when w = 0 and A — 0.
Robustness to noise under this separation condition
is addressed in (Candés and Fernandez-Grandal, [2013;
[Fernandez-Granda), 2013 |Azais et al) [2015). A re-
fined stability results is detailed by [Duval and Peyré|
which shows that conditions based on minimum
separation imply support stability, which means that
when ||w|| and |Jw|| /A are small enough, then the so-
lution of has the same number of Diracs as
1o, and that both the amplitudes and positions of the
spikes converges smoothly as w — 0. These initial
works have been extended by Tang et al.| (2013) to the
case of randomized compressive measurements of the
form 7 when using Fourier sketching functions ¢,,.
In all these results, the separation condition are given
for the Euclidean cases, which is an ad-hoc choice which
does not take into account the geometry of the prob-
lem, and gives vastly sub-optimal theories for spatially
varying operators (such as data-dependent kernels in
supervised learning, Gaussian mixture estimation and
Laplace transform in imaging, see Section [1.2).

While this is not the topic of the present paper, note
that for positive spikes, the separation condition is in
some cases not needed, see for instance
let all [2015} Denoyelle et al., [2017)). It is important
to note that efficient algorithms have been developed
to solve (Px(y)), among which SDP relaxations for
Fourier measurements (Candés and Fernandez-Granda),
and Frank-Wolfe (also known as conditional gra-
dient) schemes (Bredies and Pikkarainen| 2013} [Boyd|
2017). Note also that while we focus here on

variational convex approaches, alternative methods ex-
ist, in particular greedy algorithms
and (for Fourier measurements) Prony-type ap-
proaches (Schmidt], [1986; Roy and Kailathl [1989)). To
the best of our knowledge, their theoretical analysis in
the presence of noise is more involved, see however (Liao
land Fannjiang, 2016)) for an analysis of robustness to
noise when a minimum separation holds.

1.2 The Fisher information metric

The empirial covariance operator is defined as

K(z,2') < Ly 0w (@) ¢w, () and the determinis-

tic limit as m — +o00 is denoted K with

K(z,2') < / Po@pu(@)dAw).  (13)

Note that many covariance kernels can be written under
the form (1.3). By Bochner’s theorem, this includes all
translation-invariant kernels, for which possible features
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i T . . .
are ¢, (z) = e *. The associated metric tensor is

def v vx/K(l‘ l') CdXd.

(1.4)
Throughout, we assume that H, is positive definite
for all x € X. Then, H naturally induces a distance
between points in our parameter space X. Given a
piecewise smooth curve 7 : [0, 1] — X, the length ¢g[v]

of v is defined by KH[v] = 01 VHL, ) (1), A/ (t))dt.
Given two points x, 2’ € X, the distance from z to 2/,
induced by H is dg(z, ') = inf. ¢ 7 lr1[7] where F is
the set of all piecewise smooth paths v : [0,1] — X

with 7(0) = z and (1) = 2’

The metric H is closely linked to the Fisher information
matrix (Fisher} 1925)) associated with ®: since (1.2))

holds, f(z,w) < |pu(z)|* can be interpreted as a
probability density function for the random variable w
conditional on parameter x, and the metric H, is equal
(up to rescaling) to its Fisher information matrix, since

/ V (log f(2,)) ¥ (log f(,0)) " f(z,w)dAw)
E.[Re (Voo (@) Vi (@) )] = 4H..

The distance dyg is called the “Fisher-Rao” geodesic
distance (Rao, [1945)) and is used extensively in infor-
mation geometry for estimation and learning problems
on parametric families of distributions (Amari and Na;
gaokal [2007). The Fisher-Rao is the unique Riemannian
metric on a statistical manifold (Cencov, 2000) and it
is invariant to reparameterization, which matches the
invariance of the BLASSO problem to repa-
rameterization of the space X'. Although dy has been
used in conjunction with kernel methods (see for in-
stance Burges| (1999)), to the best of our knowledge, it
is the first time this metric is put forward to analyze the
performance of off-the-grid sparse recovery problems.

1.2.1 Examples

We detail some popular learning and imaging examples.

The Fejér kernel One of the first seminal result of
super-resolution with sparse regularization was given
by |Candés and Fernandez-Granda) (2014) for this ker-
nel, which corresponds to discrete Fourier measure-
ments on the torus. We give a multi-dimensional

generalization of this result here. Let f. € N,
def.

X € Td Q= {OJ S Zd HwHoo X fc} Let SDw( ) =
el27‘rw z and A( ) o Hj 19("”]) where g(]) =

LoymminGe ) (k) £o) (1= |(j — k)/fel). Note

that this corresponds to sampling discrete Fourier
frequencies. Then, the associated kernel is the Fe-

jér kernel K (z,z") = H?Zl k(z; — x}), where k(z) =

sinc‘}c/QH(I) where sinc,(z) < s~ sin(wsz)/ sin(rz),

which has a constant metric tensor H, = Cy Id and
du(z,2") = \/Cy, ||z — 2’|, is a scaled Euclidean met-
ric (quotiented by the action of translation modulo 1

— — 772fc(fc+4)
on T%), where Cy, = —"(0) = TLy=t=,

The Gaussian kernel Let ¥ € R%*? be a posi-
tive semidefinite matrix, X C R? and Q = R%. Let
vu(x) = e’ and A(w) = N(0,X71), the centered
Gaussian distribution with covariance ¥~!. This can be
interpreted as sampling continuous Fourier frequencies.
Then, the associated kernel is K (z,z') = e 3 Hx_wl||;*1
where ||z]|y, = V& T3z, with constant metric H,

Y71 and du(z,2') = [z — 2/||g-.. In Sectlonl we
also detail how to exploit this kernel for Gaussian Mix-
ture Model (GMM) estimation with the BLASSO.

The Laplace transform Let @ = (a;) € R4, X C
(0,+00)% and @ = R%. A (sampled) Laplace transform

is defined by setting ¢, (z) = Hl L M —(z,w)
and A(w) = H?Zl@aj)e (2@w) " Then, K(x,x’) =

H?:1 k(z; + a2, + ;) where k(a,b) = 2vab

a+b "’
with metric H, as the diagonal matrix with diag-

onal ((2(z; + Oéz))d)j:
2
I Titay ) ‘ . We remark that this kernel, asso-

, and distance du(v,2") =

/s o (2

ciated to the Laplace transform (which should not be
confused with the translation-invariant Laplace kernel
exp(— ||z — 2’||)) appears in some microscopy imaging
technique, see for instance Boulanger et al.| (2014).
Unlike the previous examples, it is not translation-
invariant, and therefore the metric H, is not constant.
Our results show that the corresponding Fisher metric
is the natural way to impose the separation condition
in super-resolution.

1.3 Contributions.

Our main contribution is Theorem [I} which states that
if the sought after spikes positions X are sufficiently
separated with respect to the Fisher distance dy, then
the solution to (Px(y)) is support stable (that is, the
solution of the BLASSO is formed of exactly s Dlracs)
provided that the number of random noisy measure-
ments m is, up to log factors and under the assumption
of random signs of the amplitudes ag, linear in s, and
the noise level ||w]| is less than 1/s. In the case of trans-
lation invariant kernels, this generalizes existing results
to a large class of multi-dimensional kernels, and also
provides for the first time a quantitative bounds on
the impact of the noise and sub-sampling on the spikes
positions and amplitudes errors. For non-translation
kernels, this provides for the first time a meaningful
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support recovery guarantee, a typical example being
the Laplace kernel (see Section [1.2)).

2 Key concepts

Notation for derivatives. Given f € €*°(X), by
interpreting the 7" derivative as a multilinear map:

V' f: (CH" — C, so given Q def {qe};_, € (CH",

VRl = D Oy 0 f(@)ari, e G

and we define the 7" normalized derivative of f as

D, [f] (#)[Q] = V" (=) [{H: * i }i_1]
with norm [|D, [] (@) = supyy g, <1 [Dr [f] ()[Q)]-
For i,j € {0,1,2}, let K9 (z,2') be a “bi’-multilinear
map, defined for @ € (C%)? and V € (C?)J as

QUK (z,a)[V] = E[D; [pu] (@)[QID; ] (') [V]]

def.

and ||[KW(z,2)| = supgy [|[[QIK) (z,2)[V]|
where the supremum is defined over all @) et {qe}i_y,

vV {u}_, with ||ge] < 1, [l < 1. Note that
Ds [f] (z) and K% (x,2) can also be interpreted as
a matrix in C%*¢, and we have the normalization
K©2)(z, 2) = —Id for all z.

2.1 Admissible kernel and separation

In previous studies on the recovery properties of
(Px(y)) (Candés and Fernandez-Granda), 2014; Bhaskar
et al] |2013; Bendory et all 2016; Duval and Peyré,
2015} |[Fernandez-Grandal, |2016)), recovery bounds are
attained in the context of K being admissible and a
separation condition on the underlying positions {x;};.
Namely, given X = {z,};, that min,»; du(z;, z;) is
sufficiently large with respect to the decay properties
of K. For example, in the case where ® corresponds
to Fourier sampling on a grid, up to frequency f., this
separation condition is minj.g ||z; — 2¢[|, 2 1/f.. In
fact, if sign(a;) can take arbitrary values in {+1, —1},
this separation condition is a necessary to ensure exact
recovery for the BLASSO (Tang), [2015]).

Following the aforementioned works, we introduce the
notion of an admissible kernel.

Definition 1. A kernel K will be said admissible with
respect to K et {Tnear, A, €;, Bij, Smax }, where 0 <
Tnear < A/4 is a neighborhood size, €9 € (0,1), €3 €
(0,7,2,) are respectively a distance to 1 and a cur-
vature, A > 0 is a minimal separation, B;; > 0 for
1,7 =0,...,2 are some constants and Smax € N* is a

maximal sparsity level, if

1. Uniform bounds: For (i,j) € {(0,0),(1,0)},
sup,, e |9 (2, /)| < Bij;  for
(i,7) €  {(0,2),(1,1),(1,2)} and all =z,

such that dug(z,z') < Thear or dg(z,z’) >

A/4, |KW)(x,a)| < Bij; o and  finally,

supge [|K 2 (2, 2)|| < Boo.

2. Neighborhood of each point: For all z €
X, K(z,z) = 1 and for all z,2’ € X with
du(x,2") < Tpear, Re (K(OQ)(x,x')) < —eoId and
| Tm (K(OQ)(x,x’))H < ceq, where ¢ 2 L 2=Ca e

2
2 €27 car

and for du(x,x') = rpear, |[K(z,2')] <1 —eq.
3. Separation: For dg(z,z’) > A/4, for all i,j €
{0,...,2} with i +j < 3, |[K®)(z,2")] < -2,

Smax

dif' : Eq 552
where h ="min;e 0,23 (32317¢+32’ 16B12+24 ) *

Additionally, there exists Cg > 0 such that for
1
< Cudu(z, z).

dH(.’E,xo) < Tpear: HId_H;O%HE
Yo du(wi,xo,)? and
d

We also denote du(X, Xo) =
B Divjcs Bij and € < min{eg, e2}

Intuitively, these three conditions express the following
facts: 1) the kernel and its derivatives are uniformly
bounded, 2) near x = 2/, the kernel has negative cur-
vature, and otherwise it is strictly less than 1, and 3)
for z and 2’ sufficiently separated, the kernel and all
its derivatives have a small value.

2.2 Almost bounded random features

Ideally, we would like our features and its derivatives to
be uniformly bounded for all w. However this may not
be the case: think of ¢ ® where the support of the
distribution A is not bounded. Hence our results will be
dependent on the probability that the derivatives are
greater than some value T decays sufficiently quickly
as T increases. In the following, for r € {0,1,2,3},

def.

L, (w) = sup,ex [|Dr[¢w] ()], and let F,. be such
that Py, (L, (w) > t) < F.(t).

2.3 Key assumptions

Our main result will be valid under the following as-
sumptions.

I. On the domain and limit kernel Let
X be a compact domain with radius Ry et
sup, ey du(z,z’). Assume the kernel is admissible

def.
wrt = {rncara Aa Eiy Bija Smax}-

II. Assumption on the underlying signal For
$ < Smax, let ag € C* and let X def: (xo,j)jzo be such
that dg(xo4,20,) = A for i # j. The underlying

measure is assumed to be yg = Z‘;:l 0,0z, ;-
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ITI. Assumption on the sampling complexity
For p > 0, suppose that m € N and {L;}}_, € R%
are chosen such that

£7 and
— m

, = (2.1)

3 =9 N > < £

YR 42 [ oat <

and either one of the following hold:

m 2 C-s-log (N/p)log(s/p), (2.2)
or m2C-s% log (Np), (2.3)

def.

(L2811 +L3iByy+(Bo+B2)L§,), N =
and L, = max!_, L;.

where C < &~
LSdRX (rncarg)

Remark 1. Our main theorem presents support sta-
bility guarantees under the sampling complexity rate
if sign(ao) = (ao,i/ |ao,i|)i—, forms a Steinhaus se-
quence, that is, 1id uniformly distributed on the complex
unit circle. This assumption has been used before in
compressed sensing (Candés and Romberg, |2007; | Tang
et al., |2013) to achieve this optimal complezity (see
also |Foucart and Rauhut (2013), Chap. 14). As noted
i previous works, this random signs assumption s
likely to be a proof artefact, however achieving optimal
complexity without it may require more involved argu-
ments (Candes and Plan, |2011)). When the signs are
arbitrary, we prove our results under . Although
this s3/2 scaling is still sub-optimal in s, we remark it
improves upon the previous theoretical rate of s> (up to
log factors) (Li and Chi, |2017).

Remark 2. The assumption on the choice of L, en-
sures that with high probability, D, [p,] (x) is uniformly
bounded up to r = 3. Note also that, generally, the
{L,} depend on m, through . However, in all our
examples: either a) sup,cx ||Dr (0] ()| are already
uniformly bounded, in which case L; can be chosen inde-
pendently of p and m (for instance this is the case of the
Fejér kernel); or b) the F.(t) are exponentially decaying,
in which case we can show that L, = O(log(m/p)P) for
some p > 0, which only incurs additional logarithmic
terms on the bounds and . This is the case
of the Gaussian or Laplace transform kernel.

3 Main result

Our main theorem below states quantitative exact sup-
port recovery bounds under a minimum separation
condition according to dyy.

Theorem 1. Let p > O,
admissible, and that ag, Xy,

suppose that K s
m and L; satisfy

def.

Let 'D)\[J’CU =
coA} where ¢ ~

the assumptions of Section .
{(vw) €Ry xT™; A< Ao, ] <
5";) and Ao ~ D/s with

. =
min To’

D gmin (Tnear\/§7 ]LZHaH’ m) (8-1)

where ¢ = min{|ag;/, |a0’i|71}. Suppose that either
sign(ag) is a Steinhaus sequence and m satisfies (2.2))
orsign(ag) is an arbitrary sign sequence and m satisfies
(2.3). Then, with probability at least 1 — p,

(i) for all v L (A w) € Diro.cor (Pr(y)) has a unique
solution which consists of exactly s spikes. Moreover,
up to a permutation of indices, the solution can be
written as y_;_, afd,v, and sign(ay) = sign(aq,i) for
alli=1,...,s

(ii) The mapping v € Dy, c, — (a¥, X?) is €1 and we

have the error bound

VsQAt]wl)

= mln’l |(l0 3 ‘

la® — aoll + du (X", Xo) < (3-2)

We detail below the values relating to the sampling
complexity corresponding to each of the examples de-
tailed in Section [I.2.I] The corresponding proofs can
be found in Section [F] of the appendix.

Discrete Fourier sampling The Fejer kernel of or-
der f. > 128 is admissible with A = O(\/&M),
Tnear = 1/(8v/2), g0 = 0.00097, e3 = 0.941, By =
O(d) B11 = BQQ = Blg = O( ) and BQQ = O(d)
Moreover, L, = O(d"/?). Hence, up to logarithmic
terms, Thm. [1] is applicable with m = O(sd?®) when
the random signs assumption holds, and m = O(s%dS)
in the general case, with guaranteed support stability
when A= O(s71d7?), |lw| = O(s71d=3). Note that
our choice of A imposes that ||z; — x5, 2 \/Esrln/fx/fc
whereas the previous result of |(Candés and Fernandez-
Granda| (2014) requires ||z; — z;|| 2 Ca/fe with no
dependency in Syax, however, their proof would imply
that the constant Cy grows exponentially in d. Since
we are interested in having a general theory in arbi-
trary dimension, we have opted to present a polynomial
dependency on Sy ax-

Continuous Gaussian Fourier sampling In the
appendix we prove that the kernel is admissible with

A=0 (\/logsmax)a Tnear = 1/\/57 g0 = 1- 67%7 g2 =
e~1/2, By = O(1) for i +j < 3, Byy = O(d) and
- 2\ 2

L, = (d+log (dTm) > (as mentioned before, the

dependence in m only incurs additional logarithmic
factors in (2.2) and (2.3))). Hence, up to log factors, the
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sample complexity and noise level for the application
of Thm. [I]is the same as for the Fejér kernel.

