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Abstract

Many of the applications of compressed sensing have been based on variable density sampling,
where certain sections of the sampling coefficients are sampled more densely. Furthermore, it has
been observed that these sampling schemes are dependent not only on sparsity but also on the
sparsity structure of the underlying signal. This paper extends the result of (Adcock, Hansen, Poon
and Roman, arXiv:1302.0561, 2013) to the case where the sparsifying system forms a tight frame.
By dividing the sampling coefficients into levels, our main result will describe how the amount of
subsampling in each level is determined by the local coherences between the sampling and sparsifying
operators and the localized level sparsities – the sparsity in each level under the sparsifying operator.

1 Introduction

Over the past decades, much of the research in signal processing has been based on the assumption that
natural signals can be sparsely represented. One of the achievements resulting from this realization was
compressed sensing, which made it possible to recover a sparse signal from very few non-adaptive linear
measurements. Compressed sensing is typically modelled as follows. Given an unknown vector x ∈ CN
and a measurement device represented by a matrix V , one aims to recover x from a highly incomplete
set of measurements by solving

R(x,Ω) ∈ argmin
z∈CN

‖Dz‖`1 subject to PΩV z = PΩV x, (1.1)

where Ω indexes the given measurements, PΩ is a projection matrix which restricts a vector to its
coefficients indexed by Ω and D is a sparsifying matrix under which Dx is assumed to be sparse. Typical
results in compressed sensing describe how under certain conditions, one can guarantee recovery when
the number of measurements |Ω| scales up to a log factor linearly with sparsity [9, 8, 7].

A large part of the theoretical development of compressed sensing has revolved around the construc-
tion of random sampling matrices (such as matrices constructed from random Gaussian ensembles) where
the choice of the samples is completely independent of the sparsifying system [16, 36, 38, 43]. The use of
overcomplete dictionaries in compressed sensing has also been studied in works such as [6, 20, 28], but
again, recovery guarantees were obtained only for randomised sampling matrices or subsampled struc-
tured matrices with randomised column signs. However, in the majority of applications where compressed
sensing has been of interest, one is concerned with the recovery of a signal from structured measurements,
without the possibility of first randomising the underlying signal. For example, the measurements in
magnetic resonance imaging (MRI) are modelled via the Fourier transform, while the measurements in
radio interferometry are modelled via the Radon transform. In these cases, how one can achieve subsam-
pling is highly dependent on the sparsifying transform. To explain this statement, we recall some results
of compressed sensing on the recovery of a vector of length N from its discrete Fourier coefficients under
various sparsifying transforms.
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(1) If the underlying vector is s-sparse in its canonical basis, then one can guarantee perfect recovery
from O (s logN) Fourier coefficients drawn uniformly at random [8].

(2) If the underlying vector is s-sparse with respect to its total variation [8], then O (s logN) Fourier
coefficients drawn uniformly at random will again guarantee perfect recovery, however, in the pres-
ence of noise and approximate sparsity, then one can obtain superior error bounds with sampling
strategies which sample more densely at low frequency coefficients instead [34].

(3) If the underlying vector is s-sparse with respect to some wavelet basis, then it is impossible to
guarantee recovery from O (s logN) samples from sampling uniformly at random. This is a phe-
nomenon which has been observed since the early days of compressed sensing and there has been
extensive investigations into how subsampling is still achievable by sampling more densely at low
frequencies [33, 31, 39, 42, 35]. These approaches were often referred to as variable density sampling
and theoretical guarantees for these approaches were recently derived in [29] and [2].

More generally, whether one can sample uniformly at random depends on whether the sampling and
sparsifying matrices are sufficiently incoherent. In the absence of incoherence (as is the case in (3)
above), how one should choose Ω in (1.1) becomes a far more delicate issue. To explain the use of
compressed sensing in this case, a theoretical framework was developed in [2] on the basis of three
new principles: multilevel sampling, asymptotic incoherence and asymptotic sparsity. By modelling a
nonuniform sampling strategies via multilevel sampling, the need for dense sampling at low frequencies
in (3) is due to the following two reasons.

(i) The high correspondence between Fourier and wavelet bases at low Fourier frequencies and low
wavelet scales, but the low correspondence at high Fourier frequencies and high wavelet scales
(asymptotic incoherence).

(ii) Typical signals or images exhibit distinctive sparsity patterns in their wavelet coefficients, and
become increasingly sparse at higher wavelet scales (asymptotic sparsity).

In contrast to the large body of results in compressed sensing where the strategy is based on sparsity
alone, the results of [2] demonstrated that one of the driving forces behind the success of variable
density sampling strategies is their correspondence to the sparsity structure of the underlying signals
of interest. These new principles provide a framework under which one can understand how to exploit
both the sparsity structure of the underlying signal, and the correspondences between the sampling and
sparsifying systems to devise optimal subsampling strategies [41, 37].

1.1 Contribution and overview

The paper [2] is concerned only with the case where the sparsifying system is an orthonormal basis.
On the other hand, many of the sparsifying transforms in applications tend to be constructed from
overcomplete dictionaries, such as contourlets [14], curvelets [4, 5], shearlets [12, 30] and wavelet frames
[13, 15].

With this in mind, the recent work of [27] derives theoretical guarantees for certain nonuniform
sampling strategies in the case of sparsity with respect to a tight frame. By defining the localization
factor ηs,D with respect to a sparsifying transform D ∈ CN×n and a sparsity level s as

ηs,D = η = sup

{
‖Dg‖`1√

s
: |∆| = s, g ∈ R(D∗P∆), ‖g‖`2 = 1

}
, (1.2)

their result is as follows.

Theorem 1.1 ([27]). Let N ∈ N and let s < N . Suppose that the rows {d1, . . . , dn} of D ∈ CN×n form
a Parceval frame, the rows {v1, . . . , vn} of V ∈ Cn×n form an orthonormal basis of Cn and suppose that

sup1≤j≤N |〈dj , vk〉| ≤ µk. Let ν be a probability measure on {1, . . . , n} given by ν(k) = µ2
k/ ‖µ‖

2
`2 , where

µ = (µk)nk=1, and let W ∈ Cn×n be a diagonal matrix with diagonal entries (‖µ‖2`2 /µ2
k)nk=1. Let Ω be a

set of m independently and identically distributed indices drawn from {1, . . . , n} with the measure ν. If

m ≥ Cη2 ‖µ‖22 smax
{

log3(sη2) log(N), log(ε−1)
}
,
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for some absolute constant C, then with probability 1 − ε, the following holds for every f ∈ Cn: the
solution f̃ of

argming∈Cn ‖Dg‖`1 subject to

∥∥∥∥ 1√
m
W (PΩV g − y)

∥∥∥∥
`2
≤ δ (1.3)

with y = PΩV f + e for noise e with weighted error
∥∥∥ 1√

m
We
∥∥∥
`2
≤ δ satisfies∥∥∥f̃ − f∥∥∥

`2
≤ C1δ + C2σs(Df)s−1/2

where C1 and C2 are absolute constants and given any vector x ∈ Cn, σs(x) = minz∈Cn,‖z‖`0=s ‖x− z‖`1 .