Laplace sampling The associated kernel is ad-
missible with A = O (d 4+ log(dsmax)), T™ear = 0.2,
Ep = 0005, Eo = 1.52, Bij = 0(1) for 4 +] < 3 and

Bys = O(d). Define Ry = (1+ R

min; a;
recall that Ry is the radius of X). Assuming for
simplicity that all o; are distinct, we can set L, =

Rae(R + [lall,.)" (VA +max; & log (25282 ) )

gz

Hence, choosing a; ~ d, we have that Ry = (1)
and up to log factors, is O(sd") and is
O(s%/2d"), and support stability is guaranteed when
A = 0O(s7'd™?) and |lw|| = O(s~'d~®). Note that
despite the stronger dependency on d, for practical
applications (microscopy), one is typically only
interested in the low dimensional setting of d = 2, 3.

d
) (where we

Gaussian mixture learning Consider n datapoints
21,...,2n € R? drawn 4id from a mixture of Gaus-
sians Y, ag ;N (29, X) with means 2o, € X C R? and
known covariance X, where X is bounded. Consider
the following procedure:

— draw wj iid from N'(0, 71 /d) (the 1/d normalization
is necessary to avoid an exponential dependency in d
later on)

— compute the generalized moments y

T S (T
BLASSO with features ¢,(z) =
eiw@)e=3lwl3 | to obtain a distribution /i

— solve the

Then, as described in the introduction, we can interpret
y as noisy Fourier measurements of pio = ) ; ag,i0z, , in
the space of means X, where the "noise" w corresponds
to using the empirical average over the z; instead of a
true integration. It is easily bounded with probability

1—p by [lw] < 0( oe/e)

pm ) , by a simple application
of Hoeffding’s inequality (Gribonval et al.l 2017]).

The associated kernel is the Gaussian kernel with co-
variance (2 + d)X and hence, our result states that, if
|z; — 2|l = v/dlogs, and the number of measure-
ments and sample complexity satisfy, up to logarithmic

terms, m = O (S%dB), n=0 (52d6/mini |a07i\2) and

— mingjag,| ; . B
A =0 (ﬁdz\lao\lz) , then, with probability 1 — p on

both samples z; and frequencies wj, the distribution
i is formed of exactly s Diracs, and their positions
and weights converge to the means and weights of the
GMM. Let us give a few remarks on this result.

On model selection. Besides convexity (with respect to
the distribution of means) of the BLASSO, which is

not the case of classical likelihood- or moments-based
methods for learning GMM, the most striking feature
of our approach is probably the support stability: with
a sample complexity that is polynomial in s and d, the
BLASSO yields ezactly the right number of components
for the GMM. Despite the huge literature on model
selection for GMM, to our knowledge, this is one of
the only result which is non-asymptotic in sample com-
plexity, as opposed to many approaches (Roeder and
Wasserman), [1997; Huang et al.| |2013)) which guarantee
that the selected number of components approaches
the correct one when the number of samples grows to
infinity.

On separation condition. Our separation condition of
v/dlog s is, up to the logarithmic term, similar to the
v/d found in the seminal work by [Dasguptal(1999). This
was later improved by different methods (Dasgupta and
Schulman, [2000; |Vempala and Wang, [2004), until the
most recent results on the topic (Moitra and Valianty),
2010) show that it is possible to learn a GMM with no
separation condition, provided the sample complexity is
exponential in s, which is a necessary condition (Moitra
and Valianty}, 2010). As mentioned in the introduction,
similar results exist for the BLASSO: [Denoyelle et al.
(2017) showed that in one dimension, one can identify
s positive spikes with no separation, provided the noise
level is exponentially small with s. Hence learning
GMM with the BLASSO and no separation condition
may be feasible, which we leave for future work, however
we note that the multi-dimensional case is still largely
an open problem (Poon and Peyrél |2017)).

On known covariance. An important path for future
work is to handle arbitrary covariance. When the com-
ponents all share the same mean and have diagonal co-
variance, the Fisher metric is related, up to a change of
variables, to the Laplace transform kernel case treated
earlier. When both means and covariance vary, in one
dimension, the Fisher metric is related to the Poincaré
half-plane metric (Costa et al., [2015)). In the general
case, it does not have a closed-form expression. We
leave the treatment of these cases for future work.

4 Sketch of proof

4.1 Background on dual certificates

Our approach to establishing that the solutions to
(PA(y)]) are support stable is via the study of the asso-
ciated dual solutions in accordance to the framework
introduced in [Duval and Peyré| (2015). We first recall
some of their key ideas. In order to study the support
stability properties of in the small noise regime,
we consider the limit problem as A\ — 0 and ||w| — 0,
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that is
i [4() subject to B =y, (Poly)
The dual of (Px(y)) and (Py(y))) are
min {|ly/A=pl} 5 [0l <1} (Da))
max {{y, p) 5 |27l < 1} (Po(y))

Any solution ) to related to the (unique)
solution py of [Da(y)) by —pr = 5(Pux — y) and
writing 7y = ®*pa, (7x, ta) = |pa] (X). Note that
Supp(uy) C {z € X ; |P*pa(z)| = 1}, so ny “certifies”
the support of u) and is often referred to as a dual
certificate. Furthermore, by defining the minimal norm

certificate 7y as g et ®*py where

po = argmin {||p[|, ; p is a solution to (Do (y))}
(4.1)

one can show that p) converges as A — 0 to pg and
hence 7, converges to 7 2 d*py in L. When A
and ||w|| are sufficiently small, solutions to are
support stable provided that 79 (called the minimal
norm certificate) is nondegenerate, that is ng(x;) =
sign(a;) for i = 1,...,s and V2 |no|* (2;) is negative
definite. This is proven to be an almost sharp condition
for support stability, since [Duval and Peyré (2017)
provided explicit examples where |ng(z)| = 1 for some

x & {x;}; implies that (Py(y)) recovers more than s

spikes under arbitrarily small noise.

Pre-certificates In practice, the minimal norm cer-
tificate is hard to compute and analyse due to the
nonlinear ¢°° constraint in . So, one often intro-
duces a proxy which can be computed in closed form
by solving an linear system associated to the following

least squares problem: nx et ®*p where

Note that if nx satisfies ||nx||,, < 1, then nx = no.

Computation of nx For z € X, let ¢(x) et

L (pup (@) ;. For X = {x;}5_; we define I'x :

vm
CHD 5 €™ as Tx(la, ) < Mo, aiplas) +
V()3 where Vo € C™*9. Then, the minimizer

of (4.2) is px = F}’T (Si%r:ia)). Furthermore, when T'x

is full rank, we can write fx(z) = oK (v, ) +
(Bi, V1K (z4,7)), where &; € C, 3; € C? are such
that (g) = (F}FX)_l(SI%Zga)), and the hat nota-
tion refers to the fact that we are using sub-sampled

measurements. The limit precertificate is defined as
£

nx(z) = Y, 0K (zi,7) + (8;, V1K (2;,2)), where
(g) — (E[F;{FX])—l(m%r:((ia))_
The key to establishing our recovery results is to show

that nx is nondegenerate. In this paper, we will actu-
ally prove a stronger notion of nondegeneracy:

Definition 2. Let a € C°, X = {a;}5_, € X* for
some s € N, and gg,&2,7 > 0. We say that n € €1(X)
is (€0,€2)-nondegenerate with respect to a, X and r if
for all i, n(x;) = sign(a;), Vn(x;) =0 and

)
Vo e XBr n(x)|

<l-¢gg
Vre X, In(z)| <

1-— EQdH(iC,ZL’j)Q
where Xj et {x € X; du(x;,z) <7} and X' et
X \ U;:1 Xjnear.

Our proof proceeds in three steps:

1. Show that under admissibility of the kernel and
sufficient separation, the limit precertificate 7y, is
non-degenerate (see Theorem .

2. Show that this non-degeneracy transfers to 7x when
m is large enough and X is close to X(. This is the
purpose of Section

3. As discussed, nondegeneracy of 7x, automatically
guarantees support stability when (A, w) € Dy, ¢,
for A\g and ¢y sufficiently small. To conclude we
simply need to quantify Ao and ¢g. This is the pur-
pose of Section In particular, given (A, w), we
construct a candidate solution by means of (a quan-
titative version of) the Implicit Function Theorem,
and show that it is indeed a true solution using the
previous results.

4.2 Non-degeneracy of the limit certificate

Our first result shows that the “limit precertificate"
Nx, is nondegenerate:

Theorem 2. Assume the kernel is admissible wrt
K (see Definition . Then, for s < Smax, for all
a = (aj)j; € C° and X = {z;}5_; € X° such
that dw(xi,x5) > A, the function nx, is (5, %)-
nondegenerate with respect to a, X and Tyear-

The proof of this result can be found in Appendix [B]
and is a generalization of the arguments of |Candés
and Fernandez-Grandal (2014) (see also [Bendory et al.
(2016))). We remark that unlike previous works which
focus on translation invariant kernels, the Fisher metric
provides a natural way to understand the required
separation between the points in X and thus open up
the possibility of analysing more complex problems
such as Laplace transform inversion.
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4.3 The randomized setting

For the remainder of this paper, we consider solutions of
(Px(y)) given y = ®pq,, x, + w for some fixed ay € C*
and Xy € X®. The following result shows that 7x is
nondegenerate for all X close to Xg:

Theorem 3. Let p > 0. Under the assumptions of
Section and assuming that either m satisfies
and sign(ag) is a Steinhaus sequence, or m satisfies
and sign(ag) is an arbitrary sign sequence, with
probability at least 1 — p: for all X € X'® such that

: e
dH(‘XP7 XO) S min (Tneary C’H\/Emax(B,ngL,.)) 5 (43)

T'x is full rank and fx is (€0/8,e2/8)-nondegenerate
with respect to ag, X and rpear-

The proof of this result is given in Appendix [D] We
simply make a remark on the proof here: We first
prove that 9x, is nondegenerate by bounding variations
between nx, and fx,. The proof of this fact is a
generalization of the arguments in [Tang et al.| (2013)
to the multidimensional and general operator case. We
then exploit the fact the ¢ is smooth and hence, I', I'x
satisfies certain Lipschitz properties with respect to X,
to bound the local variation between 7x and 7x,.

4.4 Quantitative support recovery

This final section concludes the proof of Theorem
by quantifying the regions for A and ||w]|| for which
support stability is guaranteed.

Solution of the noisy BLASSO. Let &x : C* —
C™ be defined by ®xa = >_7_; a;p(z;). Recall that
Ha,x = »_;Gi0y, is a solution to the BLASSO with
y = Ppg,, x, +w if and only if 7y = ®*py, with py =
+(y — ®xa), satisfies ||x]|, <1 and 7i(z;) = sign(a;).
In that case, py is the unique solution to the dual of
the BLASSO. Moreover, if |f\(z)| < 1 for « # z; and
® x is full rank (which follows by Theorem , then
e, x is also the unique solution of the primal.

Construction of a solution Following [Denoyelle
et al.| (2017)), we define the function f: C* x X* x Ry x
C™ by

Flu,v) L M (®xa — Py,a0 — w) + A(Slg(f)l(ao)>
sd

where v = (a,X) and v = (A, w). Observe that

having f(u,v) = 0 ensures the existence of 7y de-
fined as above that satisfies 9 (x;) = sign(ap;) and
Via(z;) = 0. We will use it to construct a non-

degenerate solution to for small A and ||w||. Now,
f is continuously differentiable, with explicit forms of

Opf(u,v) and 9, f(u,v) given in and in
the appendix, and in particular, letting ug = (ag, Xo),
Ouf(uo,0) = I'% T'x,Ja, where J, is the diagonal ma-
trix with (}) ® 14 € C*@*1) along its diagonal and T'x,
is full rank (with probability at least 1 — p) by Theo-
rem [D.2] So, 8, f(uo,0) is invertible and f(ug,0) = 0.
Hence, by the Implicit Function Theorem, there exists
a neighbourhood V of 0 in C x C™, a neighbourhood U
of ug in C*% x X and a Fréchet differentiable function
g : V — U such that for all (u,v) €e U XV, f(u,v) =0
if and only if u = g(v). So, to establish support sta-
bility for , we simply need to estimate the size
of the neighbourhood V' on which ¢ is well defined,
and given (\,w) € V, for (a,Z) = g((A\,w)), to check
that the associated certificate 7y 4, def D*py . with

Paw et % (Pxa — Px,a0 — w) is nondegenerate.
Indeed, one can prove (see Theorem [E.IJ
that with probability at least 1 — p, V

contains the ball B,.(0) with radius r ~
1 s (min{rear,(CuB) 'Y 1
Vs T ( min;|ag,;| ’ E01E12(1+H00H)) and

given any v € B,.(0), (a,X) = g(v) indeed satisfy the
error bound (3.2)).

Checking that the candidate solution is a true
solution It remains to check that g(\, w) defines
a valid certificate and is non-degenerate (and hence,
>, aidy, is the unique solution to ) provided
that A, w satisfy (3.I). Given (A\,w) € V, let (a, X) =
g((A\, w)). Define 7 4 = 10*(Pxa — Px,a0 — w) and
following Denoyelle et al| (2017), one can show that

w

~ . 1
fixew = Tx + () Ty By + XQP(')THX(I)XOGO

where Ily is the orthogonal projection onto Im(T'x ).

Note that since we have the error bound , our
choice of A and |lw]|| ensures that holds and
hence, Theorem implies that 7x is nondegener-
ate with probablity at least 1 — p. To conclude, it is
sufficient to show that the two remaining terms are
sufficiently small, so that 7 ,, remains non-degenerate.
Under E, ||D,[p,] ()| < L., and for any z € C™,
HDT [@Tz] H < L, ||z||. Therefore, since Ilx is a
projection, we have HDT [(p(~)THX%]H < ¢, when
[w]l /A < €r/Ly. Finally, since ®x,a0 = 375 ¢(20,5),
by Taylor expansion of ¢(z¢ ;) around z; and applying
ILy (see Lemma[E.] for this computation), we have
1 a L
st (00 < 52 ool (6,

Since ¢ satisfies (3.2) our choice of Ay =
O(s7!) ensures that we can upper bound this
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— 2
by Lo ||ao||oo% < e and consequently,

H|Dr [0() TTIx @ xpa0]|| S &
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A Notations.
In this section, we recall and introduce some notation which will be used throughout the appendix.

Block norms. By default, ||-|| is the Euclidean norm for vector and spectral norm for matrices. For a vector
r = [x1,...,7,] € C*¥ formed of s blocks z; € C?, 1 < i < s, we define the block norm

def
1/l ok = 1SUP il

<i<s

For a vector ¢ = [q1,...,qs, Q1,...,Qs] € C*(?*1) decomposed such that ¢; € C and Q; € C?, we define

def.
lall, oo = max{lal, 1Q:}-

Kernel The empirical kernel is defined as

wak ) Pu (z)

and the limit kernel is K (z,z) = E,, [¢w(2)@w(x)]. The metric tensor associated to this kernel is

def

H, [V@w( WV (x )T}

Given an event E, we write Kg(z,2') 2 E,, [K (z,2')|E] to denote the conditional expectation on E.

Derivatives Given f € ¥>°(X), by interpreting the r*" derivative as a multilinear map: V" f : (C?)" — C, so
. def.
given Q = {qc}j_; € (C?)",
Z 321 03 f(@) Gy G, -

and we define the r** normalized derivative of f as

D, [f] @)[Q] * V" f(@)[{H; 2 q.}
with norm ||D,. [f] (z)|| < SUPyy g <1 IDr [f] (2)[Q]]. We will sometimes make use the the multiarray interpreta-
tion: Do [f] = f, D1 [f] () = Hy 2V f(x) € C4, Dy [f] (z) = Hy 2 V2 f(2)HS * € COx4,

For a bivariate function K : X x X — C, 01,; (resp. 0.,) designates the derivative with respect to the i
coordinate of the first variable (resp. second variable), and similarly V; and V2 denote the gradient and Hessian
on the i*" coordinate respectively.

For i,j € {0,1,2}, let K (x,2") be a “bi”multilinear map, defined for Q € (C?)* and V € (C%)’ as

th

QUK (w,2")[V] = E[D; [pu] (2)[QID; [pu] () [V]]

and ||K(ij)(:r,x’)|| def- supg v H

{veYgy with [l < 1, [luel| < 1.

")[V]|| where the supremum is defined over all @ g, VE

When i + j < 2, an equivalent definition is K (z,2") = E[D; [p.] (z)D; [¢u] (2/) '], and we note that K0 = K
and we have normalized so that Re (K1 (z,z)) = —Re (K(®®(2,z)). Finally, we will make use of the still
equivalent definition: [¢]K (2 (z,2) = E[qT D1 [pw] (z)Da [pw] (z/) ] € Céx4.

Kernel constants For for ¢, j € {(0,0),(0,1)}, define B;; et sup, pex |[K) (z,2")] | for (i,5) € {(0,2), (1,2)},

B;; L sup {“K(ij)(x,x')” ; di(7,7") < ryear or du(z,2’) > A/Q}.
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and define for i = 1,2
Bi; < sup HK(”) (:mx)H .

TeX
For convenience, we define
B, By +B;+1, B > B+l (A1)
1,7€{0,1,2}
i+j<3

Matrices and vectors We will make use of the following vectors and matrices throughout: Given X et

{z;}52; € X and a € C* which are always clear from context, define the vector yx (w) € Cold+D) as

T

@) ((eale)_ (Bifed @) ) ) (4.2)

1=

and
TX déf‘ W[V(W)'Y(W)*] c Cs(d—‘,—l)xs(d—i—l)
fx () = Eu[y(w)pu(@)] € CHHY
o % T, w - (sign(a))'
Osd
Note that the diagonal of T has only 1’s. For wy,...,w,,, we denote their empirical versions as:
5 def. 1 -
Tx = oo > ywr)y(we)*,
k=1
P e 1 “ ~ def. S
fx(z) = - D v(@h)pu (2), &= T,
k=1

which will serve us to construct our certificate, using the properties of their respective limit version.

We remark that G2/ I'x GY% = TX, where I'x is defined in the main paper and
X X X

1d, 0

Gx =
0 H,.

The vanishing derivative pre-certificate fx is &' fx(-) and the limit pre-certificate is 7y = T fx(-). When the
set of points X is clear from context, we will drop the subscript X and write instead ~, T, f, n, and so on.

Metric induced distances Given X = (z;)f_;, € &® and X' = (2))%_, € &*, denote du(X, X’) i

\/ 2 du(zj, ). Observe also that Gx is positive definite for all X and induces a metric on R® x X* so
that given a,a’ € R® and X, X' € X',

de((a, X ), (', X)) = \/lla — o3 + dss (X, X7)2.
Stochastic gradient bounds For r € N,

Ly(w) = sup 1D [pw] (@),

and L;;j(w) © /Liw)? + Lj(w)?. Fori=0,1,2,3, let F; be such that
P, (L;(w) > 1) < Fi(0),
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Throughout, for (f/j)fzo € Ri, the event E is defined as

m
def.

() Fup where B {L;(w) < I, ¥j=0,1,2,3} (4.3)
k=1

E

B Proof of Theorem [2

In this section, we consider the (limit) vanishing derivative pre-certificate

n(z) = u' Ty fx ().

Note that s
Dy ] (z) = Y o1 i KO (2, ) + [0g,4] KU (24, )
i—1
where we have decomposed a = [a1.1,..., 01 5,021,...,09,4] € C3d+1) where as,; € C2

We aim to prove that 7 is nondegenerate if K is an admissible kernel. Our first lemma shows that nondegeneracy
of 7 within each small neighbourhood of x; can be established by controlling the real and imaginary parts of
D5 [n] in each small region:

Lemma B.1. Lete > 0. Let ag #0, zg € X and let o € C be such that |o| = 1. Suppose that n € €*(X;C) is
such that n(zo) = o, Vn(ze) = 0 and Re (D3 [] (z0)) < —eld. Then, V2 |n|* (z0) < —2¢1d. If in addition, we
have ¢,7 > 0 with er < 1 and ¢® < (1 — er?)/(er?) such that for all x such that de(x,z0) <7,

Re (D2 [n] (z)) < —eld  and ||Im (D2 [n] (x))] < ¢z,

then, |n(z)|* <1 —e2du(z,x0)? for all z such that dy(z,zo) < 7.

Proof. The first claim follows immediately from the computation: by writing n = n,.(x) + in;(x) where n; and 7,
are real valued functions,

1 _— _
5Dz [n*] = Re (Dy Dy )" + D [1] 7))
and evaluation at xg gives the required result.

Let v : [0,1] = X be a piecewise smooth path such that v(0) = zg, v(1) = z.

n(x) =77(xo)+/0 (L= t(V2n(y(6)y'(2), 7' (t))dt

1 1
= nfan) + [ (1= D2 ] () (0 B ().

So,

— J— 1 1 1
Re (sign(ao)n(x)) =1+ igf Re (sign(ao)/o (1 =)Dz [n] (v(£))HZ ;7' (1), H,j(t)'y’(t»dt) <1 — edy(z, ')

if we minimise over all paths from = to x(. Similarly,

HIm (sign(ao)n(x)> H < cedu(z, 20)?
Therefore,

2 2
n(z)|> < |1 — edu(w, 0)?|” + |eedm(x, 20)?]
< 1 —2edu(z, xo)2 + 52dH(x, xo)4 + 0252dH(x, x0)4

=1—-edu(z,20)* — edu(z, z0)* (1 — edu (2, z0)* (1 + %)) < 1 — edu(w, z0)>.
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O

Proof of Theorem[3 In order to show that n is (£9/2, e2/2)-nondegenerate, it is enough to show that
Vo € X p(z)| < 1 o/2 (B.1)
Vo € Xner (51gn (a;)Ds [n] (z )) = —%Id and Hlm <Sign(aj)D2 7] ((L‘)) H < 252 (B.2)

_ [l-eari.,/2
where p = EERWIRE

We first prove that the matrix T is invertible. To this end, we write

Ty T
T= (T‘; T12 ) (B.3)

where To = (K (25, 2)) ;o1 € €%, Ty & (KO9(2;,2)): 2, € C¢, and Ty & (KO (z,2))5 -, €
C*?*sd, By definition of K() T (and also Ty and T5) has only 1’s on its diagonal.
To prove the invertibility of T, we use the Schur complement of Y, and in particular it suffices to prove that 15

and the Schur complement Tg “= To — Y151 Y] are both invertible. To show that Y5 is invertible, we define
Ay = K(ll)(-ri,mj). So Y5 has the form:

Id Ay ... A
T, — Ay Id :
Ay Id

and by Lemma we have

11d = Talp0 < m?XZ [[Aijll < 1/4.
i

4 Next, again with Lemma

Since [|Id — Yol 10 < 1, T2 is invertible, and we have HT;lelock < m <3

[G.6] we can bound
€0
17 = Tollo = max 37K (i, 2,)] < g
J#i
1 < max T, )| < since T, x) =
T oco—block b K(lo) J h i K(IO) 0
J

<h

HTIHblock—)oo S maxz HK(N) (zj,2;)
J

Hence, we have

_ 4
”I - TS”oo < HI - TUHoo + HTIHbIock—mo HT2 lelock HT1||00—>block < % + §h2 < g (B4)

since h < g—" Therefore the Schur complement of Y is invertible and so is T.

Expression of . By definition, n = satisfies n(x;) = sign(a;) and Vn(x;) = 0.

We divide:
a=""luy, =M
s Qs

where a; € C*° and s € C*?, and we denote o4 € C4 blocks such that ag = [ag1, .. ., Qg s).
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The Schur’s complement of T allows us to express a; and «q as

a1 = Tg'sign(a), ay ==Y 175" sign(a) (B.5)

and therefore we can bound
ol < T g (B.6)

oo = 1-— 80/8 '
8
ez llpoak < gh < 4h (B.7)
Moreover, we have
. _ _ 1

s = sign(@)le < 17 = 05|, < [T5H o 1= Vsl < 5 (B.3)

Non-degeneracy. We can now prove that 7 is non-degenerate.

Let = be such that dg(x;, ) < rnear- We need to prove that for all z such that dg(z,z;) <,

Re (MDQ ) (z )) =< f—ld and Hlm <81gn a;)Da [n )H 67”,210;“'

near

Then, since rpear < A/2 and the z;’s are A-separated, for all j # ¢ we have du(z,z;) > A/2. Then, we have

sign(a;)D2 [n] (z) = sign(a;) [al,iK(OQ)(xi> 2)+ > a1 KO (z),2)
JFi

+ [ ;| KW (4, +Za273 (z;,x)

J#i i

Re (sign(@)Ds ) (7)) < (1= flox = sign(@)l|. )Re (K (ws,0)) + llaaflog D | KO (2;,2) 10
JAi

HK(12)($Z', a:)H + Z “K(lz)(x]ax)“ Ha2Hblock Id
J#i

3 1 3 1 €2
<[ -= 4h(B 1) |1d ¥ ——+4+-|ld<g ——=1Id.
( 4 +1_ 0/816+ (Biz + )) €2< 4+4) 5
Taking the imaginary part, we have
Hlm (s1gn a;)Da [n )H (1 + ||ay — sign(a)||) HIm (K(OQ)(xi,x)) H + |l Z HK(OQ)(xj,x)H
J#i
509 ] + 3 02065, | o
J#i
5ces 1 5ceq 2 —er?
< h + 4h(B 1 —— 4+ h(4B 6 —near,
( T T ey T AMB )> ph B 6 < 5y T

So, by Lemma for each i =1,...,s, |n(x)] <1 —e2/2du(z, x;) for all x € X such that dg(z,z;) < Tnear-

Next, for any @ such that dgg(x, ;) > rmear for all x;’s, we can say that there exists (at most) one index 4 such
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that de(2z,2;) = Tnear and for all j # i we have dp(z,z;) > A/2. We have

O[l’iK(.’EZ', .’E) + Z al,jK(xj7 .’E)
i

In(z)| =

+ K (2, 2) T ag + Z KO (25, 2)Tag
J#

< il | 1B (@i 2)] + ) K (), 2)]
i

+ lazloa. | KO0 @oa)| + 3 [KOV (@5, 0)|
J#i

1—€0+€0/16

€0
4h(B <1 ——.
T —co/8 +4h(Bio + 1) 5

Remark B.1. Assuming that the derivatives of the kernel decay like a function f(||x — 2'||) when, there is always
a separation A o< f71(1/(Csmax))) such that the kernel is admissible. Ex: when f = x~P, we have A o silP, (eg
Cauchy). When f = e~ we have A  log'/P(smax) (€9 Gaussian).

C Preliminaries

In this section, we present some preliminary results which will be used for proving our main results. We assume that

K is admissible, and given a set of points X € X', let A" = {r e X; du(z,z;) < Tnear}, A" = U;=1 xpear

and Xfer € x|\ ymear,

C.1 On the determistic kernel

For an admissible kernel, we have the following additional bounds that will be handy.

Lemma C.1. Assume K is an admissible kernel, let X € X° be A-separated points. Then we have the following:

(i) We have seen that T is invertible. Additionally it satisfies

1 1
ITd — Y| < 5 and |[Id =T, < 3 (C.1)
(i) For any vector q¢ € CU4tY) and any x € X we have
[f(x)| < By and |q¢"f(z)] < Bollgll. o (C.2)
(iii) For any vector g € C*9tY) and any x € X" we have the bound:
D2 [¢"£()] (@)|| < llgll B2 and  |[Da [¢"£()] (@)]| < llgll, o B2 (C.3)

Proof. We bound the spectral norm of Id — Y. Define y € C*(¢*1) decomposed as y = [y1,...,Ys, Y1,..., Ys]
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where Y; € R?, such that ||y|| < 1. We have

2
S S
1ad=0)yl* = > 1D K@iy + Y K (2,25 7Y
i=1 | j#i j=1
2
+ Dy KO (@i, 2) + Y KU (@3, 25)Y;
J ji
2
S s
<3 1K sy sl + D [ KOO (@) 151
i=1 \ j#i j=1
2
+ | Xl £ @)+ 3 KD @) 1
J J#i
2
2
< K / K(10) / KO / ) 9 ) Y.
2550 (K@ KOO [0 ]) 3 >l 1

) 2
by Cauchy-Schwartz inequality and since K9 (z,z) = 0 for all 2 € X'. Since by hypothesis we have

1
<t
45max

<452 max er(x,xq|,H1((“D(x,xq
du(z,x’)ZA

7 HK(ll)(x,I/)

K(IO) (ZL’, IL’/)

max (K (z,'),
du(z,z’)Z2A

@)

we obtain

Id — 71| < (C.4)

1
2
and we deduce (i). A near identical argument also yields | T —Id||, . < 1.

For (ii), let # € X then we have

u@ns@im%MQWMmewy

1
s — 1)l (s—1)\?2

< By + (s = Dey + B, + < By

h < 00 (168max)? 10 Shax

for which, similar to the proof above, we have used the fact that x is A/2-separated from at least s — 1 points ;.

Similarly, for any vector ¢ = [q1,...,qs, Q1,...,Qs] € C5@*1) and any = € X" we have

la ¢ @] < - lail 1K @i 2)] + Qi) | KO @i, )|
i=1

s—1)e s—1)e
( )O—I—Bw-i—i( )<o

0 <B .
325nlax) 32Smax ) 0 ||q||*,00

<mmem+
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For any x € A"**" we have the bound:

D2 [¢ 7] ( V(@i 2) + [Qi K1 (2, 2)
%
il 2 2
< lal (Z [ KO @) + 0D o, )
1=1
SHQHBQ
and
D2 [¢7£] ( ||— i, 2) + [Qi| K (2, )

<Nl (Z | K2 @i, + HK<12>(%$)H>
i=1

< llgll o B

C.2 Lipschitz bounds

Lemma C.2 (Local Lipschitz constant of ¢, and higher order derivatives). Suppose that |D; [p.] (z)|| < L; for
all z € X. For all z,2" with dg(z,2") < Tnear, we have

(1) 1pw(x) — pu(@)| < Lodu(z,z"),
(i) D1 [pw] () = D1 [eu] ()| < Lrdu(z, 27),
(iii) D2 [pu] (x) = D2 [pu] (2)]| < Lodm(x, 1),

def.

where Lo = Ly, L1 = L1Cu + Lo(1 + CuTnear) and Lo Ly (C’H + CTnear + 1) + L3(1 + Crpear)?. As a
consequence, for all X = (z;) and X' = (x}) such that du(v;,2}) < Thear, we have

sup HD [ (fx — fX/)} (y)H < Lo/ L2+ L3du(X, X).

lgll=1

Proof. Let x,2’ € X with dg(z,2") < rpear- Recall that HHEIH;% - IdH < Cudu(z, '), and so, i’H;% H <
1+ CHrnear-
Let p: [0,1] — X be a piecewise smooth path such that p(0) = 2/, p(1) = z. Then, by Taylor’s theorem,
1

pul@) ~ula) = [ AT 00, B0 < L [ [0t (©5)
so taking the minimum over all paths p yields |¢,,(z) — ¢, (2")| < Lida(z, 2').
Given ¢ € R?, by Taylor’s theorem,

_1 _1 _1
D1 [pu] (2)[a] = Veo(@)[H * ¢] = Ve (2')[Ha *q] + /V%w (p(t))[Ha ¢, p'(t)]dt
(C.6)

= Dy [pu] (2/)[a] + D1 [p] (&) [(HZ H, * — Id)g] + /D2 [pw] (p(t))[Hf(t)Hﬁq, Hf(t)p’(t)]dt

Therefore, - B
ID1 [pw] () = D1 [pu] (2")|| < LiCrdu(z, ') + La(1 + Crarncar)du (z, ).
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Finally, for all ¢1,¢2 € R%, by Taylor’s theorem

Dy [pu] (2)[q1, g2] — D2 [pu] (2)[q1, ¢2]
= V0, (2)[Hz 2 g1, Hy 2 go] — Vi () [H,2 g1, H,, o]

11 11 11 C.7
— Dy ] (@) HEHG g, (HEH F — 1)) + D2 ] (o) (HEHLF — 1)1, o) (©7)
+ [ Do) (OB B 00 B B g B 0]
Therefore,
D2 [¢u] (@) — D2 [u] (@')]| < (L2 ((1 + Curnear)Cr + 1) + Ls(1 + Crnear)”) du(z, ).
By applying these Lipschitz bounds, we obtain
~ N 2
sup [[D- [o7 (kx| )]
llgll=1
s R . 2 s R R 2
<SR @) - KOOy + D[RO @0~ KOO @)
j=1 j=1
< L3LYdu(xy, )+ LiLYdu(x;, o))
j=1 j=1
= (L3 +L3) Lidu(X, X')?
O

Lemma C.3 (Local Lipschitz constant of K)). Let 1,20 € X. Let i,j € {0,1,2} with i 4+ j < 3. Define
A;; = sup Hk(ij)(z,xo)H
where x ranges over dg(x,21) < Tnear- Then, for all x such that dg(z,21) < Thear,
HK(O])(x Zo) — K(09) (z1,x0) H Avjdu(z, 1)
HK( 7) x,x0) — K19 (1,20 H (CuAij + (14 Curnear)A2j) du(x, 1)

The same results hold if we replace K by K.

Proof. The Lipschitz bounds on K% follow by combining
g1y s @) (KD (2, 0) — K (24, 0))[v1, .- . , )]
— ERe (D o] (@) — Di [pul (@1)lar, - aaID; [ps] (@o)[on, 03]

where | indicates either empirical expectation or true expectation with (C.5), (C.6) and (C.7).

C.3 Probability bounds

In the proof of our main results, we will often assume that event E (see (A.3))) holds since our assumptions
in Section imply that P(E°) < p/m. The following lemma shows that our assumptions also imply that
E,[L;(w)?1 Be] < . and this is a condition which our proofs will often rely upon.
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Lemma C.4. The following holds. P(ES) < Y, Fi(L;) and
Eu[L;j(w)?*1ge] < 2/ tF;(t)dt + LY Fi(L
L; i
Proof. Let E, ; be the event that L,(w) < Ly, so E, = N3_yE,, ;. By the union bound, P(ES) < > P(ES ;) <
2 FilLa)-
For the second claim, observe that ES = U;Ef, ; so that E[L;(w)*1g:] < 3, E[L;(w)?*1g: ] and we have

E[L lEL / lEL > t)dt
:/ > 1) (Liw) > L)) dt
< L3Fi(Ly) + / F;(Vt)dt = L3F;(L;) +2[m tF;(t)dt
L2 L;

where we have bounded P ((L;(w)? > t) N (L;j(w) = L;)) by respectively P(L;(w) > L;) < F;(L;) in the first term
and by P(L;(w)? > t) < F;(v/t) in the second term. O

C.3.1 Concentration inequalities

The following result is an adaption of the Matrix Bernstein inequality for dealing with conditional probabilities.

Lemma C.5 (Adapted unbounded Matrix Bernstein). Let A; € R¥ %42 pe g family of iid matrices forj =1,...,m
Let Z = ~ Z;”:l Aj and let Z = E[Z]. Lett € (0,4||E[A4]|]]. Let events E; be independent events such that
E; CH{|lA,|| < L} and let E =N,;E;. Suppose that we have

t

P(ES) € ——
E5) < TrayEA]

and B[l 4,] 15 <

I

Then a first consequence is that we have Eg[Z] = Eg,[A;] for all j and ||E[Z] — Eg[Z]| < £.