Although this theorem guarantees the recovery of all sparse vectors under a (fixed) nonuniform
sampling distribution, it does not reveal any dependence between the sampling strategy and any spar-
sity structure. In the case of subsampling the Fourier transform, this result implies that the sam-
pling cardinality is m = O

(
s log3(s) log2(n)

)
when D is an orthonormal Haar wavelet basis, and

m = O
(
s log3(s log(n)) log3(n)

)
when D is a redundant Haar frame. Due to the relatively large number

of log factors, these sampling bounds are still substantially more pessimistic than what is often observed
empirically, and one possible reason for this could be the lack of structure dependence considered in the
theorem: in §2, we will present a numerical example to explain why an understanding of this dependence
is crucial to achieving subsampling.

Therefore, the purpose of this paper is to develop a theory on how to structure one’s samples based
on the sparsity structure with respect to a tight frame. The minimization problem tackled in this paper
is also slightly different from (1.3) as we consider solutions of the more standard problem (3.2) with a
uniform noise assumption, without additional weighting factors. We remark also that if there exists a
strong dependence between the sampling strategy and the underlying sparsity structure, then a direct
implication is that there does not exist a fixed optimal sampling distribution for all sparse signals, and
this will be reflected in our main result as we account for recovery under various sampling distributions
using the framework of multilevel sampling.

The outline of this paper is as follows. §3 recalls the key principles from [2] and a result on solutions
of (1.1) in the case where D is constructed from an orthonormal basis. The main result of this paper
is presented in §4, where we reveal how the main result of [2] can be extended in the case where D is
constructed from a tight frame. The remainder of this paper will be devoted to proving the result of §4.

Notation Given Banach spaces X and Y , let B(X,Y ) denote the space of bounded linear operators
from X to Y and let B(X) denote the space of bounded linear operators from X to X. Let H be a
Hilbert space and given any subspace S ⊆ H, QS denotes the orthogonal projection onto S. We say that
{ϕj : j ∈ N} is a frame for H if there exists c, C > 0 such that

c‖g‖2H ≤
∑
j∈N
|〈g, ϕj〉|2 ≤ C‖g‖2H, ∀g ∈ H.

We say that {ϕj : j ∈ N} is a tight frame if c = C. If c = C = 1, then {ϕj : j ∈ N} is said to be a
Parseval frame. Given any linear operator U , let R(U) denote its range and let N (U) denote its null
space.

We will also consider the sequence spaces `p(N) for p ∈ [1,∞]. Let {ej : j ∈ N} denote the canonical
basis for the `p(N) space under consideration. Given any ∆ ⊂ N, P∆ denotes the orthogonal projection
onto span {ej : j ∈ ∆}. Given M ∈ N, let [M ] := {1, . . . ,M}. Given z ∈ `2(N), let sgn(z) ∈ `∞(N) be
such that for each j ∈ N,

sgn(z)j =

{
zj/ |zj | zj 6= 0

0 otherwise
.

Given q ∈ (0,∞], the `q norm (or quasi-norm if q ∈ (0, 1)) is defined for z = (zj)j∈N as

‖z‖q`q =
∑
j

|zj |q , q ∈ (0,∞), ‖z‖`∞ = sup
j
|zj | ,
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Let ‖ · ‖`p→`q denote the operator norm of B(`p(N), `q(N)) for p, q ∈ [1,∞]. If X and Y are Hilbert
spaces, we will simply denote the operator norm of B(X,Y ) by ‖ · ‖. Given a, b ∈ R, a . b denotes
a ≤ C b where C is a constant which is independent of all variables under consideration. The identity
operator is denoted by I, and the space on which this is defined will be clear from context.

2 The need for structure dependent sampling

To illustrate the need to account for sparsity structure when devising subsampling strategies, let us
consider the case of recovering finite dimensional vectors, where we are given access to a subset of their
Fourier coefficients and the sparsifying system is the two redundant discrete Haar wavelet frame. The
Haar frame is defined in detail in the appendix §A. In the following example, A will denote the discrete
Fourier transform, and D will denote the discrete Haar wavelet transform.

A numerical example Let N = 1024 and consider the recovery of the two signals x1 and x2 shown
in Figure 1 from subsampling their discrete Fourier coefficients by solving (1.1). These signals are
constructed such that ‖Dx1‖0 = ‖Dx2‖0 = 100, where we define the sparsity measure of a signal by
‖z‖0 := |{j : {|zj | 6= 0}}| for any z ∈ CM with M ∈ N. The sparsity patterns of Dx1 and Dx2 are
shown in Figure 1. Observe that compared to Dx2, Dx1 has a higher proportion of large coefficients
with respect to the higher scale frame elements. Let ΩV index 130 of the rows of A (12.7% subsampling),
so that the indices correspond to the first 41 Fourier coefficients of lowest frequencies plus 89 of the
remaining coefficients drawn uniformly at random. The reconstruction of R(x1,ΩV ) and R(x2,ΩV )
from their partial Fourier samples are shown in the top row of Figure 2. Note that although the same
sampling pattern is used for both reconstructions, and both signals have the same sparsity with respect
to D, R(x2,ΩV ) is an exact reconstruction of x2 whilst R(x1,ΩV ) incurs a relative error of 34.85%.
This simple example suggests that to subsample efficiently, it is not sufficient to consider sparsity alone.
We remark also that unlike sampling with unstructured operators such as random Gaussian matrices,
uniform random sampling will yield poor reconstructions for both signals. The second row of Figure 2
shows the reconstruction R(x1,ΩU ) and R(x2,ΩU ), where ΩU indexes 130 of the available coefficients
uniformly at random. Finally, it is interesting to note that the high frequency samples indexed by ΩV
are required for an exact reconstruction of x2 as an error is incurred when one simply samples the Fourier
coefficients of lowest frequency (see the bottom row of Figure 2).

Remark 2.1 In the context of sampling the Fourier transform of a signal, which is sparse with respect
to some multiscale transform (such as wavelets, curvelets or shearlets), it is now commonly observed that
uniform random sampling yields highly inferior results, when compared with variable density sampling
patterns which focus on low frequencies. The numerical example in this section simply highlights this
observation, and reminds us that the performance of these variable density sampling patterns are highly
dependent on the sparsity structure of the underlying signal, and not just the sparsity level alone. Thus,
there is a need for a theory which describes how the sparsity structure of the underlying signal should
impact the choice of the sampling pattern.

3 Structured sampling with orthonormal systems

The main result of this paper will be an extension of the abstract result of [2] to the case where the
sparsifying transform is a tight frame. This section recalls the key concepts introduced in [2] to analyse the
use of variable density sampling schemes for orthonormal sparsifying bases. We first remark that although
compressed sensing originally considered only finite dimensional vector spaces, the applications in which
variable density sampling tend to be of interest are more naturally modelled on infinite dimensional
Hilbert spaces. For this purpose, a Hilbert space framework for compressed sensing was introduced in
[1] and [2].