Finally, assuming that
7 % mae{[[B, 14, 43]] [, [43 4.} < o0

we have

B (17 = E[Z]| > 1) < (d1 + d2) exp <_L£L/f/3> '

Proof. We first bound ||E[Z] — Eg[Z]||. First observe that E[Z] = Eg, [A:] and EgZ = Eg, [A4] since A; are iid.
Moreover,
E[A] = E[A1lE, ] + E[A11Ef] = E[A|E1|P(Ey) + E[A11Ef].

Hence,
|E[A1] — Eg, [A1]]| = ||(P — 1DEg, [A1] + E[A115]
P(ET) [[E[A 1]|| + P(El) IIE[ 1] = Eg, [Ad]] + E[[ As || 1]
Therefore, )
it - B, ) < PEDIEAL B ) o
For the second statement,
Pe(|Z -E[Z]| > t) <Pe(|Z - Er[Z] - [E[Z] - Er[Z]])

< >t
<Pe(|Z - Eg[Z]]| > t/2).
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To conclude, we apply Bernstein’s inequality (Lemma (G.2) to Y; = A; —E[A;|E] =Y; = A; —E[A,|E;] conditional
to E. Observe that
0 XEplV;Y;"] R Ep[A;A]] — Ep[4;]E[4;]T] X Epl4;A]],

which yields HIEE[YJYjT]H < H [A; AT H and similarly,

Ep[Y;"Y]] < ||Es [A] Aj] |- So by Bernstein’s inequality

Pu(|Z ~ EslZ)] > £/2) < 2(dx + do) exp (‘%) |

Corollary C.1. Let z,2' € X. If

t

P(ES) < T AR (o]

| o

then Hng)(x,x’) — K@) (z,2")|| < t/2.

Proposition C.1. Lett > 0 and assume that

t t
P(E°) < —— d E[L 1] <
( (.d) t+6 an [ 01(0.}) Ew] 45

then [|[T — Yg| <t/2 and

]P’E(HT - TH > 1) <A(d+1)sexp <_sL3TZ;,24/r4t/3)>

Consequently,

~ t2
P HT*—T*H% <4(d+1 —m~>.
2 JsAld+Dsexp | —757 5 on

Proof. We apply Lemma to Aj = v(w;)y(w;)* with the following observations:

e for each w,
Iy (@)yy(@)*[l < @) < s max{|[D1 [u] @)II” + lpw ()},

so under event E, ||A;|| < sLE;.
By Lemma[CT} B[4, = | T < 3/2,

e We may set 02 = Lo1(3/2 + t/2) since

0 % E5[A14]] = E5[A] A1) = Eg[ln(wy)|” v(w;)y(w;)*] = Lo ([E[4,]]| + ¢/2)1d

N o o _ T
The last claim is because HT—TH < ¢ implies that [|T] < 3/2+¢, [|[T7| < W < 72 and

HT_l — T_lu < | HT — TH HY”H < 124 and writing ¢ = 25 is equivalent to ¢ = 1/(3 + 2¢). O

Bounds on fy applied to a fixed vector
def.

Proposition C.2. Let t € (0,1), r € {0,2}, ¢ € C3+D) and y € X,, where Xo = X and X, < xnear | [y

PES) < g and Bl (@)L, (@)1es] < 4\}
then
Pe (o [t~ £50)7d] 0] > tlal) < 2de (37 +Ef§;/t4/(3 —)
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whered=1ifr=0andd=d ifr = 2.

As a consequence, since V2s||ql|, ., = llally; we have

~ - -m 2
Pe ([ [(£x, ~ £x,)Ta] @) > tlall, ) < 2dexp <165(L2 +8Lrim/(3ﬁ)))

provided that
t t

' and E[Loy(w)L(w)lge] < .
t+ 4258, [Lov (@) Lr(w) 1] 125

Proof. Without loss of generality, assume that ||g|| = 1. First note that

B(ES) <

D, [(Ex, — £x,)Tq () Zq V@)D, [P () = Ela"y(@i)Dr o] W)

We first consider the case of r = 0. We apply Lemma to Ay < q"Y(wi)¢w, (y) € C: Note that |Ax| <
V/sLo1(wk)Lo(wk) and [E[Ax]| < Bo.

e Under event B, , ||Aul| < LoLo1/s = L.

o Ep |Ail* = Eal(y(@i)v(wi) @ @) leu, W)I°] < L3 Tall < (3/2+1¢/2) L < 203 < o2
For the case r = 2, we apply Lemma with 4, < ¢ 'y(wk)Dg [Pw.) (y) € €. Then, | A
V'sLo1(wi) La(wk), |E[Ak]]| < Bz, under event Ewkv Akl < LaLory/s = L and

IE£ Ak A7)l = IE[A7 AR = [E£[D2 [P (5)D2 [pu] @) |a (i) )| < Z3EglgT(wr)

Lemma C.6. Assume that

t
P(ES) <
(ES) YW

t
<—— d E[L 1ze
w t—|—6\/% an [01() E]

Let g € C*HY . Then, for all t > QﬁgL‘”Ll + \/88 L§ LT | 144l , we have for each v; € X,

mt?/(4s) )
203 +V2tL1 Loy /3)

Pg (HDI {QT(fX - fx)] (i)

> ||q|\*’oo) < 28 exp (_
Proof. For each z; € X,

|D1 [Esla™Ex] = ¢ "€0)] (@0)|| < I = Tsl llal <

t
E HQ||7

by Proposition For convenience, we drop the subscript X from fx. Fix i € {1,...,s}. Observe that

>

i (|01 [a(6 - D] @) > el

, > 2t ||q||*oo) < Pg (HD1 [QT(f— f‘)} (@)

<Pp (Hm [0 @l - D) @, > = |q||2)

The claim of this lemma follows by applying Lemma [G.3} Let

Vi, = Dy [@u,] (@) v(wr) g — EgDi [pu,] (2:)y(w) Tq € CY,



C. Poon, N. Keriven, G. Peyré

and observe that Dy [qT(f' —-Ez [f'])] (z;) = £ >, Y. Without loss of generality, assume that ||g|[, = 1. We
apply Lemma Observe that conditional on event E,

o [[Yilly < 2lglly [v(wr)llz D1 [pu,] (z0)lly < 2v/5Lo1Ls.

2 — — —
o Eg Vi < Epllv(wr) "a| D1 [pw] (z:)D1 [pu,] (@) ] < L3 | Tl So, 0 <mLt[|Tel < mL(t+ 1) <
mL3(t/2+ 3/2) < 2mL? (here we are talking about the 2 in Lemma |G.3)).

Therefore, for all

. 2v/2sLo1 Ly N 8s2L2 L2 N 144sL?

m m?2 m

> ! ) < 28 exp (— mt*/(4s) )

g

1 m
2 Y

, V2 2L2 +v/2tLy Loy /3
O
Proposition C.3 (Block norm bound on T applied to a fixed vector). Suppose that
PES) < —— " and E[Lot(@)’1p] € —o———
t+6+/s(By+1) 453/2(1 + 4By)
Then, for all
T T 272 72 72
. (4\/5350@1 . \/323753@1 . 57?2L1>
we have
. mit2
Pr (H(T - T)QH*,OO 1 |q'*7°°> S 32sexp <_s (3202 + 34tL1L01)> ' (C-8)

Proof. Let Sy & {1,...,s} and S et {s+(—1)d+1,...,84+jd} for j =1,...,s. Observe that by the union
bound

pe (|01, >tlal... )

<Pg (||(r =D)s|_ >lall. ) + 3P ([ - s, > tlal. ) (C.9)
j=1
<3P ([0 =Ty ] 2l ) + S Pe (T = Dha)s |, > . )
j=1 Jj=1

To bound the first sum, observe that (T — T)q); = (f(z;) — f(xj))Tq and ((T — 'f)q)sj =D, [qT(f — f)} (z;).
So, the first sum can be bounded by applying Proposition The second sum can be bounded by applying
Lemma

O

Norm bounds for f We will regeatedly make use of the following result on f'X. This result is due to
concentration bounds on the kernel K which are derived subsequently.

Proposition C.4 (Bound on fy). Let X € X*. Let p > 0. Assume that for all (i, 5) € {(0,0), (1,0),(0,2), (1,2)},

4 4

ITavsmaBo Byy’ ClLi@)bi)leg] < oz

P(ES)
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Then, given anyy € X,

/8
Bx(v) ~ fx(v)]| > 1) < dsdexp (—’;Lé ) (C.10)
01

IP’E<

and given any y € X" writing fx = (fj)gzl and fx = (f;)5-; with p = s(d + 1), we have

Pz | sup zp: HDQ [f - f} (y)qH2 >t] <s(8d+d*)exp | ——= W,th/S - (C.11)
s\ S Y h s(L3B11 + LiBas + Lor La) ) '

Proof. Let i,j € No with i +j < 2. Let [s] % {1,..., s} and I = {(0,0), (1,0)}, By Lemma [C.7and the union
bound,

. (i t mt? /4
e (300.0) € 1,30 € B K0 ) - KO )| > 72 ) < dstenp (- 3ng1 ). e

So, (C.10) follows because

fo(y) - fx(y)H < Z K (z,y) — K(zci,y)‘2 + Hk(lo)(xi,y) _ Kuo)(gci,y)H2 < V2L

By Lemma Lemma and the union bound, letting Ir < {(0,2), (1,2)}, we have

. ) »
Pp (3(i»j) € I, 3 € [s], [ K (e, ) — K (e, )| t) < 2sdexp (_Z(mt/)
S

NE L3+ LoLo)

mt? /4

+s(d+d*)exp | —— — S— .
( ) p( S(L%Bll"’L%BQQ"—Lng))

(C.13)

and (C.11)) follows since given ¢ € CY, ||q|| = 1, we have

gunz - 1] wa < z (

~ 2 “ 2
R ay) = KOy )+ [R5, - K02, ) < 2

Lemma C.7 (Concentration on kernel). Lett > 0, x,a’ € X. Let i,j € Ny with i + j < 2. Assume

t
C
P(ES) < 14 ||K(ij)(z,x/)||?

E[Li(w)Lj(w)lpe] <

| o

then

Ps ("K(ij)(m,x’) — KW (z, ")

> t) < 2de mt?
= X X —= —
P R0y + )+ LiLt/3

where p = max (i,7) and b;; = 1 if min (4,5) = 0 and b;; = | KD (2, a")|| otherwise.

Proof. It is an immediate application of Lemma with Ay = Re (Di [Pwi] ()Dj [@u] (x’)T) fork=1,...,m.

Note that Ay € (RY)™7 if (i,5) € {(0,0),(0,1),(1,0)} and Ay € R if max(i, j) = 2. noting that under
E, |Ag|| < L;L;. Next, we need to bound ||Ez[ArA}]|| and ||[Eg[A}Ax]||. We present only the argument for
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(i,7) = (0,2), since all the other cases are similar:

* 2 *
0 =% EpAs AL = Eglllw, (') D2 [pu,] (2)Da [u] (2)*]
< L2Eg || pu, ()] 1d = L3 | K (2", 2')|1d < (1 +t/2)L31d

so |EgArA;|l < (1+t/2)L3. Similarly, |EgA; Akl < (1+t/2)L3 and
IEALAL|, |Eg Ak ALl < L3 (Byq +1/2)

where p = max (¢, j) and ¢ = min (4, j).

O
Applying a grid on X" we get a uniform version.
Lemma C.8. Leti,j € Ny with i+ j < 2, and assume that
P(ES) < e ElLi(w)Ly()lsg] < o
S B i\W 140 |l X —.
“/ S 1 +16By; PIITESLS g
Then
Pz (3 x,x’ € X" "K(ij)(x,x') — K@) (g, 2| > t)
t2/1 4(L;L; + LiL;
< 2ds?exp | — . mit*/ 6_ _ + 2dlog (M) )
L2(Bgq + 1)+ L;L;t/12 t
where p = max (i,j) and ¢ = min (4, 7) and L;, L; are as in Lemma
Proof. We define a d-covering of X"°?" for the metric dg with § = min (rnear, m) of size s (r“g‘“)d.
idleg ikyj

Let this covering be denoted by A’rid,
By the union bound and Lemma[C.7]

Pz (330735’ € xerid gt HK(ij)(iL',x/) — KU (g, 2')

2d 2
> t/4) < 2ds? (Tnear> exp [ —— mt /16, _
5 L2(Bgq + 1) + LiL;t/12

where p = max (i,5) and ¢ = min (4,5). This gives the required upper bound: Given any z,2’ € X, let

Tgrid, Tlyiq € X84 be such that de(z, Tgria), d (7', 2),54) < 0. Then, under event E, by Lemma

Hk(ij)(x’x/) _ K(ij)(xgrimx%ﬂd)H < (LiLj + LiLy)5 < t/4.

By Jensen’s inequality and since Hng)(x, z') — KU (z,2')|| < t/4 for all z,z’, we have

HK(U)(.’I}, (E/) — K(ij)(xgrid7 xlgrid) H < t/2

We now derive analogous results for the kernel differentiated 3 times.

Lemma C.9 (Concentration on order 3 kernel). Let xz,a’ € X", Assume that

. ¢
PUZE) < o o Brn By I (9)E2(0) + L@ ] <

PR
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For j=1,...,m, let a; = (D1 [, ] (2)); € C, D < Dy [p,] (2') € C*? and

A, (@D asD -+ agD)’ e Cc¥x (C.14)

Let 7 < L m 2je1(A; — E[Aj]). Then, given

. d 2 2
(i) SUPgecd, | q|<1 > izt D2 [gi] (2")a|” = || Z]]

O =& (@) - KO (@, 21)|| < 112].

(i) supgece jq1<1 D2 [¢7 9] (2

and

mt? /4
i A >t < d+d2 €exX <—~__)
£ 121> 0 < @+ ) exp (o

where B S max{L3(B11 + t/2), L?(Bas + t/2)}.

Proof. The claim (i) is simply by definition, since Zq = (D2 [g;] (x')q)?zl € C¥. For (i), the first equality is

simply be definition, and for the inequality, observe that

sup  ||D2[g'g] (@)= sup Z%DQ i) (
g€C4, |l <1 4€Ch lal<1 peCh <1
< sup sup gl Z D2 [g:] (=")pl* < 1|1 Z]]-

7€C4,|lqll<1 peC4,IplI<1

Finally, the probability bound follows by applying Lemma First note that under £, |4 < . It remains

to bound ||Ez[A7A;j]|| and ||Egz[A4;A7]|:

d
2
sup Eg(AA;q, ¢) = sup Ep Y |(D1 [w,] (2))i]” D2 [eu] (2)q]”
llall<1 llqll<1 P
< sup L3EpD; [pu] (/) (a1, g2 Dz [u] () a3, ¢a]

llarll<t
<L} \’KSQ)(w,x)H < L}(Ba +1/2).
Given p; € C? for i = .,d such that ), Ip:ll> < 1, write P = (p1 p2 ---pa) € C? and
_ T 2
p=(pi pi --pi) €CT. Then,

d 2

Z(Dl [w,] ())iD2 [¢w, ] (")p;
= Ep Dz [p.,] (2')PD1 [po,] (@)
< Eg]EEZ Zpi,k(Dl [w,] (@))k

Lzz (KUY (@, 2)pi, i) < B[ RS )| anzn L3(Bui +t/2).

Eg(A;A;p, p) = Eg

2
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Lemma C.10 (Uniform concentration on order 3 kernel). Assume

t t
P(ES) < . E[Ly(w)La(w)lge] < —
( w) t+16maX{B12,B22} [ 1(&)) 2(OJ) Ew] 16

then

Pz (Elx,x’ € e, HK<12) (z,2") — K3 (z,2")

> 1)
mt?/16

Ly+ L
< s%(d +d?) exp <—~ 8("312+2£2)>>
B+ LiLot/6

+ 2dlog ( .

where B < max{L3(Byy +t/2), L3(Bas +t/2)}, L1, L2 are as in Lemma .

Proof. Let X2 be a §-covering of X" for the metric dy with § = min (

- N
S (w) . By Lemma and the union bound,

Pg (Elx,ac' € ysrid, HIA((ij)(x,:c') — K% (g, 2")

___t ;
Tnear 8(E1L2+£2L2)) of size at most

> t/Q)

8(L1Ly + L3)\ > £2/16 .
< s3(d +d?) 8Ll + 1) exp | —=5 mt’/ S =y
t L3 (B +t/4) + L1 Lot /6

Moreover, under event F, given any z, 2’ € X" there exists grid points Tgrids Tyyiq Such that

/
gri
dH(‘Ta Igrid), du (xlv :C/grid) <9
and
(08 ) (Kt~ P )|
+ H (IA{(12) (I, LE,) — [A((12) (Igrida x/grid)) H

+ H (K(lQ) (.1?, Jj/) — K(12) (xgrich xérid))

)

and by Lemma under event F,

H (K(lZ) (.’L‘, LU/) — [A((u) (-Tgrid; x’grid)) H < (ﬁliz + EQI_JQ)(S < t/8.
and by Jensen’s inequality and since HK(H)(x, y) — ng)(:n, y)” < t/8,

H (K(lQ)(x,y) _ k(12 (xgrid,y)> H < 3t/8.