For a Hilbert space H, and given orthonormal bases {ψj}j∈N (the sampling vectors) and {ϕj}j∈N
(the sparsifying vectors), define the operators

V : H → `2(N), f 7→ (〈f, ψj〉)j∈N, D : H → `2(N), f 7→ (〈f, ϕj〉)j∈N. (3.1)
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Figure 1: Top row: Two test signals. Only a zoom of x1 is shown since it is supported only on the indices
ranging between 100 and 158. Both signals have equal sparsity – for each i = 1, 2, ‖Dxi‖0 = 100. The
second to the bottom rows show the reconstructions from different sampling maps. Bottom row: the
sparsity structure of Dx1 and Dx2. The graph for |Dx2| has been capped off at 20 to allow for a clear
comparison with |Dx1|.
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ΩV (half-half) Zoom of R(x1,ΩV ), Err = 34.9% R(x2,ΩV ), Err = 0%
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ΩL (low freq.) Zoom of R(x1,ΩL), Err = 74.8% R(x2,ΩL), Err = 5.0%
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Figure 2: Reconstructions of x1 and x2 obtained by solving (1.1) with different sampling maps Ω which
index 130 of their Fourier coefficients (12.7% subsampling). ΩV indexes the first 41 coefficients of lowest
frequencies, plus 89 the remaining coefficients chosen uniformly at random. ΩU indexes 130 of the
coefficients uniformly at random. ΩL indexes the 130 coefficients of lowest frequencies.
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Suppose we wish to recover some f ∈ H from samples of the form y = (〈f, ψj〉)j∈Ω + η = PΩV f + η
for some Ω ⊂ N and noise vector η of `2-norm at most δ. A key question in compressed sensing is how
solutions to the following minimization problem allows one to exploit the sparsity of some f ∈ H with
respect to D to obtain accurate recovery from a minimal number of samples.

inf
g∈H,Dg∈`1(N)

‖Dg‖`1 subject to ‖y − PΩV g‖`2 ≤ δ. (3.2)

The coherence (defined below) of the operator V D∗ has been recognized to be an important factor in
determining the minimal cardinality of the sampling set Ω. Note that this can be seen as a measure of
the correlation between the sampling system associated with V and the sparsifying system associated
with D.

Definition 3.1 (Coherence). Let U be a bounded linear operator on `2(N) (or let U ∈ CN×N for some
N ∈ N) be such that ‖Uej‖`2 = 1 for all j ∈ N (or j = 1, . . . , N). Let {ej : j ∈ N} be the canonical basis
of `2(N) (or CN ). The coherence of U is defined as µ(U) = supk,j |〈Uej , ek〉|.

For the case where V D∗ ∈ CN×N is a finite dimensional isometry, the main result of [7] showed
that if Ω ⊂ {1, . . . , N} consists of O

(
s µ2(V D∗)N logN

)
samples drawn uniformly at random, where

f is s-sparse, then any solution f̂ to (3.2) satisfies ‖f̂ − f‖ ≤ Cδ for some universal constant C > 0.
Furthermore, one cannot improve upon the estimate of O

(
s µ2(V D∗)N logN

)
. Thus, for the recovery

of sparse signals, the minimal sampling cardinality is completely determined by this coherence quantity.
Unfortunately, when µ(V D∗) ≈ 1, this result merely concludes that Ω must index all available

samples. This is especially problematic because when V D∗ is a bounded linear operator defined on
the infinite dimensional Hilbert space `2(N) – it is necessarily the case that µ(V D∗) ≥ c > 0 for some
constant c and one cannot expect the coherence of any finite dimensional discretization of V D∗ to be
of order O

(
N−1/2

)
(see [2] for a detailed explanation of this phenomenon). In the case where V is

associated with a Fourier basis and D is associated with a wavelet basis, it is necessarily the case that
µ(V D∗) = 1.

The key idea of [2] is to recognize that by placing additional assumptions on the sparsity or compress-
ibility structure of the underlying signal, one can make non trivial statements on how Ω can be chosen
in accordance to the underlying sparsity. Thus, to consider how one should draw samples from the first
M samples in order to accurately recover f ∈ H, with ‖P∆Df‖`1 � ‖f‖H for some ∆ ⊂ {1, . . . , N}
with |∆| = s, one approach is to divide the sampling and sparsifying vectors into levels then analyse the
correspondence between the different sampling and sparsifying levels. The main theoretical result from
[2] is based on three principles:

• Multilevel sampling - instead of considering sampling uniformly at random across all available
samples, partition the samples into levels and consider sampling uniformly at random with different
densities at each level. This model was introduced to analyse the effects of nonuniform sampling
patterns.

• Local coherence - the coherence of partial sections of V D∗.

• Sparsity in levels - instead of considering sparsity across all available coefficients, partition the
coefficients into levels and consider the sparsity within each level.

We define each of these concepts below.

Definition 3.2 (Multilevel sampling). Let r ∈ N, M = (M1, . . . ,Mr) ∈ Nr with 0 = M0 < M1 < . . . <
Mr, m = (m1, . . . ,mr) ∈ Nr, with mk ≤Mk −Mk−1, k = 1, . . . , r, and suppose that

Ωk ⊆ {Mk−1 + 1, . . . ,Mk}, |Ωk| = mk, k = 1, . . . , r,

are chosen uniformly at random. We refer to the set Ω = ΩM,m = Ω1 ∪ · · · ∪Ωr as an (M,m)-multilevel
sampling scheme.
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3.1 Sparsity in levels

The notion of sparsity in levels is defined as follows. As explained below, this notion is particularly
important when considering wavelet sparsity for imaging purposes.

Definition 3.3 (Sparsity in levels). Let x be an element of either CN or `2(N). For r ∈ N let N =
(N1, . . . , Nr) ∈ Nr with 0 = N0 < N1 < . . . < Nr and s = (s1, . . . , sr) ∈ Nr, with sk ≤ Nk − Nk−1,
k = 1, . . . , r. We say that x is (s,N)-sparse if, for each k = 1, . . . , r, ∆k := supp(x)∩{Nk−1+1, . . . , Nk},
satisfies |∆k| ≤ sk. We denote the set of (s,N)-sparse vectors by Σs,N.

Definition 3.4 ((s,N)-term approximation). Let x = (xj) be an element of either CN or `2(N). We
define the (s,N)-term approximation

σs,N(x) = min
η∈Σs,N

‖x− η‖`1 . (3.3)

As well as the level sparsities sk defined in Definition 3.4, we shall also require the notion of a relative
sparsity, which takes into account the sampling operator V and will account for how different levels
interfere with each other.

Definition 3.5 (Relative sparsity). Let V,D ∈ B(H,H′) where H is a Hilbert space and H′ is either CN
or `2(N). Let s = (sj)

r
j=1 ∈ Nr, N = (Nj)

r
j=1 ∈ Nr and M = (Mj)

r
j=1 ∈ Nr with 0 = N0 < N1 < · · · <

Nr and 0 = M0 < M1 < · · · < Mr. For 1 ≤ k ≤ r, the kth relative sparsity is given by

κ̂k = κ̂k(N,M, s) = max
g∈Θ
‖PΓkV g‖2,

where Γk = (Mk−1,Mk] ∩ N and Θ is the set

Θ = {g ∈ H :, ‖Dg‖`∞ ≤ 1, |supp(PΛlDg)| = sl, l = 1, . . . , r}.

where Λl = (Nk−1, Nk] ∩ N.

The Fourier/wavelets case

On level sparsities It has been established that natural images are not simply sparse in their wavelet
coefficients, but exhibit a distinctive ‘tree-structure’ in their coefficients [11]. Given a wavelet basis
{ϕj}j∈N, it is often the case that a typical image with sparse approximation

∑
j∈∆ αjϕj will actually

not be sparse with respect to the wavelets of low scales, but will become increasingly sparse with respect
to the wavelets of higher scales. In particular, if {Nk}k∈N corresponds to the wavelet scales so that

{ϕj}j≤Nk consists of all wavelets up to the kth scale, and sk = |∆ ∩ (Nk−1, Nk]| is the sparsity at the

kth wavelet scale, then one typically observes that although s1/N1 ≈ 1, one has asymptotic sparsity with
sk/(Nk −Nk−1)→ 0 as k increases. This phenomenon is illustrated in Figure 3.

Thus, for the purpose of reconstructing natural images, it is perhaps too general to consider the
recovery of all sparse wavelet coefficients and it suffices to consider the recovery of images whose sparse
representations exhibit asymptotic sparsity. This is the motivation behind the concept of sparsity in
levels.

On relative sparsities In the case where V is the Fourier sampling operator and D is the analysis
operator associated with an orthonormal basis, one can in fact show that the change of basis matrix
V D∗ ∈ B(`2(N)) is near block diagonal and by letting M and N correspond to wavelet scales,

κ̂k(N,M, s) .
r∑
j=1

sjA
−|j−k|,

for some A > 1 which depends only on the given wavelet basis. So, the dependence of the kth relative
sparsity on each sj decays exponentially in |j − k| and moreover, it follows that

∑
k κ̂k .

∑
k sk. The

reader is referred to [2] for a proof of this.
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Figure 3: Left: reconstruction from the largest 6% of the Daubechies-4 wavelet coefficients of a 1024×1024
image. Centre: location of coefficients in the sparse representation - coefficients are ordered in increasing
wavelet scales away from the top left corner. Right: fraction of coefficients at each wavelet scale k which
contribute to the sparse representation.

3.2 Local coherence

Although the coherence between the sampling and sparsifying systems is a crucial concept in the un-
derstanding of the minimal sampling cardinality required for the recovery of sparse signals, there are
important systems of interest in applications where it is simply too crude to consider coherence alone.
Instead, we require the more refined notion of local coherence.

Definition 3.6 (Local coherence). Let V,D ∈ B(H,H′) where H is a Hilbert space and H′ is either CN
or `2(N). Let N = (N1, . . . , Nr) ∈ Nr and M = (M1, . . . ,Mr) ∈ Nr with 0 = N0 < N1 < · · · < Nr and
0 = M0 < M1 < · · · < Mr. For k = 1, . . . , r, let Γk = {Mk−1 + 1, . . . ,Mk} . For k = 1, . . . , r − 1, let
Λk = {Nk−1 + 1, . . . , Nk} and let Λr = {n ∈ N : n > Nr}. The (k, l)th local coherence between V and D
with respect to N and M is given by

µN,M(k, l) =
√
µ(PΓkV D

∗PΛl)µ(PΓkV D
∗), k = 1, . . . , r, l = 1, . . . , r.

The Fourier/wavelets case

If V D∗ is constructed from any orthonormal wavelet basis with Fourier sampling, then it is necessarily
the case that µ(V D∗) = 1. However, it is only the initial section of V D∗ associated with low Fourier
frequencies and low wavelet scales that has high coherence. In particular, one can show that

µ(P⊥[N ]V D
∗), µ(V D∗P⊥[N ]) = O

(
N−1/2

)
.

Finally, we remark that this property of asymptotic incoherence (decay in the coherence away from
initial finite sections) is not unique to the Fourier/wavelets case, but can also be observed for other
representation systems such as Fourier/Legendre polynomial systems. In the Fourier/wavelets case, it
is this decay in the local coherences that makes it possible to exploit sparsity to subsample the Fourier
coefficients.

3.3 Recovery guarantees in the case of orthonormal sparsifying transforms

When we are considering the recovery of an infinite dimensional object by drawing finitely many samples,
one may ask the following question: What is the range of the samples, M , that we should sample from in
order to recover a sparse representation with respect to the first N sparsifying elements? This question
is addressed by the balancing property.

Definition 3.7 (Balancing property [2]). Let V D∗ ∈ B(`2(N)) be an isometry. Then M ∈ N and K ≥ 1
satisfy the balancing property with respect to V , D, N ∈ N and s ∈ N if

‖P[N ]DV
∗P⊥[M ]V D

∗P[N ]‖`∞→`∞ ≤
1

8

(
log

1/2
2

(
4
√
sKM

))−1

, (3.4)
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and

‖P⊥[N ]DV
∗P[M ]V D

∗P[N ]‖`∞→`∞ ≤
1

8
, (3.5)

where ‖·‖`∞→`∞ is the norm on B(`∞(N)).

We now recall the main result of [2] which informs on how multilevel sampling will depend on local
coherences and the underlying sparsity structure. For this, we require the following notation:

M̃ = min{i ∈ N : max
k≥i
‖P[M ]Uek‖ ≤ 1/(32q−1

√
s)},

where M , s and q are as defined below.

Theorem 3.8. [2] Let V D∗ be an isometry either on `2(N) or CN . Let f ∈ H. Suppose that Ω = ΩM,m

is a multilevel sampling scheme, where M = (M1, . . . ,Mr) ∈ Nr and m = (m1, . . . ,mr) ∈ Nr. Let (s,N),
where N = (N1, . . . , Nr) ∈ Nr, N1 < . . . < Nr, and s = (s1, . . . , sr) ∈ Nr, be any pair such that the
following holds:

(i) the parameters M = Mr, q
−1 = maxk=1,...,r

{
Mk−Mk−1

mk

}
, satisfy the balancing property with respect

to V , D, N := Nr and s := s1 + . . .+ sr;

(ii) for ε ∈ (0, e−1],

1 &
Mk −Mk−1

mk
log(sε−1) log

(
q−1M̃

√
s
) ( r∑

l=1

µ2
N,M(k, l) sl

)
, k = 1, . . . , r,

and mk & m̂k log(sε−1) log
(
q−1M̃

√
s
)
, where m̂k is such that

1 &
r∑

k=1

(
Mk −Mk−1

m̂k
− 1

)
µ2
N,M(k, l) ŝk, l = 1, . . . , r, (3.6)

for all (ŝ1, . . . , ŝr) ∈ Rr+ with ŝ1+· · ·+ŝr ≤ s1+· · ·+sr, and ŝk ≤ κ̂k(N,M, s) for each k = 1, . . . , r.