Therefore, conditional on F, ‘ (K(12) (z,y) — K2 (z, y)) H < t with probability at least 1 — p.

D Proof of Theorem 3

In all the rest of the proofs we fix Xy € X® to be A-separated points, ag € C*, and let u = (sign(agp), 054). We
denote X% = {z € X ; du(x,70;) < Tnear} and A1 = U, X1 and yfer = y\ ynear,

Since K is an admissible kernel, from (B.2) and (B.1) in the proof of Theorem [2 nx, satisfies
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(i) for all y € X% |nx, (y)| < 1— %507

(i) for all y € X" (i), —Re (sign(a:)D2 [nx,] (¥)) = 3e21d and [[Im (sign(a:)D2 [nx,] (v))I| < (§)e2-

d;f' (1 - €2T121ear/2)/(52rgear/2) =1,
: 2
since €7

fear < 1 by assumption of K being admissible. We aim to show that, for X close to Xy, 7x is
nondegenerate by showing that ||D, [fx] — D, [x,]]| < ce, for some positive constant ¢ sufficiently small.

D.1 Nondegeneracy of 7x,
We first establish the nondegeneracy of 7jx,, our proof can be seen as a generalisation of the techniques in [Tang
et al.| (2013]) to the multidimensional setting with general sampling operators:

Theorem D.1. Let p > 0 and assume that the assumptions in Section [2.3 hold. Assume also that either (a) or
(b) holds:

(a) sign(ag) is a Steinhaus sequence and

Nd
m 2> C-s-log () log(s>
P P

(b) sign(ag) is an arbitrary sequence from the complex unit circle, and
Nd
m>C-s? . log <)
p

where C, N are defined in the maz’n paper. Then with probability at least 1 — p, the following hold: For
all y € Xfa'r; ‘ﬁXo(yN < 1 - 16607 and for all y € Xnear( )7 _Re(Sign(ai)D2 [ﬁXo](y)) = T76€21d and
[Im (sign(a;)D2 [x,] (W))|| < (& + L) 3e2 and hence, fix, is (i5€0, 15£2)-nondegenerate.

Proof. Note that
8 _ 2
4(8+B):§<< 1~ Teariear/16
7\2 78/ 3 Teor2., /16

near
SO 7jx, 18 (1—7660, %52)—nondegenerate by Lemma

Let ¢ <1 /32. Observe that by assumption and Lemma P(E) < p/2. Therefore, it is sufficient to prove that
conditional on E, with probability at least 1 — § with 5 p/ 2, fx, is nondegenerate.

We will repeatedly use the fact that our assumptions (by Lemma |C.4)) also imply that

€ €
P(ES) < —, ElLj(w)Lj(w)lg] < —
() < =, BlLi()Li)le:) < =
for all (i, §) € {(0,0), (1,0),(0,2), (1,2)},
Step I: Proving nondegeneracy on a finite grid.

Let & fard C X' and X f‘“d C A" be finite point sets. Let

Il Il

Q. (y) & D, [ix,) () = Do lnxo] W), 7 =0,2.

We first prove that conditional on E, with probability at least 1 — § where 5§ p/ 2, that Qo(y) < cegp for all

f?Ird and Q2 (y) < ceo for all y € ng?fd

Let us first recall some facts which were proven in the previous section: Let a,t € (0,1) and write f = ( fj)s(dH)

and f = (fj)s(dH) Let go “ T~ 'u, so [|go|| < 2¢/5. Let F be the event that
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o -t <

(b) ¥y € X

B, () — £x, ()| < aso,

(c) Vy € Xgid's SUPgeca, |jq=1 \/Z?ﬂ D2 [ 5 = £i] W)al* < ass,
Let G be the event that

(d) Vy € X

(Ex, (4) = £x, (1)) Ta0| < 2050

(e) Yy € Xpsi,

’Dz [(fxo — fXO)TQO] (y)H < 2ag;

then provided that

P(ES) < u

u
X , E|lLj(w)L;j(w)lge] <
w 1L+111&X{4\/§BU,6} [ ( ) '7( ) Ew]

4s
where u = min{ag;, t}, we have
Py (F°) <4(d+ 1)se mt?
7 < sexp| ———=———
B P\ " 16sL2,(3 + 20)

m(agg)?/8 )
(Bii+ 1)+ L)

+ 4sd |ngffd| exp < S(I2,

2/8
s( ) | Xgia| exp s(L3B11 + L3Bas) + Lo1L2) 02

ma?e2
Pp(GY) <2| Xt exp ( ——— g0 >
5(G°) | grld| p < s(8L3 + %LOLOMEO)

ma?e3
+2d | XS5 exp | ———= 2 ,
’ grid ‘ P ( s(8L3 + %L2L01Q€2)

where for Pz (F°), the first term on the right is due to Proposition the second and third are due to Proposition
while the bound on Pz(G*¢) is due to Proposition (noting that, since this probability bound over the w;
is valid for all fixed u, and the w; and the signs are independent, it is valid with the same probability over both
w; and u).

Observe that
D5 [x, ] () = Dy ) W] = [P [(dx, — ax) Th, | () + D5 [k, (B, — £x)] ()]

<||ps [ (7 =T + T — £x0)) | W) oY

Step I (a): Random signs
We first bound (D.3]) in the case where u is a Steinhaus sequence.

def.

Let B1(y) < (T = YY)y, () and Ba(y) € T (fx, (y) — £x,(y)). Then, event F implies that [|3;(y)] <

t(Bo + agp) for all y € ng?{d, and event G implies that [u' B2(y)| < 2ae. So,

Py (|3 € ng?irdv u' (B + B2)(y)| > ceo)
< Prag (39 € ng?irdv lu'Bi(y)| > Eeo> Pz(F) + Pz (F°)

2
ar c c
+Pang (Fy € Xk, [0 Baly)| > Se0) Po(G) + P (GF) (D.4)
ar c C C
<Prop (€ X, [0 Br] > Seo) + Py (F) + P (GF)
(c/0)2ed

<A Xk | e” s Era? 4 Pp(FC) + Pp (G°).
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where we set a = ¢/4 for the second inequality and the last inequality follows from Lemma and because u
consists if random signs.

Now consider Q3(y) = D2 [u” 8] (y). Under event G, ||Dz [u” 2] (y)|| < §e2. Writing M = (T=1 = T71), we
have

bS]

Dy [u” 4] (y) = D2 [u” (MEx, )| (1) = D w fMejm W |- (D-5)

(=1

We aim to bound (D.5)) by applying the Matrix Hoeffding’s inequality (Corollary |G.1)): let

p
Yo Re | > MyDs[fy] (y) | € RO

j=1
which is a symmetric matrix. Note that
2
P p P
SvHl= sup Y (VP q)= suwp ZIIYéqII sup ||y M ;(Da[£] (v)q)
= q€RY [lql=1 =} q€RY [lql=1 =1 q€RY [lqll=1 |5,

Then, for a vector ¢ of unit norm, let V;,, <t (D, fil)q)y for j=1,....pand n=1,...,d, then
3, J

2 2

P P d D d d
> Z Me; D2 (1| =D D 1D MejVim| =Y IMVlP < [IMI*Y Vil
(=1 ||j=1 {=1n=1 |j=1 n=1 n=1
= ||M||222|vj,n| 1M ZHDQ 5] W)l -

n=1j=1

Under event F, we have | M||* S-7_ [D2 [f;] (y)qll® < t3(Bz + ag2)?. Then,

Prng (HD2 {uTRe (Mon)} (y)H > f;%) < 2dexp (_132((;/22*)9-2262)2) .

By repeating this argument for the imaginary part, we obtain

~ CE2 ¢ ’ %
Pz <HD2 {uTIm (foo)} (y)H > \2) < 2dexp (4#2((3/223%2)2) '

So,
P (y € A5d, [|Da [T B(w)] ]| > e=2)
<Prog (3y € Az, D2 [uRe (M, )| )] > 522) + Bo(F?) + Bo(G) D6
< dd | X2 exp <m> 4P (FC) + Pp(GO).
Therefore,

P (Qo(yo) < cgo and Qa(y2) < cea, Vyo € Xpily, Yy € Xps)

(¢/2)°es (c/2)%3

< 4|xkr et 0| | gq |y —— 72 ) L OPR(FC) + 2P5(GE).
| grid eXp( 32t2(30+a50)2) + | grid |exp< 16t2(32+a€2)2> + E( )+ E( )
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The first 2 terms are each bounded by 0/7 by setting ¢ such that

1 112Nd\ (B+1
t2:21310g< 6 ) ( )

where B % max{ By, B2}, € et min{eg, 2} and N = max (|Xg§3r
by 6/7 if

1 28(d+1)s _ _, 29 (B+1 112Nd 28(d+1)s

and the last 4 terms of (D.2)) are each bounded by §/7 provided that

c2e2

, |Xé§{d ) The first term of (D.2)) is bounded

28(s + d)AN\ 165(E3B11 + 2Bos + Lon L
m210g< 8(8—; ) ) 68( 2 +C2€12 2t = 2)

So, to summarise, recalling that § = p/2, fx, is nondegenerate on Xoa and ngffd with probability at least 1 — ¢

(conditional on E) provided that

p

T2 T2 RT2 T . T
m 2 log (SdN) log (Sd> S(LQBll + LlBQQ ;- BLOI + L01L2)
P 9

and

P(ES) E[Li(w)Lj(w)1

3 9
< — — and y c S =
~ B3/2/5\/log(Nd/p) R Ny

Step I (b): Deterministic signs Assume now that u consists of arbitrary signs. We will show that (D.3)
can be bounded by cs when m is chosen as in condition (b) of this theorem. Let F’ be the event that

A

(b7) Vy € X,

(Bx, () — fx, () | < %5

(¢7) Vy € AT, supjq)=1 HDz |:(on - fXO)TCI] (y)H < &4
(0 [Jor = et <oz Tt < 206
*,00 s

Then, provided that

and  E[Lo (w)?1ge] < ——

c u
P(E )< \4383/27

w/ = U+6$(B0 +B2)

with u = min{ae;, t} as before, we have

t2
PA((F')) <4(d + 1 _ mn
5((F)%) <4(d+ )SeXp< 1653/2L31(3+2t))

m(agg)?/8
L§ (B +1) + L(2)1)>

m(ag2)?/8
E%Bu + E%Bm + L01L2))

+ 4sd ‘Xéi{d| exp <— 7

2 near
+s(3d+d )| arid ’exp (_53/2(

+32s¢ mia’e”
Sex — = .
P\ 75 (3203 + 68acLy Loy)

where the first bound is from Proposition the second and third are from Proposition [C.4] and the final bound
is due to Proposition [C-3]
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To bound (D.3)), we first observe that if event G holds, then just as observed previously,
To bound |u' B1(y)|, observe that

D, [u” 5] ()| < 2ae,.

U-Tﬂl(y) T(T_l - ’Y_l)(on - on) + uT(T_l - Y_l)on
T(r—' =T YHY(fx, — fx,) +u' T7HT = 1)T 'y,

T(T71 - Til)(fXU - fX(J) + uTTil(Y - T)(T71 - Til)fxo =+ uTTil(Y\ - T)TileO

—

|
s £ £

Under event F”,

o luT (Y1 =T Y)(Ex, — fx,)

il e o

< tae

o (U™ T (T —T)(T' =T Dy,

N | LR

o [THYT —T)T 'u < 4dae.

*,00

IS R (G v o

*7

Finally, given any vector ¢ such that Hq||*OO < 4ae, we have |qTfXO| < 4aeBy. Therefore,
‘uTﬁl(y)’ < ta + 2t? + 4ae By,

and in a similar manner, we can show that the same upper bound holds for ||D2 [uTﬁl] (y)H

Therefore,
D [u B8] () < ce, (D.7)

if both F’ and G hold, so conditional on £, (D.7)) holds with probability at least 1 — ¢ provided that

m>53/2.(

E%Bll + E%BQQ + Bigl + Emf@) o Nds
g2 & p
and

)< ° and |, E[Li(w)L;(w)lg:] <

5
™ B3/254/log(Nd/p) “T ™ $3/2y/By/log(Nd/p)

Step II: Extending to the entire space To prove that 7x, is nondegenerate on the entire space X', we first
show that 7)x, is locally Lipschitz (and hence determine how fine our grids XS, X;‘}ird need to be): for z,2’ € X
with dg(z,z") < Thear,

P(ES

w

1D, ] () = D B @) = || = 32D, [Re (P50 )i )] @) (D)
k=1

— D, [Re (T3'w) 1(wi)pu )| (@)

= || an) Re (((Tx'w)T(@r) - (Dr [pu] (2) = Dr o] (21)))

N

75| Il V5Zor 1D [pur) (2) = Dy [ ) () (D.9)
< 4sLoydg(z,2")L, < cep. (D.10)

where we have applied Lemma [C.2] to obtain the last line.

Choosing Xf, to be a dg = 7.1 -covering of X" (of size at most O(Rx/do)), sty to be a & = YN
covering of X" (of size at most O(Rx/d2)). Then for any x € X% and 2’ € Xnia such that du(z,z") < do,

1710 ()] < 1o (27)] + Iixo () — 1x0 (2)] < 1 — 0 + 2ceo.
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and given any x € X™, let 2/ € X be such that dg(x,2’) < b, so

Re (sign(a:)Ds [ix, ] (x)) < Re (sign(aDs [iix,) () + Dz iix] (2) = Da [ix] (@)]] 1d % (~g + 2ee)1d,

and
Hnn(ggn@”nDszJ(x{M’g]hnl(ggnaun)ngJ(xq)H-+c&2<(024-@52

D.2 Nondegeneracy transfer to 7jx.

We are now ready to prove Theorem [3] which we restate below for clarity.

Theorem D.2. Under the assumptions of Theorem[D.1], the following holds with probability at least 1 — p: for
all X such that o
dH(X7 XO) S min (rnearu €T(CHB\/§)_17 ET(CHLIZLT\/E)_I) ) (D]-l)

we have
(i) for all y € X7, |ix (y)| < 1— $3e0

(i) for all y € X™"(i), —Re (sign(ai)Dg [fx] (y)) = %Id and HIm (sign(ai)Dg [Mx] (y)) H <(E+ %’)%52.

Hence, nx is (1}5—3507 %sg)—nondegenemte.

The proof essentially exploits the fact that T, fx are locally Lipschitz in X with respect to the metric dg, and
consequently nondegeneracy of 7jx, implies nondegeneracy of 7jx whenever dg (X, Xo) is sufficiently small.

D.2.1 Proof of Theorem [D.2

We begin with a lemma which shows that Ty is locally Lipschitz in X.
Lemma D.1 (Lipschitz bound of TX) Let Xog € X*® be A-separated points. Assume that for all i+ 7 <3
1 1

<—— B[Li(wLi(w)lge] <
)< triegam, L )e:] < g5

P(EE

w

foralli,j =0,...,2. Let p >0 and
m > s(L2B1 + L3Bay + Lo Lo) (log (Sj) +dlog (sCH r?z;xgc L2>>
Then, conditional on event E, with probability at least 1 — p, the following hold:
o (i) for all X such that du(x;,0,:) < Tnear, we have

HYX ~ T || < CuBdu(X, Xo).

o (ii) for all X such that dg(X, Xo) < min (rnear, ﬁlB)’ we have HId — YXH < % and HG;(%F} <1.

Proof. By Lemma and Lemma with probability at least 1 — p conditonal on E, for all (i,5) €
{(0,0),(0,1),(1,1),(1,2)} and all z,y € A",

. L 1
e < ]

note that this also holds for KU9 (z,y) since K@) (z,y) = K0 (y, z).



Support Localization and the Fisher Metric for off-the-grid Sparse Regularization

In particular, for all z, 2’ such that dg(z,2') > A/4, we have HK(ij)(:c,x') < % Take any X such that

du(x;,0,i) < Tnear, we have that both z;,z¢, are at least A/4-separated from z; and x ;. Therefore, for

k, ¢ € {0,1}, using Lemma[C.3}

|

N . C
K®O (2, 2;) — K*O (xi,07xj,0)H < Ti\/dH(xi’xo’i)Q + du(z;,70,5)?

(D.12)
’ K0 (25, 2) — K*9 (2, , xi,o)H S Cu (Bryi,e + Brot1) du(2i, 2o,4)
and therefore by Lemma
7 - 17 SR o (ke 2
HTX —Tx,|| < Z Z K*(z;,2;) — K¢ )(Io,i,ﬂfo,j)H
ij=1 k=0
s 1 ) R 2 R R 2
<2 Z Z K¥9 (z;,25) — K*0 (Jﬂo,i,xj)” + | K (25, 20,) — K (20,5, 20,:)
ij=1 k=0

2

1
< Ch > Bre| D du(wizo) + 5 > du(xj,w0,5)°
k,1€{0,1,2} i j#i
k+£<3
which yields the desired result.

For the second statement, using Proposition IP’E(HT Xo — Tx,o|| > %) < p, so conditional on E, we have with
Tx —Tx, || < % and the claim follows since [|Id — Tx, || < 4 (due to Lemma ) implies
that |[1d - T|| < § and

probability 1 — p,

HYXH<7/4 and HG;{%F}

- [l < vire
L]

Proof of Theorem[D.3. Since )x, is nondegenerate with probability at least 1 — p, the conclusion follows if we
prove that for all € X" and all y € A2,

D2 [fx = 7ix,] (2)]| < €0/32 and ||z [fx —ix,] (y)|| < pea/32 (D.13)

with probability at least 1 — p. We first write

ix (y) — ixo () = dx (Bx — £x,) + (Gx — dix,) T x, ().