Suppose that f̂ is a minimizer of (3.2) with y = PΩV f+η and ‖η‖`2 ≤ δ. Then, with probability exceeding
1− ε,

‖f̂ − f‖ ≤ C
(
q−1/2 δ

(
1 + L

√
s
)

+ σs,N(Df)
)
,

for some constant C, where σs,M is as in (3.3), and L = C

(
1 +

√
log2(6ε−1)

log2(4q−1M
√
s)

)
. If mk = Mk −Mk−1

for 1 ≤ k ≤ r then this holds with probability 1.

Notice that the number of samples at each level is dependent on the local coherences between V
and D, the level sparsities {sk} and the relative level sparsities {ŝk}. As discussed in [2], the relative
level sparsities accounts for the interference between the different sampling and sparsifying levels and
cannot be removed from the estimates. However, recall that in the case of Fourier sampling with wavelet
sparsity where the levels correspond to the wavelet scales, one can essentially show that the dependence
of ŝk on each sj becomes exponentially small as |k − j| increases.

This result firstly suggests that even in cases where incoherence is missing, subsampling in accordance
to sparsity is still possible provided that the sampling and sparsifying bases are not uniformly coherent –
subsampling is possible when local coherence is small. Note also that this result suggests that a change
in the sparsity structure, i.e. the distribution of {sk} and {ŝk}, should result in a change in the sampling
strategy.
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4 Main result

The work of [2] provides an initial understanding on how one can structure sampling in accordance to
underlying sparsity structures so that the number of samples require is (up to log factors) linear with
sparsity. A natural extension of this work would be to consider this question when D is an analysis
operators associated with a tight frame instead of an orthonormal basis. This is of particular interest
due to the recent development of sparse representations with respect to multiscale systems such as
wavelet, curvelet and shearlet frames. In this paper, we will consider the case where V : H → `2(N) and
D : H → `2(N) are isometries. This assumption simply states that V and D are the analysis operators
of Parseval frames, i.e. {ψj}j∈N and {ϕj}j∈N are both Parseval frames of H in (3.1).

Note that if D is associated with an orthonormal basis instead of a Parseval frame (i.e. D is unitary),
then (3.2) is equivalent to

inf
x∈`1(N)

‖x‖`1 subject to ‖y − PΩV D
∗x‖`2 ≤ δ. (4.1)

This minimization problem is referred to as synthesis regularization. On the other hand, in the case of
non-orthonormal systems, (3.2) (often referred to as analysis regularization) and (4.1) are no longer equiv-
alent. Some of the differences between synthesis and analysis regularization were investigated in [17] and
while the majority of theoretical works in compressed sensing has focussed on synthesis regularization,
the theory behind the solutions of the analysis regularization problem (3.2) is less comprehensive.

4.1 Sparsity

In this section, we introduce concepts for describing sparsity under an analysis operator. In considering
the solutions of (3.2), it is intuitive that this minimization problem will favour signals f for which the
entries in Df have fast decay or are mainly zero entries. Note also that if there exists an index set ∆
such that P⊥∆Df = 0, then f ∈ N (P⊥∆D) ⊂ R(D∗P∆) whenever D∗D = I. In the works of [6, 27], the
signal space considered is, for each sparsity level s, the union of subspaces spanned by s columns of D∗,
W = ∪|∆|=sR(D∗P∆).

As discussed in [27], to understand the impact of sparsity on the recovery of such a model, it is natural
to consider the effects of the analysis operator D on any given f ∈ W and in particular, the approximate
sparsity of Df . For this purpose, [27] introduced the localization factor η, which we previously recalled
in (1.2), and their recovery estimates were given in terms of η2s. Moreover, as observed in [6], a standard
measure of sparsity or compression in a vector is the quasi `p norm with p ≤ 1. With this in mind, we
introduce that concept of localized sparsity below.

Definition 4.1. Let r ∈ N and let N = (Nj)
r
j=1 ∈ Nr, s = (sj)

r
j=1 ∈ Nr. Assume that N1 < N2 < · · · <

Nr =: N . Let Λj = N ∩ (Nj−1, Nj ] for j = 1, . . . , r − 1 and Λr = N ∩ (Nr−1,∞). Let p = 2−J for some
J ∈ N ∪ {0}. Let κ > 0 be the smallest number such that

κ1−p/q ≥ sup
{
‖Dg‖pp : g = D∗x, ‖Dg‖`q = 1, x ∈ Σs,N

}
, q ∈ {2,∞} , (4.2)

where we let p/∞ = 0. Then, κ(N, s, p) = κ is said to be the localized sparsity with respect to p, N and
s. For each j = 1, . . . , r, let κj > 0 be the smallest number such that

κ
1−p/q
j ≥ sup

{∥∥PΛjDg
∥∥p
p

: g = D∗x,
∥∥PΛjDg

∥∥
`q

= 1, x ∈ Σs,N

}
, q ∈ {2,∞} ,

Then κj(N, s, p) = κj is said to be the jth localized level sparsity with respect to p, N and s.

Remark 4.1 Observe that the localized sparsity is related to the localization factor in (1.2): if p = 1
and q = 2 in (4.2), then it suffices to let κ = η2s.

One can consider κ(s,N) to be a measure of the analysis sparsity of an element f (i.e. sparsity of Df)
given that it is synthesis sparse with respect to the frame {fj} associated with D (i.e. f =

∑
j∈∆ xjϕj

with |∆| = s and x ∈ C∆). Note that if D is associated with an orthonormal basis, then DD∗ is the
identity and it suffices to let κ = s1 + · · ·+ sr.

The localized level sparsities κj(s,N) describe the sparsity structure of Df given that f is synthesis
sparse with a (s,N)-sparsity pattern. Again, if D is associated with an orthonormal basis, then these
localized level sparsities are simply the level sparsities {sj}rj=1.

11



We also require the definition of relative sparsity, note that the only difference to Definition 3.5 is
that the set Θ is defined in terms of ‖·‖`2 instead of ‖·‖`∞ .

Definition 4.2 (Relative sparsity). Let V,D ∈ B(H,H′) where H is a Hilbert space and H′ is either CN
or `2(N). Let κ = (κj)

r
j=1 ∈ Nr, N = (Nj)

r
j=1 ∈ Nr and M = (Mj)

r
j=1 ∈ Nr with 0 = N0 < N1 < · · · <

Nr and 0 = M0 < M1 < · · · < Mr. For 1 ≤ k ≤ r, the kth relative sparsity is given by

κ̂k = κ̂k(N,M,κ) = max
g∈Θ
‖PΓkV g‖2,

where Γk = (Mk−1,Mk] ∩ N and Θ is the set

Θ = {g ∈ H : g = D∗η, ‖PΛlDg‖2`2 ≤ κl, l = 1, . . . , r}.
where Λl = (Nk−1, Nk] ∩ N.