Conditional on E, with probability at least 1 — p/2, we have by Lemma (note that our assumptions imply
the assumptions of Lemma , ITx — Tx,| < CuBdu(X, Xo) and || || < 4. So,

D2 (o = ) T | )| < VB 031 = TR <8V [T = T S VECHBR(X, Xo).

By Lemma if E occurs, then

|- [a%Ex ~ £x)] )] < & llaxl du(X, X0 < €,

T | Vadia (X, Xo) < 4C,v/5du (X, Xo),

where C,. < (1 + Cu)L,Li2. Finally, since P(E¢) < p/2, we have with probability at least 1 — p, for all y € X,
(D.13)) holds provided that (D.11)) holds. Combining with the nondegeneracy of 7x,, the conclusion follows with
probability 1 — 2p.

O
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E Supplementary results to the proof Theorem

Recall that in the proof of Theorem [I} we defined the function f: C® x X* x Ry x C™ by

flu,v) E Tk (Pxa — x a0 — w) + )\<Slg(l)l(a0)>
sd

where u = (a, X) and v = (A, w). This function f is differentiable with

8vf(u,’l)) _ (<Slg3(da()))7 F}) c CS(dJrl)Xm’ (El)

and 9, f(u,v) is

Oixs A1 0O -+ 0
Oixs 0 A -~ 0
* 01><s O 0 Tt Als
Diladat [0 0 0 (E.2)
Ogxs 0  Ayp -+ 0
0d><s 0 0 tee A2s

where Ay; <V, (o(x;),2) T, Ao = V2(p(x;),2), 2 L (Pxa — Px,a0 — w) and J, € REEFDXs(+D) g o the
diagonal matrix:
Idsxs 0
arldaxq

0 aSIddxd

Letting uo = (ao, Xo) and vy = (0,0), 0 f(uo,v0) = 'y, I'x,J, is invertible and f(ug,vo) = 0. Hence, by the
Implicit Function Theorem, there exists a neighbourhood V of vy in C x C™, a neighbourhood U of ug in C* x X'®
and a Fréchet differentiable function g : V' — U such that for all (u,v) € U xV, f(u,v) = 0 if and only if u = g(v).
To conclude, we simply need to bound the size of the region on which ¢ is well defined, and to bound the error
between g(v) and g(0). Let us first remark that our assumptions imply that P(E€) < p/2 and

1 1
P(EC

<—— ELiw)Li(w)lge] < ——, E.3

for all i,j = 0, ..., 2. Therefore, it is sufficient to prove the existence of ¢ conditional on event E:

Theorem E.1. Assume that for all i + 7 < 3

1 1
PES)< —— E[L;(w)Li(w)lg] <

foralli,j =0,...,2. Let p > 0 and suppose that
= = S d
m 2 s(L3B11 + L3 Bay + Lo Lo) (log (Sp) + dlog (sC’H]Lg))

where L, et max;<r Ly. Then, conditional on event E, with probability at least 1 — p: there exists a €' function
g such that, for all v = (\,w) such that ||v]| < r with r satisfying

. 1 . min{?”nean(CHB)il} 1
r=0 <\/§ — ( min;|ao, |  LoiLi2(1+]laoll) 7) (E4)
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we have f(g(v),v) =0 and g(0) = ug. Purthermore, given (A, w) in this ball, (a,X) = g((A\,w)) satisfies

la — aoll + dra(X, Xo) < Y2 AL el (E:5)
min; |a071—|

We begin with some preliminary results before presenting the proof of this theorem in Section [E.2]

E.1 Preliminary results

Theorem E.2 (Quantitative implicit function theorem, adapted from Denoyelle et al.| (2017)). Let F': HxY — C™
be a differentiable mapping where H is a Hilbert space, ¥ C C* x R*? n = s(d+ 1), ||-|| be a norm on H. For
each y € Y, suppose that there exists a positive definite matriz G, and let dg be the associated metric. Assume
that F(xo,y0) = 0, and that for x € B).(zo,71),y € Bas (yo,72), Oy F (z,y) is invertible and we have

HG;%GJ;F(:U,y)HgD1 and HGéayF(%y)_lGé

< Dsy.

Then, defining R = min (ﬁ,ﬁ), there exists a unique Fréchet differentiable mapping g : By.| (w0, R) —
Bac (yo,72) such that g(xo) = yo and for all x € By.|(wo, R), F(x,g(x)) =0, and furthermore

dg(z) = — (9, F (2, 9(2))) ™' 0. F (, g())

and consequently HGE(I)dg(x)H < DiD,.
Proof. Let V* = Uy¢ypV, where V is the collection of all open sets V € R™ such that

1. xo € V,
2. V is star-shaped with respect to zg,
3. VC BH.H(xo,Tl),

4. there exists a C! function g : V' — Bg, (yo,72) such that g(z¢) = yo and F(z,g(z)) =0 for all z € V.

Observe that V is non-empty by the (classical) Implicit Function Theorem. Moreover, V is stable by union:
indeed, all conditions expect the last one are easy to check. Now, let V, V eVandg,jbe corresponding functions.
The set V = {x € VNV, g(z) = §(z)} is non-empty (it contains x), and closed in V N V. Moreover, it is
open: for any z € V, by our assumptions 9, F(z, g(z)) is invertible and the Implicit Function theorem applies at
(z,g(x)), and by the uniqueness of the mapping resulting from it we obtain an open set around x in which g and
§ coincide. Hence V is both closed and open in V' N V, and by the connectedness of it V = V N V. Therefore,
there exists a function ¢’ defined on V UV that satisfies condition 4. above (it is defined as g on V and § on V,
which is well-posed for their intersection), and V is indeed stable by union.

Hence V* € V, let ¢g* be its corresponding function. It is unique by the arguments above, satisfies F'(x, g*(z)) =0
and

G2 do* (1) = G2 (9, F (.9 (x))) ' F(x. 9" (x))
- (G % 0,F(2.9"(1))G,%,)) "G 2 0, F(x.9"(x))

for all x € V*. Note that by our assumptions HGQ%* (m)dg* (ac)H < D1 Ds.

We finish the proof by showing that V* contains a ball of radius rq/(D1D3). Let 2 € R™ with ||z|| =

R, =sup{R, zo+ Rx € V*}, and 2* = 29 + R,z € OV*. Clearly 0 < R, < r; since V* is open, assume R, < r].
Our goal is to show that in that case R, > B b Since dg* is bounded, g* is uniformly continuous on V* and
it can be extended on OV*, and by continuity F'(z*, ¢g*(2*)) = 0. By contradiction, if g*(xz*) € Ba,. (yo,72), by
our assumptions we can apply the Implicit Function Theorem at (z*,¢g*(x*)), and therefore extend g* on an
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open set V' that is not included in V* such that VU V* € V, which contradicts the maximality of V*. Hence
da(g* (), 90) = r2. Let 7 : [0,1] = ¥ be defined by y(t) = g*(z* + t(xg — ), s0 ¥/ (t) = dg* (v(t)) (wo — ).

Then,
ro =dg(g*(z"), 9" (x0)) \// Gy (y0))Y' (1), ¥/ (2))dt

W |6yt @00 — )|

dt < D1DsR,.

Lemma E.1. Asssume that event E occurs. Then, for all X such that dg(z;,70,;) < Tnear,

Ly ||a]l, max; de (i, z0,:)*

MxTx,all S 9 -
° Ly ||a]l o, du (X, Xo)?

Proof. Recall that Im(I'x) = {¢(z;), Jo(x;)}i, and IIx is a projector on Im(I'x)*. Also note that for
1
3

1
da(x;,20,i) < Tnear, We have ‘ H, 2 HZ, ‘ < 1, and therefore under E:

|, @omi | < D2 (0] @] < Lo

Let v; : [0,1] — X be any piecewise smooth curve such that (1) = zo; and v;(0) = z;. Then, by Taylor
expanding (v;(t)) about ¢ = 0, we obtain

(o) = plas) + (Vep(a:), 71(0) + / o)), ().

Therefore,
s S ) 1
xTx,0 = Tl (Z amwo,i)) ~ Ty (Z 5 | etonie. %(t»dt)

Taking the norm implies
\a1|

IMxTxa] < / Lo [0 dt

1= 1

and taking the infimum over all paths ~; yields

HHXI‘XUaH LngClAdH Zi, 0, z) .

E.2 Proof of Theorem [E.1]

Our goal is to apply Theorem Let u = (a, X), up = (agp, Xo), v = (A, w) and vy = (0,0). We must control
_1 1 1

Hc;Xzavf(u,v)H and HG)?(auf(u,fu)*le(

on event E, with probability 1 — p we have

for (u,v) sufficiently close to (ug,vg). Using Lemma conditional

|axt o o) <l +||lex x| s v5
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To control HG%@U f(u,v)"'G%||, first observe that

Gx 0. f(w,0)Gx " = (G5 PTATX G + M(u,v)) o

where
L (Eo '
Os & (HPVIe @) - 0
1 -3 T
M (u,v) def. | O1xs 1 0 ) U . (Hw52v[<%z>]($8)) , (E.6)
0al><s aillH;FVZ[((p? Z>]($1)H;0§1 o 0
des 0 e (TlsH;fVZKQO, Z>]($S)H;O§s

_1 _1
where z = (Pxa — Px,ap — w). Now, let us study the invertibility of G >*I'sT'x G 2 + M (u,v) and bound the
norm of its inverse.

Lemma E.2 (Bound on M (u,v)). Let u = (a,X), v = (\,w) and let M(u,v) be as defined in (E.6). Assume

that E occurs and given e > 0, let c. = %1'30‘ Then, for all X € X%, a € R® and w € C™ such that

Ce =
—agl| < ==, <c/3 and du(X,X nears 37 )
o oll < 57 ol /3 and (X, Xo) < i (s 575 )

we have
[M(u,v)[| <e and |[M(u,v), . <¢

Proof. First note that for r € Ny,
I [675] 0l € 7 250 ) e Lol
Now, for ¢ = [q1,...,¢s, Q1,...,Qs] € C¥@HD) where ¢; € C and Q; € C%, and ||G|| = 1, we have

2 ’ 1
+ J—
a

%

s 2

M)l =Y

H;ii Vz [QOTZ] (QZZ)H;? Ql

L (vl ) @

a;

1 2 1 112
< 2||q|2max(HH;fvuosz) +HH;-2V2W1<%>H;2|>
min; |ag 4| i
4
= ——— max (||D1 [¢72] (@)|* + D2 [¢72] @)
min; |ag;|” ¢

4 - - 2
< ———= LI+ L) |2
min; |ag ;|

where we have used the fact that min; |a;| > min; |ao| /2. If [|g], , =1, then
_1 T 1 2
H.* Ve z](z:i)H Qi|| }

)

1 T
1M (u,0)qll, oo = mae{ | (HZ2 VI T2 (@) Qs

< mlax{HH;i%V[cpTz](xi) [SOTZ](Q%‘)H;% ‘2

}

T

and the same bound holds.
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d;ﬂ (

Now it remains to bound ||z||. Writing ¢(x) Qo (@)1, we have

> aip(x:) — agi(xo,:)) — w

i

121l —|

7 2
< Lolla = aoll + [lao]| max \/Z [Peon () = oy (0,0) [ + [
i

< Lo lla — aol| + [laoll L1du (X, Xo) + [|Jw]|

where the last inequality follows from Lemma [C.2}

O
The bound on ||M (u,v)|| from Lemma allows us to conclude that under event E, taking
o et mlnijao,i| (E.7)
16L12
for all X € X%, a € R® and w € C™ such that
o= aoll < g, loll <3 and (X, X) < it (s 77 )
a—apll € —=—, |w||<¢/3 an ) < min ( Thear, =—=—— | ,
T HE 0 3Ly [lao

we have || M (u,v)|| < . Combining this with Lemma gives
HId (G TG + M(u,v))H < HId G TETxGy? H 1M (u, )| < g

and therefore it is invertible and
1
S 1 1
1 HId — (GT4Tx Gy ? + M(u, v))H

N
I

H(G;{fr;(rxc—;i +M(u,v))*1H O(1).

In this case, 9, f(u,v) is invertible, and we have

_1 _1 1
TG TR TN G + M)

~ mini |a07i|

le o swmeh) | =

since ||a — ap|| < min; |ag ;| by assumption.

Therefore we can apply Theorem with (recalling the definition of ¢ in (E.7))
T =C, D1 =0 (\/g) , To = O (mln (rnearu 7EIHCGDH s %07 70}13)) s D2 =0 <7mini1\ao’i|)

with B =}, ;3 Bij, we obtain that g(v) is defined for v € V 3 By, (0,7) with

7 min (2,7 ) = =2 = O (min Tnear 1 L L
DiDyo ' 1 D1 D Vsmin;lag ; |’ /sLiLizllaoll’ v/sLi2Lo’ +/smin;|ag,;|CraB

such that g is Ct, f(g(v),v) =0, g(vo) = ug, where we recall that ug = (ag, Xo) and vy = (0,0).
Finally, from Theorem [E.2] we also have that

S
1Gxdg(v)l| < DiDs < —Y°

~ mini |CLO,i|

and by defining v(t) = g(vo + t(v — vp)) for ¢ € [0, 1], we have the following error bound between u = g(v) and
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ug = g(vo):

1
det0) = ool -6 %o < [ @0, i
\// (Gyydg(tv)v, dg(tv)v)dt

/i

<—Y2
min; |ag ;|

o] -

F Examples

F.1 Fejér kernel

Let f € Nand X € T? the d-dimensional torus. We consider the Fejér kernel

d
K(xv xl) = H ’{(‘Tl - .’E;),
i=1
o (((F)))
where k( 7 , with constant metric tensor
(7+ > sin(mx)

H, = C/ld and du(wa’) = C; * |z — /||,

where O & —5"(0) = %f(f +4) ~ f2. Note that K(9) = C;(Hj)ﬂvliV%K and since the metric is constant,

def.
we can set Cg = 0.

F.1.1 Discrete Fourier sampling

A random feature expansion associated with the Fejér kernel is obtained by choosing Q = {w € Z% ; |jw||, < [},
def. joruTx min

(@) Z €27 e and Aw) = [T1_, g(w;) where g(j) = L S0 -/ —1( - )/ ). Note that

this corresponds to sampling discrete Fourier frequencws In this case, the derivatives of the random features are

uniformly bounded with ||V, (z)|| = w]’ = O(C’}/de/z). So, we can set L; = O(d"/?).

F.1.2 Admissibility of the kernel

Theorem F.1. Suppose that f > 128. Then, K is an admissible kernel with rnear = 1/(8v/2), 2 = 0.941,
g0 = 0.00097, h = O(d~Y/?) and A = O(dl/%i{;;) Boo = B1y = By = O(1), Bo1 = O(dY/?) and By = O(d).

The remainder of this section is dedicated to proving this theorem. The uniform bounds on B;; are due to Lemma
(uniform bounds), and the bound on A and h are due to Lemma From Lemma we see that by setting

def. for all dg(z, 2") < Tnears K (20) (z,2') < —eald with g5 = (1 — 602 ) (1 — 2. /(2= 720) — T20nr) =

Tnear = S\f’ near near

0.941. Finally, from Lemmam we have that for for all dg(x,2') > rnear, |K| < 1—1/(8%-2), so we can set

def.

go = 0.00097.

Before proving these lemmas, we first summarise in Section [F~1.3] some key properties of the univariate Fejér
kernel k when f > 128 which were derived in [Candés and Fernandez-Granda (2014).

def. y def.

. . . def.
For notational convenience, write t; = z; — z}, k; = k(t;), kK, = £/'(t;), and so on. Let

d
def. def. def.
K= ] ke Kig = H kp and Ky = H K-

k=1
k#1 k‘;él i k;éi,j,[
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With this, we have:

oK (x,2") = i K;
81718271'[((.%,33/) = — KZ;/KZ‘, and Vi 7é j, (9171'82,]‘[((.%,33/) Iilﬁl sz

(28]

Where convenient, we sometimes write K (t) = K(z — 2/) = K(z, /).
F.1.3 Properties of

From (Candés and Fernandez-Granda, 2014, Equations (2.20)-(2.24) and (2.29)), for all ¢ € [-1/2,1/2] and
(=0,1,2,3:

Cr Cy o 1+2/f 2 2,4 Cr 2,4
Bt A <1- 2 el A <1- 2
L= S <h(t) S 1= 12 +8 ey, CF Sl- 5t r8cH
1+2/f \°
/ < " < /// 2 <12 2 F.1
|'(t)] < Cpt, | ()] <Cp,  |"( 3(1+2/2+f) CHt Cit (F.1)
3 1+2/f \°
s b 2< 2
k' < Cf+2<1+2/(2+f>> C’f < Cf+60ft

By (Candés and Fernandez-Grandal 2014, Lemma 2.6),

™ Hl(t) t c [L ﬁ]
L0 < | T Le b
= T H n V2 1
T e 3)

where H3® €1, H>® L 4, Hs L 18 and HS® X 77, and Hy(t) < aA(t)B,(t), with

def. 2 = def. Oé(t) 2
t = ——S5_ t = =
a(t) m(l— =2y A ft  ftr(1—m2t2/6)
and Bo(t) = 1, Bi(t) = 2+ 26(t), B2 = 4+7B( ) +65(t)? and Bs(t) = 8+ 245 + 305(t)? + 155(t)*. Let us first
remark that j is decreasmg on I < [21f’ 2] so |B(t)] < |B(1/(2f))] ~ 1.2733, and a(t) < a(v2/7) = 2 on I.
Therefore, on I, Hy(t) < Hl( ) < 3.79, Hg( ) < 18.83 and H3(t) < 98.26, and we can conclude that on [%, %)7
we have .
HOO
om ‘ < _"He
‘Ii () \(f+2)4_€t4
where H§® =1, H® ey, HS® <19, H$® " 99. Combining with (F1)), we have H/i E)H < Kky° where Kg° =
OO def C
fs
def. 274 f +/C f
Ky = /Cymax , =0(/Cy)
1 < 2+ %> \/CT‘ f
e 9973 2f
K (Cp)¥? max [ —~ 771 ; = O((Cy)*?).
(3+ %) Cf

Finally, given p € (0,1),

(f+2% > (L +p(f +2)%%)% Vi

VA=p)(f+2)
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Choosing p = 3 and using (f +2)? = (%Cy +4) > %Cy, we have

)“) ‘ —H‘f Vi >

= 5 ) F2
(1+2 QCft2) ’ 30f ( )

F.1.4 Bounds in neighbourhood of 2/ = =

Lemma F.1. Suppose that Cy ||tH2 ¢ with ¢ > 0 such that

def. c
. 1— -
e =( 60)( 2_0) c>0

Then, K92(t) < —eld.