4.2 Main result

The main result of this paper describes how the reconstruction error of any solution of (3.2) depends on
the choice of samples. Note that the problem of considering the minimizers of (3.2) is well posed since
minimizers necessarily exist (see B.1)

In the case of orthonormal systems, the balancing property provides an indication of the range that
one should sample from when recovering a sparse support set ∆ ⊂ [N ] for some N ∈ N. This condition
essentially describes how large M must be such that P[M ]V is close to an isometry on R(D∗P∆) for
all ∆ ⊂ [N ]. In the case where D is no longer constructed from an orthonormal basis, we define the
balancing property as follows.

Definition 4.3. Let V,D ∈ B(H, `2(N)) be isometries. Then M ∈ N and K ≥ 1 satisfy the balancing
property with respect to V , D, N , s ∈ N and κ2 ≥ κ1 > 0 if for all W = R(D∗P∆) where ∆ ⊂ [N ] is
such that |∆| = s,

‖DQWV ∗P⊥[M ]V QWD
∗‖`2→`2 ≤

√
κ1/κ2

8

(
log

1/2
2 (4

√
κ2KM)

)−1

, (4.3)

and

‖DQ⊥WV ∗P[M ]V QWD
∗‖`2→`∞ ≤

1

8
√
κ2
, (4.4)

Although this balancing property conceptually enforces the same isometry properties as the balancing
property presented in the case of orthonormal systems, note that the conditions are stated in terms of
the `2 norm instead. This difference is due to a slightly different dual certificate construction in the proof
of our main result, and this slightly stronger balancing property will allow us to derive sharper bounds
on the number of samples required. We remark also that in the case where κ1 = κ2, this balancing
property in fact reduces to the original balancing property introduced in [1].

In the following theorem, for r ∈ N, let M = (M1, . . . ,Mr) ∈ Nr , m = (m1, . . . ,mr) ∈ Nr,
N = (N1, . . . , Nr) ∈ Nr, N1 < . . . < Nr, and s = (s1, . . . , sr) ∈ Nr. For p ∈ (0, 1], let κ = (κj)

r
j=1 with

κj = κj(N, s, p) and let κ̂j = κ̂j(N,M,κ). Let

M̃ = ‖DD∗‖`∞→`∞ min

{
i ∈ N : max

j≥i

∥∥P[M ]V D
∗ej
∥∥
`2
≤ q

8
√
κmax

, max
j≥i

∥∥∥QR(D∗P[N])D
∗ej

∥∥∥ ≤ √5q

4

}
,

(4.5)
and

B(s,N) = sup
{
B̃(∆) : ∆ is (s,N)-sparse

}
, (4.6)

where, given any ∆ ⊂ N and W∆ = R(D∗P∆),

B̃(∆) = max

∥∥DQ⊥W∆
D∗
∥∥
`∞→`∞ ,

√√√√‖DQW∆
D∗‖`∞→`∞ ·

r
max
l=1

{
r∑
t=1

‖PΛlDQW∆
D∗PΛt‖`∞→`∞

} .

(4.7)
The key notations used in Theorem 4.4 are summarized in Table 1.
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Notation Description

V Sampling operator
D Sparsifying operator
r Number of levels

N = (Nk)rk=1 Divides the sparsifying coefficients into levels
M = (Mk)rk=1 Divides the sampling coefficients into levels
m = (mk)rk=1 Number of samples at each level
s = (sk)rk=1 Level sparsities

µN,M(k, l) (k, l)th localized coherence, see Definition 3.6
σs,N See Definition 3.4

κj jth localized sparsity, see Definition 4.1

κ̂j jth relative sparsity, see Definition 4.2

M̃ See (4.5)
B(s,N) See (4.6)

Table 1: Summary of the key notations for Theorem 4.4.

Theorem 4.4. Let H be a Hilbert space and let V,D ∈ B(H, `2(N)) be isometric linear operators. Let
f ∈ H. Suppose that Ω = ΩM,m is a multilevel sampling scheme. Let (s,N) be such that the following
holds:

(i) the parameters M = Mr, q
−1 = maxk=1,...,r

{
Mk−Mk−1

mk

}
, satisfy the balancing property with respect

to V , D, N := Nr, κmin = rmin {κj} and κmax = rmax {κj};

(ii) For ε ∈ (0, e−1],

1 &
√
r log(ε−1) log

(
q−1M̃

√
κmax

)
B(s,N)

Mk −Mk−1

mk

(
r∑
l=1

µ2
N,M(k, l)κl

)
, k = 1, . . . , r,

and mk & r m̂k B(s,N)2 log(ε−1) log
(
q−1M̃

√
κmax

)
, where m̂k is such that

1 &
r∑

k=1

(
Mk −Mk−1

m̂k
− 1

)
µ2
N,M(k, l) κ̂k, l = 1, . . . , r.

Suppose that f̂ is a minimizer of (3.2) with y = PΩV f+η and ‖η‖`2 ≤ δ. Then, with probability exceeding
1− ε,

‖f̂ − f‖ ≤ C
(
q−1/2 δ (1 + L

√
κmax) + σs,N(Df)

)
,

for some constant C, where σs,N is as in (3.3), and L = 1 +

√
log2(6ε−1)

log2(4q−1M
√
κmax) . If mk = Mk −Mk−1 for

1 ≤ k ≤ r then this holds with probability 1.

4.2.1 The unconstrained minimization problem

Instead of solving the constrained minimizaton problem in Theorem 4.4, for computational reasons, it is
often of interest to solve instead an unconstrained minimization problem for some α > 0,

inf
g∈H

α‖Dg‖`1 + ‖PΩV g − y‖2`2 . (4.8)

The following result presents a recovery guarantee for this unconstrained problem.

Corollary 4.5. Consider the setting of Theorem 4.4, and let α =
√
qδ. Then, with probability exceeding

(1− ε), any minimizer f̂ of (4.8) satisfies∥∥∥f − f̂∥∥∥
H
≤ δ

(
q−1/2 + L

√
κmax + L2κmax

)
+ σN,s(Df).
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Remark 4.2 Note that by choosing α =
√
qδ, the guaranteed error bound is, up to

√
qL2s, the same as

the guaranteed error bound of solutions to the constrained problem

inf
g∈H
‖Dg‖`1 subject to ‖PΩV g − y‖`2 ≤ δ.

This affirms the finding in [3, Figure 7], which numerically demonstrates that there exists a linear relation
between the regularization parameter α and noise level of the measurements δ. Moreover, this linear
scaling increases as q increases.

4.3 Remarks on the main result

4.3.1 On the factor r

In the case where D is associated with an orthonormal basis, the key difference between our main result
and Theorem 3.8 is that bounds on the number of samples in Theorem 3.8 has a factor of log(s) while
the bounds in Theorem 4.4 have a factor of r (the number of levels) instead. In general, the sparsity
s may grow as the ambient dimension Nr increases, whilst the number of levels r can be thought of as
simply a constant; for example, r = 2 in the case of the half-half schemes presented in §2 (see also [39]
for the application of a half-half scheme in fluorescence microscopy). Therefore, Theorem 4.4 may be
considered to provide slightly sharper bounds than Theorem 3.8 and is in fact optimal in the case where
r = 1 (since the optimal sampling cardinality is O (s logN) [7]). We remark however, that by utilizing
the construction of the dual certificate from [2], one can replace the factor of r with log(M̃).

4.3.2 Remarks on reconstructing -lets from Fourier samples

We begin with a corollary of Theorem 4.4. Its proof can be found in Section 5.

Corollary 4.6. Let V and D be isometries. Let {Nj}rj=1,{Mj}rj=1 ∈ Nr with Γj = (Mj−1, . . . ,Mj ] ∩ N
and Λj = (Nj−1, . . . , Nj ]∩N where M0 = N0 = 0. Let ω be a non-negative function defined on {1, . . . , r}2
with

r∑
l=1

ω(k, l) ≤ C, k = 1, . . . , r,

r∑
k=1

ω(k, l) ≤ C, l = 1, . . . , r, (4.9)

for some C > 0. Suppose that

‖PΓkV D
∗PΛl‖ ≤ ω(k, l), µ2

N,M(k, l) ≤ ω(k, l) ·min

{
1

Nl−1
,

1

Mk−1

}
. (4.10)

Then condition (ii) of Theorem 4.4 holds provided that

mk & rC2B(s,N)2 · log(ε−1) log(q−1M̃
√
κmax) · Mk −Mk−1

Mk−1
·

(
r∑
l=1

ω(k, l)κl

)
.

In particular, we have that

m1 + · · ·+mr & C̃ · log(ε−1) log(q−1M̃
√
κmax) · (κ1 + · · ·+ κr) ,

where C̃ = rC3B(s,N)2 maxrk=1 {(Mk −Mk−1)/Mk−1}.

Note that the dependence of our main result on the localized coherence terms allows one to exploit
both asymptotic incoherence and the correspondences between the different sparsifying and sampling
levels. Conditions (4.9) and (4.10) essentially control the correspondence between the different sampling
and sparsifying levels, whilst maintaining asymptotic incoherence in V D∗. Under these conditions,
this result presents a direct link between the localized sparsities and the sampling strategy where the
dependence of the number of samples in the kth level mk on the lth localized sparsity κl is weighted by
ω(k, l). Note also that the only other dimensional dependencies consist of one log factor and the factor
of B(s,N), which numerically does not seem to be significant (see Section 4.3.3).

Of course, further analysis of Corollary 4.6 would be necessary for a full comparison between our
results and Theorem 1.1, however, an advantage of Corollary 4.6 is that it makes explicit the dependence
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between how one should subsample and the sparsity structure, and provided that B(s,N) remains
bounded, Corollary 4.6 will provide for a sharper estimate on the sampling cardinality. In the case where
V is constructed from a Fourier basis and D is constructed from a wavelet basis, it is in fact the analysis
of (4.9) and (4.10) that enabled [2] to derive sharp bounds on the sampling cardinality. We now explain
this in more detail:

[2] considered the case where

D : L2[0, 1)→ `2(N), f 7→ (〈f, ϕj〉)j∈N

for some orthonormal wavelet basis {ϕj} associated with a scaling function Φ and a mother wavelet Ψ
satisfying for all ξ ∈ R, ∣∣∣Φ̂ (ξ)

∣∣∣ . (1 + |ξ|)−β ,
∣∣∣Ψ̂ (ξ)

∣∣∣ . (1 + |ξ|)−β . (4.11)

where Φ̂ and Ψ̂ denote the Fourier transforms of Φ and Ψ respectively, and the Fourier sampling operator
is

V : L2[0, 1)→ `2(N), f 7→ (〈f, ei2πωk·〉)k∈Z
for some appropriate Fourier sampling density ω ∈ (0, 1]. Then, if we let (Mk) and (Nk) correspond to
wavelet scales, so that Mk = O

(
2Rk

)
, Nk = 2Rk and (Rk)rk=1 ∈ Nr is an increasing sequence of integers,

then we can let
ω(k, j) = min

{
ARj−Rk−1 , BRk−Rj−1

}
(4.12)

where A,B > 1 are constants which depend on the Fourier decay exponent β and the number of vanishing
moments of the generating wavelet. Furthermore, since D is constructed from an orthonormal basis,
κj = sj for each j = 1, . . . , r, and B(s,N) = 1. [2] also analysed the balancing property in the
Fourier/wavelets case and condition (i) can be shown to hold provided that

Mr & ω−1N1+1/(2β−1)
r log2(ε−1Nr

√
sq−1)1/(2β−1),

and log(M̃) ≤ log(Mr). So the number of samples needed on the kth level is

mk & L · Mk −Mk−1

Mk−1
·

sk +
∑
j≤k−1

ARj−Rk−1sj +
∑
j≥k+1

BRk−Rj−1sj

 ,

with L = r log(M). Note that the total sampling cardinality is, up to one log factor and the ratio

maxrk=1

{
Mk−Mk−1

Mk−1

}
, linear with the total sparsity.

It is likely that by carrying out a similar analysis in [2], one can apply Theorem 4.4 to derive sharp
recovery results for the recovery of coefficients with other multiscale systems, such as shearlets and wavelet
frames from Fourier samples. This work is beyond the scope of this paper, however, we simply highlight
two aspects of any such analysis. The first part of the analysis would include precise estimates on the
correspondences between the different sampling and sparsifying levels (i.e. analysis of ω in Corollary
4.6). In the case of orthonormal Fourier and wavelet bases, the choice of ω in (4.12) is simply due to
the Fourier decay (4.11) and the number of vanishing moments in the underlying wavelet and not on
orthogonality properties. Thus, such a choice of ω would also suffice in the case of wavelet frames with
Fourier decay and vanishing moments properties. Furthermore, since similar Fourier decay estimates and
vanishing moments properties also exist for multiscale systems such as curvelets and shearlets, it would
be possible to derive similar estimates in the case of other multiscale systems. Secondly, the key difference
between Theorem 3.8 and Theorem 4.4 is the localized sparsity κ(s,N) and the localized level sparsities
with respect to D. As mentioned, these terms are equal to the sparsity and level sparsity terms when
DD∗ is the identity, furthermore, it is known that multiscale systems such as wavelet frames, shearlets
and curvelets are intrinsically localized with near-diagonal Gram matrices. It is therefore conceivable
that this property can be exploited to show that localized sparsity κ is close to the true sparsity s. This
idea is further discussed in §5.1.
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Figure 4: Plot of E from (4.13).