Proof. We need to show that Apin(—K©?(¢)) > b. Let ¢ € R, and note that

_<V%KQ7 q> = _Z qm K — K; Zq]K]Kz] qi
J#i

qu VK= qiki Y ik K (F.3)

i JFi

WV

lall® | = max{s? K3} = 3 [
J

We first consider &} K;:

and hence,

K;/Ki < (—Cf + 6CJ2c ||t||§> (1 — —Cfcut”g 5 )
201 = 1tll5)

For the second term,

S|l < CE el
J
Therefore,

Cy el
Amkﬁw@»(“mmwao_ﬂl%mﬂ)_@Wg
T2 2

Lemma F.2. Assume that 8\/7 > [[t]|y Then,

K(t) <1-—- Ht||2 +16C7F |1t -



C. Poon, N. Keriven, G. Peyré

Consequently, for all

1
0<e< ——,
8/2C%
and all t such that ||t||, > ¢
C
Ko <1- U

Proof. First note that

C
lk(u)] <1 - 7fu2 + 320‘)2071/4 =1-u?g(u)

where

. 1
g(u) = Oy (2 - 320)‘“2) ,

and note that g(u) € (0 ,Tf) for u € (0,1/(8,/Cy). So, writing t = (t;)¢_; and g; et g(t;), we have

d d
K@) =[]~ H (1—12-g(t;))
j=1 i
d
=1- Z t59; +Zt g5 — Z 9, 9k90 + - -

J=1 Jj#k JF#k#L

Note that

= Y ER g+ Y ORI - 9i9k909n

pory) jtkAlEn
- Z L] - gigkge + Z T - 959190 (Z ti%)
kAL kA "
C 2
— Y GG 959890 (1 - 7f ||t|2) <0
JFEk#L

since (1 - % ||tH§> > 0. Also,

d
C
2 f
20055
Jj=1

.
HM&
I,
-
Al )

by assumption. So,

<1- thgg + Zt tkg]gk
Jj#k
2

d d
1 1
S1=D g +5 (D e | <1-5) t
J=1 J j=1

or (1 d C

f f 2 4

<1- S5 |3 E t?—SQCf E t? < I_THtHQ"’lGC]%HtHz'
Jj=1 j=

Finally, observe that the function
def. C
g(z) = =122

16C’
4
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is positive and increasing on the interval [0, FWGTeH \/E] So, for t satisfing

1

c<|Itl]l, € ——,
\H ||2\8m

we have |K(t)] < 1—¢q(c) <1-— %62. Finally, since |K (¢)| is decreasing as ¢ increases, we trivially have that
|K(t)] < 1—g(c) for all ¢ with ||¢||, > c.

(F.4)

O
F.1.5 Bounds under separation

Lemma F.3. Leti,j € {0,1,2} withi+j < 3. Let A > 4L and ||t||, = A\/Esrln/fx/\/C’f. Then, we have
KD ()] < d™ (A*spmax) "

Proof. Write t = (t;)_,. To bound K(t) = H?Zl k(a;), we want to make use of the form (F.2). We can do

this for each t; such that |t;| > % Note that there exists at least one such t; since ||t||. > |||, /Vd >

Aslas/\/Cr =\ Z= T {lt1Y5e, € [0,\/25) for k < d—1, then

d <9 1 1/2
272 2 2 AQdSmax
k@ + Z t; = Itz > 0
j=k+1

which implies that EJ 1 13 = %
d>

20 25.1/2
(Azd v (;f 1)) > A ;ém“‘ by our assumptions on A. Therefore, we

> 1 such that {b;}/_; C {t;} with [b;] > /25" and [jp], > A(/T Yo
f

may assume that we have some

Observe that , ,
3Cs 3Cy 3Cy 3
H(1+—b) +ﬁ2b 1+—||b||2 L+ 5 A% omax.

j=1 j=1
So, by applying the fact that || < 1, k5° = 1 and (F.2), we have

p P 1 1
<ITwl < I < -

3 2"
j=1 j=1 (1 - b2) (1 + WAQd,/smax)
For |H;Ki‘,ifi¢{j, It;| > /22 } then
1177l oo
RG] < [l (b,
’ > H (1 + = 2AQd,/slmx)
and otherwise, we have [k J| < |K'(t;)| [1;, [5(b))] < (Hﬁ;"‘ld = In a similar manner, writing V <
(1+ %/Pd‘ /Smax) 72, we can deduce that
e R R I o e e
|K//,K | max g |K,N/£/ Kl]’ énaxﬁﬁnax g ‘Hiﬁj"fZKijé‘ < (Kllnax)SV

Therefore,

d 00
1 2 K 1
Wl - 2 v > |KK; =1 ALdB/2 50
HK H B \/@ H 1K|| s 7j=1 |K9 ]| s \/@ \/a S A4d3/2$max.

C

3~




C. Poon, N. Keriven, G. Peyré

Using Gershgorin theorem, we have

| V3K (2,2)]| < max{|/i/K ERCADCAN Y

J#i
and hence,
HK(OQ)H HVZKH max{|m”K|+|m |Z‘/@ K”’}
f J#£i
i max max _ max{/$§°7(/<;1 ) } 1
Note also that HK(H)H = HK(OQ)H. Finally, since
H817ing(l‘,l‘/)H < max{ |k K| + |k | Z ’I{;’ | Kl
JFi
max{| k] k] Kij| + |sfr) Kij| + ki |55] D sl |Kije|}}>
7 I#ij
we have
2] = 1993
f
< 3/2 \fVmaX( max + ﬁIQnax max(d_ 1) 2Hmax oo + (d— 1)(5(50)3)
f

1 < _ 1
C;/z ~ Add/2s,, .

< B2 max {5, KR, (55°)°}

F.1.6 Uniform bounds

Lemma F.4. If ryear ~ 1/4/C5, then By = O(1), Boy = O(Vd), Boz = Bia = B11 = O(1) and By = O(d).

Proof. We have |K| <1, and
IVEN <Y |mil* [5G < d(x5°)* S Cd,

SO B()l = O(\/&)
From (F.3)), for all ||¢|| = 1,

(V3K (t)q, @) < max|w]| [lgll5 + llal; Zlm < Cp+ CHtlI* = 0(Cy),

for ||t]| < 1/4/Cy. So, since ryear < 2/,/Cy, [|[KO2(1)]| < 2 4 Byy. The norm bound for K is the same.
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1
HK (12) H = | H H ” . C,S/z (Zzal»i (93 LK pigi + 01,:02,:02 1 Kpiqiar,)
q p

k ket
+ Z Z Z 01,105 3 0a kpipipi + Y D 013,30 1 Kpigig; + Z 01,102, Kpig’ )
N E
= 3/2 Z Z ke HkKlkszk + H /‘Lszkszsz
al=lpl= O \ S
+ Z Z Z Kk Kigrpipipe + Z Z wi 55 Kijpigigy + Z KR ijpiqi2>
N E

3/2
1 2 2
< i <3|H”m,/2|ﬁ§cl + (ZI% ) + IIK’IIOOIIK”IIOO>
f ; ,

< =7z (3CH I+ CH 1 + 0(C) = o)

f
for ||t < 1/C%.
We finally consider K2 (z,z): for ||p|| =1,

DN D 01k01:0200 Kpjpk = > Y kIR K+ Y > K Rpipk Ko
i kg

i ki i ki

+ Z Z Z K K Kojp o + Z Z K Kpipi Ky + Y K!pIK;
A
— Z Z Kg/mkp ik + Z KJHH 2

i ki
=do(C})

since x/(0) = £(0) = 0 and |x"(0)| = O(Cy), |[&""(0)] = O(C?). So, Bay = O(d). O

F.2 The Gaussian kernel

We consider the Gaussian kernel K (x,2’) = exp (—% ||z — x'||22,1) in R?. Note that K is translation invariant, so
that H, will be constant and equal to —V2K (z, z). For simplicity define t = 2 — 2/, Kx(t) = exp <—% Htsz,l)
and for u € R, x(u) = exp (—3u?). Denote by {e;} the canonical basis of R?, and by f; = £~ 'e; the i'" row of
¥ ~1. We have the following:
VKs(t) = — Z*ltf(g( t)
VKs(t) = (-3 + 2787 Kx(t)
0iViEs(t) = (ST + £t TS - (2T T TS (T f)) Ks(t)

Hence we have H, = —V?Kx(0) = 7', and, defining du(z,2') = ||z — 2|y 1 = HE*%(mfx’)H, we have

Cr = 1,Cg = 0 (that is, the metric tensor of the kernel is constant, and dg is defined as the corresponding
normalized norm).
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Then, we have
= du(z,2")k(du(z,2'))

- HK(“)(az,x’) < (dex(z, )2 + Dw(dp(z, 7))
KO (2 2') < (du(z,2')? — 1)k(dg(z, z'))1d

HK(w)(z,x’)

= HK(OU(I, z')

HK(O2)(1‘, J}/)

and for ¢ € R? with ||¢|| = 1, since
> (22Ven)igi = Vel (S2q) =D dipulq B2er)
i i
we can write

d
K1) (z,2")q = Z(QTZ%@)E%@LNQKE(”E%
i=1

Thus we examine each term in 8MV2IA(E. We have
Y (¢TBe)nan TN = nat (Z qTEéeieIZé> =% 3tq"
and similarly Zi(qTE%ei)Z%fitTZ_lZ% = qt"¥2. Then

(a8t S )R nTInE = 1T (D eie] )N7g

i
% A

and similarly ", Zi(qTZ%ei)(tTZ_lei)Z%Z_lttTE_lE% = (tTR2g)n 2t N e,

Hence at the end of the day

HK(12)($,3§/) < (3du(x, ') + du(z,2')*)k(du(z, "))

and this bound is automatically valid for K2V as well.

Finally, note that
HK(22) (x,x)’ = sup <Zl/2V2V2 : (El/QK(ZO) (x,x)p) ;D)

llpll<1

where V- is the divergence operator on the 2nd variable, and one can show that HK(zz) (z,z)|| = (d+1).

We are then going to use the fact that for any ¢ > 1 the function f(r) = r%¢=3"" defined on R, is increasing on

a/2

[0,/q] and decreasing after, and its maximum value is f(,/q) = (%) . Furthermore, it is easy to see that we

have f(r) = rie=""/2 < (27‘1)% e~""/4 and therefore f(r) <eif r>?2 (log (1) + £ 1log (29)).

We define rpear = 1/v/2 and A = C+/10g(Smax) + Ca for some C; and Cs.
1. Global Bounds. From what preceeds, we have

Hm%<i %mwzﬂ %m%ﬁ+§§
\\/57 \6 ) \\/E e

and note that |[K(V|| = ||[K(©?)||, so for all i + j < 3 Bj; = O (1).

2. Near 0 For dg(z, ") < Thear, we have

e
Id
2

I

K (02) < -
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and for du(z,2) > 1,
K| <ei=1—(1—¢1)

and HK(22)($,$)H =d+1, so we have also e; = O (1), so B; = Byp; + B1; + 1 = 0O (1) and By =d + 1.

3. Separation. Since ¢; = O (1) and B;; = O(1), every condition HKW)H < ﬁ is satisfied if A >
C1/10g(Smax) + C2 for some constant Cy and Cs.

F.2.1 Fourier measurements with Gaussian frequencies
The random feature expansion for K is ¢,,(z) = ¢ * and A = A’(0,5~1). We have immediately Ly = 1. For
T

j 2 1, we have D; [p,] (2)[q1,...,¢;] = (le (E%qi)) ¢u () and therefore

ID; [pulll < lwlis

. 2 . ]
Now, we use ||wl||l, = (HE%wH )2 = W2 where W is a x? variable with d degrees of freedom. Then, we use the

following Chernoff bound (Dasgupta and Gupta, [2003): for z > d, we have

22

by using z%e~ T <

[N

2

Hence we can define the Fj such that, for all t > &//2, P(L;(w) > t) < F;(t) = 2% exp (—"‘Z), and Fj(L;) is

smaller than some § if L; o (d + log %)%. Then we must choose the L; such that fii tF;(t)dt is bounded by

some §. Taking L; > d’/? in any case, we have

/Lj tF(t)dt = 2% /L,- texp (—i) at = 2% /L; (j/2)t " exp (_i) ¢
i (¢ o))t (22 D)

=2%j (55(;‘(3—1))3"1 8exp (—Ef/z%)

; _2
Hence this quantity is bounded by ¢ if L; o< (d 4 log (4))2. Then we have L3Fi(Ly) = E?Z% exp (— Li' ) which

A
is also bounded by ¢ if l_/j x (d + (log %)2) *. At the end of the day, our assumptions are satisfied for

dm\ 2 3
Ljo<<d+(log>>
p

F.2.2 Gaussian mixture model learning
We apply the mixture model framework with the base distribution:
Py =N(6,%)

The random features on the data space are ¢/, (z) = Ce™ ' with Gaussian distribution w ~ A = A/ (0, A) for some
constant C' and matrix A. Then, the features on the parameter space are ¢, (0) = E,p, ¢, (z) = Ceiw 0e=3lwl%
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(that is, the characteristic function of Gaussians). Then, it is possible to show (Gribonval et al., 2017 that the

kernel is .
A7

25 + A1)

-3 ‘9_9 ||(222:+A*1)*1

K(,0') = C?

Hence we choose A = XL 0=+ 26)%, and we come back to the previous case K (6, 0’) =e 2 516-0ll5- with
covariance ¥ = (2+1/¢)X. Hence g; = O (1), B;j = O (1), du(0,0") = |0 — '||s-1 = m 10— 6|51

Admissible features. Unlike the previous case, the features are directly bounded and Lipschitz. We have

pu(0)] < C =" Lo,

ol

ID; lew@)ll = O [S10]] 5= = C 24 1/0)*

J
e || i\ 2
zsz . C(2+1/c)5<*7> ety
e

Hence all constants L; are in O ( (2+ 1/0)%) by choosing ¢ = 1 they are in O (d%).

F.3 The Laplace transform kernel

Let a € Ri and let X C Ri be a compact domain. Define for x € X and w € Ri,
¢ :c + a
0o ()  exp(—(z, w) H ST and A(w) € exp(—(2a, w) H (20;),

The associated kernel is K(z,2') = Hle k(x; + oy, o} + «;) where & is the 1D Laplace kernel

def. Vv uv

K(u,v) = 2 .
(u,v) = ()
A direct computation shows that H, € R%*4 is the diagonal matrix with (hy, ;)% where h, = < 0,0, k() =
(22)72. Note that
max{s,t} ¢
d(s,t) = / (27 + 2a) " 'dx = [log ( i a> ’ (F.5)
min{s,t} S+«

2
and so, dg(z, ") \/Zl 1‘10g iigﬂ

We have the following results concerning the boundedness of ||D; [p,]|| and the admissiblity of K:

Theorem F.2 (Stochastic gradient bounds). Assume that the o;’s are all distinct. Then, Lo(w) < Lo =

d
(1 )" and for j=1,2,3,

def d 1 + O\ VI
P(Lj(w) > t) < Fj(t) = Z@ exp <ai <2(sz+||04||) (Eo> _ ﬁ))

and we have that Y, Fj(L;) <& and LY, Fi(L;) 4 2 fgj tF;(t)dt < 0 provided that

dB:Lo(Rax + |a||oo>)>?

5041'

_ _ . 1
Ly o Lo(fe + Jall ) (Vi 1o
g 1

where B; = Hﬁél Py . Note that o; ~ d implies that Ly ~ (1 + Ry /d)? ~ efix.
Theorem F.3 (Admissiblity of K). The Laplace transform kernel K is admissible with ryea, = 0.2, Cg = 1.25,
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g0 = 0.005, e = 1.52. For all i+ j <3, Bj; = O(1), Baz = O(d), A = O(d +log (d*/?s1pax)) and h = O(1).

The first result Theorem is proved in Section and the second result, Theorem [F.4]is a direct consequence
of Theorem [.4] and Lemma [F.5]in Section [F.3.2]

F.3.1 Stochastic gradient bounds

def.

Proof of Theorem[F. 3 Let V '= (1 —2(z; + al)wl)l , € R Then,

vil= \/Z(l 2+ ag)w)?
\/Zl+4:cz+az 2 <A+ ARy + a2 o]

<Vd+2(Rx + ||all0) ]

We have the following bounds:

d
R of. =
x ) g

d
ol <[ 1+<(1+

D1 [pu] (z) = ¢u(2)V = [ID1 [pu] (2)]| < Lo V]
D[] (x) = @u(2)(VVT = 21d) = D2 [ (2)]] < Lomin{||V]|*. 2}

min; o

and given u,q € RY,

D3 [pu] (7)]q, ¢, u] = ¢ (x) <<u7 Vg, V)2 =2lql” — 4(u, q){g, V) + 8261?1@) ,

SO
ID3 [p.] (@)1 < @) (IVIP+10+4 V1) < Los(IVI° +3),

And therefore, in general, _
ef. 579 J
ID; fpu] ()] < Ly(w) 2 By (Va + ]

ID; o] (@] £ L) 2 Lo (Vi + 2(Roe + ) flwl])]

Assuming for simplicity that all «; are distinct, we have [Akkouchi:

P(l|lwl > t) <P(lwl, > ZB e

where §; =[] ki ao%a, using the fact that ||w||; is a sum of independent exponential random variable.
J i

Hence, forall1 < j<3and t > > d% we have

1 t O\
P(Lj(w) 2 t) <P [w]| > 2R +lal) () - ﬁ)
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and Fj( j) < o if

o7 (o : 1 g\ \’
Lj>Lo|2(Rx +|lall.) \/3+max;10g 5

Next, in a similar manner to the Gaussian case, we compute

/Lj tF;(t)dt = éﬁi/b t exp <_Oli (2(Rx +1|a”00) <£O>1/j - \ﬁi)) dt

J
d
= L% e”‘i‘/gﬁi exp (W‘) W 1du
’ 22::1 (L;/Lo)'/é 2(Rx + ol )
2j — 1)4(R -1 _ 4 —a
< (( j — DA(Rx + ||Ozoo)> ngzea“/gﬁi exp (au) du
e i—1 (L;/Lo)Y/3 4(Rx + [lall )

ARy + || >>2J (23—1)21 Vi (‘ai(Lj/Lo)l/]>
< o0 L et iexp | —————>— | <0
( le% e 0J ; h P 4(RX + ||a||(x:)

ifforalli=1,...,d,

o eq; 1) Ly

that is,

= - , - 1 dsi\\’
L; > Ly <2J(RX + ol )’ (\/6714- max — log ( §z>> ) .
It remains to bound L;Fy(L,) with ¢,5 € {0,1,2,3}: Let L, > LoM?* for some M to be determined. Then,

d
L;jFy(Lg) < LoM? Z/Bi exp (2
=1

-
S M eV
(Rx + o)

d
=Ly BiM’ %M — T M) e Ve
LB ' eXp<4<Rx+||a||oo> )eXp(4<Rx+||a||m> )

d .
< Eoeij Z (4](RX "FA ||04||oo>>] B; exp (4( —Qy )M) eai\/g

i—1 (673 Ry + ||OéH
d 3
= 12(Rx + [lall) —a; Vi
< 3 it S AT | b |18 ) Ty aivd
< Loe ; ( . B; exp i HaIIOO)M e <6

if foreachi=1,....,d

M > 4(Rx + ||loof| o) (\/g+ maxi log <L0d6i <12(RX ki ||a||oo))3>> .
iy

de3 o

_ d
Therefore, similar to the Gaussian case, the conclusion follows for Ly = (1 + —Ba ) ,and for 7 =1,2,3,

min; a;

50&1'

T T 5 1 d ZE J
Ly o Lol + ) (Vi + max L tog (R0t lelo )Y
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F.3.2 Admissiblity of the kernel
Metric variation We have the following lemma on the variation of the Fisher metric:

Lemma F.5. Suppose that dg(z,z’) < ¢, then Hld - H;/2Hw/ < (14 ce®)du(z, ) .

Proof. Note that |1 — |(z; + i)/ (2} + o)|| < max{ed@ir) — 11 — e=de@0m)Y < d, (24, 2)) (1 + cec) for all
dy (x4, ;) < c. Therefore,

I1d = HLH [* = D 71— [(s + i) /(@] + ai)|I” < (1 + ce®)dm(, o)

K2

provided that dg(z,z') < c.

Admissiblity of the kernel The following theorem provides bounds for K and its normalised derivatives.

Theorem F.4. 1. |K(z,2')| < min{2%e~ 2 (=) W}.

2. | K19 (z,2)|| < min{2vd |K|,V2}.

3. | K| < min{9d|K|,8}

4. [[K®O|| < min{10d |K|,8} and Amin(—K??) > (2 — 12du(z,2')?) K.

5. ||K?|| < min{66 |K|d*?,16V/d + 49} and |[K?) (2,2")|| < 34 if du(x,2') < 1.

6. |K@?| <16d+9.

In particular, for du(z,x’) > 2dlog(2) + 2log (M), we have | K (z,2)|| < -2

h Smax

To prove this result, we first present some bounds for the univariate Laplace kernel in Section [F.3.3] before
applying these bounds in Section

F.3.3 1D Laplace kernel

In the following x() (z,2’) < h;i/zh;,j/zaiﬁi,m(x,x’).

Lemma F.6. We have

(Z) Ii(.’L’,(L‘I) = sech (%’L/)) < 26—%dm(z,w')7

(ii) |10 (z,2)] =2 ’tanh (%ﬂ)) k(z,2')|, and |k10] < 2|k].

(iii) |wD] < 4|k[° + 4]x]
(iv) |n(20)| < 61k| and =k > 2k (x, 2') (1 — 2tanh (%’I,)))
(v) |/$(12)| < 49k

(vi) K®(z,x) =9 for all x.
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Proof. We first state the partial derivatives of k:

2V’
T rtal
(@ —x)
V! (z + )2
0,0l a) = —z? + 6za’ — (2/)?
! (x + 2')3
(2)? ((z + o) + (2’ — z))
2 (z2")*? (@ + 2/)?
(2)? 22/ (2' — )
2(:1::5’)3/2 (x +2') (:17:1:’)1/2 (x+2')3
23 4+ 13222’ — 33z(2')? + 3(2')3)
dz! (za") V2 (x + )%
3z* + 60232’ — 27022(2")? + 60x(2")3 + 3(2')*
a S8xa! (xx')V/2(x + 2')5

1
[z [x’ 2 1 1 /

H(IIZ .T/) =92 — 4+ — = - — = : < 2€7§dn($7$ )

’ ( ! T o dm(?z ) + edm(z,r ) COSh( dm(g,r )) ?

(ii) We have, assuming that x > z’,

Ozk(z,2") = —

0,02 k(z,2") =

3%82/5(:5, ') =

/ —
k10 (2, 2') = 200,k (x, 2') = Qz " xxlm(x,x')
1 1
=2 =z 1 1T 2 H($,$I>

1 1
=2 <1 +exp(dg(z,2’)) 14 exp(—dy(x, :E’)))
5 ( exp(—dy(z,z")) — exp(d,(z,2)) )
2+ exp(dﬁ(x, IE/)) + exp(d,i(x, 1J))
_ —2sinh(dy(z,z")) (,2)
1+ cosh(d.(z,2'))
= —2tanh(d,(z,2')/2)k(z, z'),

(iif)
JAza — (z—a')?

2z (x + x')3

k(x, ")

H(ll) _ 4xx’3x/8xli(z,fl?/) =4xx
Yz —a)?
(z +a')?
= w(z,2') (4r(z,2')* — dtanh®(d,(z,2")/2))

= 4p(x,2")3 —

so [k <4 5| + 4 k).
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(iv)

4 (za')? ((z +2)? + 4a(a’ — x))

20 292
£ = 42292k (2, 2") = — 2(z +a')3

= —2k(z, ) <1 + m)

so [k*| < 6k|. Also,

—k) > 2k (z, 2") (1 — 2tanh(d, (z, ') /2))

k1) = 22(22")%0,0% k(x,2)

— r(o.a) (14 2O L2 0

so |k12)] < 49 x].

(vi)
k2D = 16(xa’)2020% k(z, z')
__3_ 48z’ (2% — 622’ + (27)?)
- (x+a)t
and k2 (z,2) =9 . O

F.3.4 Proof of Theorem [F.4]

Let dy < dy (20 + oy, 2 + o) and note that dg(z,2') = />, d?. Define g = (2 tanh(%))zzl. We first prove
that

(i) 1K (2,2")] < TTizy sech(de/2) < Ty s < oy
(i) [| 209 (@, 2)]| < llgll, |-
(i) [|KO ] < K] (gl +5)
(i) ([ < 1] (Jlgl3 +6) and A (K@) > K (2-3g]3)
() KO <15 (llgll3 + 16 g, + 49)
(vi) [[K®?| < 16d+9.
The result would then follow because

e sech(z) < 2e~% and sech(x) < (1 +2%/2)~L.

e [tanh(z)| < min{z, 1}, so ||g|| < min{dw(z,z’),2Vd},

For example, ||[K(?)| <
dg(z,2') < 1.

m (du(z,2')® + 16du(z,2') + 24) < 8du(z,2’) + ? + 24 < 34 when

In the following, we write Iigij) def k) (24 + ay, xy + o) and Ky def. Hioo) and K; %< H#i ;. Moreover, we will

make use of the inequalities for x(*) derived in Lemma
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(i) We have

d d -1
d? 1
K(x,2)| < []sech(d)) <[ (1+ ) <—F—3
| (.T,x )| ezlsec ( é) €_1< + 2 ) 1+dH(m7x/)2

K(lO) (x’xl) — ( (10)Ké)67 — HK(lo)(x,x/) < ”9”2 ‘K| )

(iii) For i # j

‘K 11)‘ _ ’fﬁglo)n‘;

< 4tanh (d ) tanh <dj) |K],

and ’Ki(in) ;| <5|K|. So, given p € R? of unit norm,

<K(11 D, p Z Z (10) (Ol)K”pip] + szQ (11)Kz
i=1 j£i
d d
< |K| Z Z 4tanh(d;/2) tanh(d;/2)p;p; + 5 pr
i=1 j#i i=1

< 1K1 (llgl +5)

(iv) For i # j, K% = k' 9% K, and ‘Ki(fo)‘ = ‘H?O)Ki‘ <6|K| and —K(” > 2K (1 — 2tanh (&)).

(K@) py ZZ (1,00 e, op, +2p3 (20) g

i=1 j#i =1
d d
<IE[ D] 4tanh(d;/2) tanh(d;/2)pip; + 6 > p}
i=1 j#i i=1

<IK1(llgls +6).
and

(~Kp, p) > K (2-2llgll.. — lg113)
(v) For 4, j, £ all distinct,

d; d dy
Ki(;f) = 5510)/%,01)/{1(501)}(1-][ 8 tanh ( ) tanh (;) tanh < 5 > K,

for all 4, ¢,
d
K5 =8k k"W K,y < 10 tanh (2‘) K

©j1 i j

K12 — DL OD e < 10 tanh (;)
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Kf;f) I{Elo)figoz)Kij < 12 tanh (%) K, and Kf}f) 512)[(1- < 26K. So, for p,q € R? of unit norm,

Z Z Z (jlf)p]png = Z Z Z sz D;iDPeqi + Z Ki(ilgz)pipﬂh‘
¢

% VEC

2
=330 > EGDpipea + K pipa + K vla
i g eg{u}

+ 0> K pivea + Z K{Pp2q,

i L#
< 1K1 (lgll3 + 16 g1, +49) -

| KCD(@,a)|| = sup BIH, /2920, (0)H, /2p, H, V2V 20, (o) H, /%)

lIpll=1

< swp 303 et 30k e e+ 3030 30 e b
llpll=1"7 k#i i k#i i ki je{ik}

PP BL L AP
e

= sup Zzﬁ(ll) ](Cll) 2+ZH(22) Z2
llpll=1 i ki

< s 2] < roa )]
oo oo o

since K19 (2, 2) = k(O (2, 2) = 0, and kD (2, z) = 4 from the proof of (iii) in Lemma [F.6
( s ) ( ) ) ) ( , ) p ( )

G Tools

G.1 Probability tools

Lemma G.1 (Bernstein’s inequality (Sridharan|(2002), Thm. 6)). Let z1,..., 2z, € C be i.i.d. bounded random
variables such that Exz; = 0, |z;| < M and Var(z;) S El|z]?] < 02 for all i’s.

Ly nt? /4
X(nzzzlﬂ’i@}t) < 4dexp (_0'2—|-]\4t/(3\/§)> (G.1)

Lemma G.2 (Matrix Bernstein (Tropp| (2015), Theorem 6.1.1)). Let Y1, ..., Y,, € C4: be complex random
matrices with

Then for all t > 0 we have

EY; =0, |Vl <L, wo(Y;):=max(|[EY;Y} Yl < M
for each index 1 < j < m. Introduce the random matriz
Z= %
=2V
J
Then )
mt</2
P([|Z] = t) < 2(d1 +dp)e” ¥FEe73 (G.2)

Lemma G.3 (Vector Bernstein for complex vectors [Minsker| (2017)). Let Yi,...,Yy € C% be a sequence of
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independent random vectors such that E[Y;] =0, ||Yi|, < K fori=1,...,M and set
M
ot YRVl
i=1
Then, for all t > (K + VK? + 3602)/M,
| M
Pl Y
(>

Lemma G.4 (Hoeffding’s inequality ((Tang et al.,|[2013)), Lemma G.1)). Let the components of u € C* be drawn
i.i.d. from a symmetric distribution on the complex unit circle or 0, consider a vector w € CF. Then, with
probability at least 1 — p, we have

)T P\ T2 M 1K /3

+2
P((u, w)] > £) < 4e” T (G.3)
Lemma G.5. (Tropp, |2015, Theorem 4.1.1) Let the components of u € R* be a Rademacher sequence and let

Yi,..., Yy € C™*? pe self-adjoint matrices. Set o> et Zéj\il YZZH' Then, fort >0,

]P (
We were only able to find a reference for this result in the case where u is a Rademacher sequence, however,
by the contraction principle (see (Ledoux and Talagrand), |2013, Theorem 4.4)), a similar statement is true for

Steinhaus sequences (we write only for the case of real symmetric matrices because this is all we require in this
paper, but of course, the same argument extends to complex self-adjoint matrices):

M
D> usYe
=1

2
> t) < 2dexp (—;2) . (G.4)
o

Corollary G.1. Let the components of u € CF i.i.d. from a symmetric distribution on the complex unit circle or

0 and let By, ..., By € R be symmetric matrices. Set o et Zé\il B?’ . Then, fort >0,
M 2
P < L;WB@ > t) < 4ddexp (-402> ) (G.5)

Proof. By the union bound,

o s

By the contraction principle (Ledoux and Talagrand), 2013, Theorem 4.4),

t M t
P z—| <P By|| =2 —(=
where £ is a Rademacher sequence, and the same argument applies to the case of Im (uy). Therefore by Lemma

we have]P’(HZé\il ungH 21&) < 4dexp (—%). O

G.2 Linear algebra tools

M

Z Re (uZ)Bg

(=1

M

Z Im (UK)BZ

=1

t
> .
2)

M
Z Re (ug) By
(=1

The following simple lemma will be handy.

Lemma G.6. For 1 <1i,j < s, take any scalars a;; € R, vectors Q;;, R;; € R? and square matrices Aij € Rxd,
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1. Let M € R%¥*? be a matriz formed by blocks :

A Aqs
M = :
Asl Ass
Then we have .
1Mo = sup Ml < max 3 |14
T = RS 7
block j=1

Now, let P € R%¥%S be a rectangular matriz formed by stacking vectors Qij € R%:

Qll s le
M = . .

Qsl s st
Then,

.
1Mook < max ZHQUHZ, [ PR ZHQﬂllz

2. Consider A € Rs(d+1)xs(d+1) decomposed as

T T

a1 QA1s Qll 1s

T T

M= QAg1 Qgg sl ss
R11 Rls A11 Als

Rsl Rss Asl Ass

Then,

2 2 2
1M <[> a2 +1Qul1” + 1 Riyll” + 14517,

2%
M| groex < max{z laij| + 1Qi;l, Z (R[] + N Aizl[}
Proof. The proof is simple linear algebra.

1. Let = be a vector with ||z, < 1 decomposed into blocks z = [z1, ..., x| with z; € R, we have

1<i<s

S
1Mo = max |y Aijaj|| < m?XZ ([ sl [l < miaXZ [ Ai; |
j j j

2. Similarly,

S
T T
[Tl = mma |57 Q|| < max S 1Quil 1l < max > Qi
Jj=1 J J

1<i<s

¢}

Then, taking « € R® such that |||, < 1, we hawv

1<i<s

S
IM||poq = max |y z;Qi <m?XZ||Qij||
ot -
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3. Taking « = [v1,..., 75, X1, ..., Xs] € R*@HD with ||z|| = 1, we have

2 2
S S S
2
IMa|* =D aije; + QLX; | +|D Rijay + A X;
i=1 \j=1 j=1
2 2
S S S
2 2 2
<Y |l | Do e +1Qull* |+ |2l | D IR 1 + 1Al
i=1 j=1 j=1

2 2 2
<D al + Qi + IRy |* + | Ay

2%
Now, if ||z|/goq = 1, we have

S S
T
Mo = max > aizi+QLX;|, || Rijms + AijX;
j=1 j=1

S S
< max D il + 1Qisll Y I Rijz; + Aij X

j=1 j=1
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