4.3.3 On B(s,N)

In the case where D is associated with an orthonormal basis, B(s,N) = 1. Further analysis of this
quantity will be left as future work, however, we simply remark here that initial computations of this
quantity suggest that the impact of B(s,N) will not be significant: To test the behaviour of B(s,N),
consider the following experiment where we test the behaviour of this quantity when considering the
support of piecewise constant vectors, under the redundant Haar transform D. Given p ∈ N, let N = 2p,
D be the discrete Haar wavelet frame transform and compute

E(p) = max
{
B̃(∆) : ∆ = supp(Dx), x ∈ ΛN

}
(4.13)

where B̃ is as defined in (4.7), and ΛN is a collection of 1000 randomly generated piecewise constant
vectors, each of length N . A plot of E for p = 4, . . . , 10 is shown in Figure 4.

5 Localized sparsity

In this section, we present some basic properties of the localized sparsity defined in Definition 4.1. The
key findings which would be of use in the proof of Theorem 4.4 are summarized in Corollary 5.4.

We first present Lemma 5.1 to show that provided that V D∗ satisfies some “block diagonal” structure
(so that ω(j, k) in Lemma 5.1 decays sufficiently as |j − k| increases), each relative sparsity term κ̂j can
be controlled in terms of {κl}rl=1 and the dependence on each κl decays as |j − l| increases. So Lemma
5.1 can then be applied to derive Corollary 4.6, which shows that under an additional assumption on
the structure of V D∗, the signal dependencies of Theorem 4.4 arise only in the localized level sparsities
κ = {κj}j . Note that this block diagonal property can be shown to exist when V is a Fourier sampling

transform and D is a wavelet transform [2].

Lemma 5.1. Let V and D be isometries. Let {Nj}rj=1,{Mj}rj=1 ∈ Nr with Γj = (Mj−1, . . . ,Mj ] ∩ N
and Λj = (Nj−1, . . . , Nj ] ∩ N where M0 = N0 = 0. Suppose that ‖PΓkV D

∗PΛl‖ ≤ ω(k, l) and

r∑
l=1

ω(k, l) ≤ C, k = 1, . . . , r.

Then

κ̂j ≤ C
r∑
l=1

ω(j, l)κl.
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Proof. Since D∗D = I,

κ̂j = max
g∈Θ

∥∥PΓjV D
∗Dg

∥∥2 ≤ max
g∈Θ

(
r∑
l=1

∥∥PΓjV D
∗PΛlDg

∥∥)2

≤ max
g∈Θ

(
r∑
l=1

∥∥PΓjV D
∗PΛl

∥∥‖Dg‖)2

≤

(
r∑
l=1

ω(j, l)
√
κl

)2

≤

(
r∑
l=1

ω(j, l)

)(
r∑
l=1

ω(j, l)κl

)
≤ C

r∑
l=1

ω(j, l)κl.

Proof of Corollary 4.6. Since µ2
N,M(k, l) ≤ ω(k, l) min {1/Nl−1, 1/Mk−1}, condition (ii) of Theorem 4.4

is implied by

mk & L ·
√
B̃ · Mk −Mk−1

Mk−1
·

(
r∑
l=1

ω(k, l) · κl

)
, k = 1, . . . , r, (5.1)

and

1 & L · B̃ ·
r∑

k=1

Mk −Mk−1

mk
· ω(k, l)

Mk−1
· κ̂k, l = 1, . . . , r, (5.2)

where B̃ = rB(s,N)2 and L = log(ε−1) log(q−1M̃
√
κmax).

Since
∑r
k=1 ω(k, l) ≤ C for each l = 1, . . . , r, (5.2) is true provided that

mk &
CB̃L(Mk −Mk−1)

Mk−1
κ̂k, k = 1, . . . , r.

By Lemma 5.1, this is true provided that

mk &
C2B̃L(Mk −Mk−1)

Mk−1
κk, k = 1, . . . , r. (5.3)

Note that (5.3) also implies (5.1).
Finally, the last statement of Lemma 5.1 follows by summing up the mk’s and using

∑
k ω(k, l) ≤ C

for each l = 1, . . . , r.

Lemma 5.2. Let p ≤ 1. Suppose that x has at most s non-zero entries and ‖x‖`q = 1 for some q ≥ 1.
Then, ‖x‖p`p ≤ s1−p/q.

Proof. Let ∆ denote the support of x. By Hölder’s inequality,

∑
j∈∆

|xj |p ≤

∑
j∈∆

|xj |q
p/q

(|∆|)1−p/q
= s1−p/q.

Lemma 5.3. Let p ∈ (0, 1] and let q ∈ [1,∞]. Suppose κ > 0 is such that ‖x‖`q ≤ 1 implies that
‖x‖p`p ≤ κ1−p/q.

(i) ‖x‖`1 ≤ κ‖x‖`∞ .

(ii) ‖x‖2`2 ≤ κ‖x‖
2
`∞ .

(iii) If p = 2−L for some L ∈ N ∪ {0}, then ‖x‖2`1 ≤ κ‖x‖
2
`2 .
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Proof. Without loss of generality, first assume that ‖x‖`∞ = 1. Then, ‖x‖p`p ≤ κ. So, (i) follows because∑
j

|xj | =
∑
j

|xj |p |xj |1−p ≤
∑
j

|xj |p ≤ κ,

and (ii) follows because ∑
j

|xj |2 =
∑
j

|xj |p |xj |2−p ≤
∑
j

|xj |p ≤ κ.

To show (iii), assume (without loss of generality) that ‖x‖`2 = 1 and recall that p = 2−L. Then, by
repeatedly applying the Cauchy-Schwarz inequality,

‖x‖2`1 =

∑
j

|xj |

2

≤
∑
j

|xj |p
∑
j

|xj |2(1−p/2) ≤ κ1−p/2‖x‖`2

∑
j

|xj |2−2p

1/2

≤ κ1−p/2‖x‖1+1/2
`2

∑
j

|xj |2−4p

1/4

≤ κ1−p/2‖x‖1+1/2
`2

∑
j

|xj |2−2Lp

1/2L

= κ1−p/2‖x‖p`1 ,

and by dividing both sides of the inequality by ‖x‖p`1 , we obtain

‖x‖2(1−p/2)
`1 ≤ κ1−p/2 =⇒ ‖x‖2`1 ≤ κ.

Corollary 5.4. In the notation of Definition 4.1, a direct application of the two lemmas presented above
(with x := PΛlDD

∗y, l = 1, . . . , r) would yield the following results:

1. Lemma 5.2: if D was the analysis operator of an orthonormal basis (so that DD∗ = I) in Definition
4.1, then κ(s,N) = s1 + · · ·+ sr.

2. Lemma 5.3 (i) : If y ∈ Σs,N and
∥∥PΛjDD

∗y
∥∥
`∞

= 1, then∥∥PΛjDD
∗y
∥∥
`1
≤ κj(p,N, s), j = 1, . . . , r.

3. Lemma 5.3 (ii) : If y ∈ Σs,N and
∥∥PΛjDD

∗y
∥∥
`∞

= 1, then∥∥PΛjDD
∗y
∥∥2

`2
≤ κj(N, s, p), j = 1, . . . , r.

4. Lemma 5.3 (ii) : If y ∈ Σs,N and
∥∥PΛjDD

∗y
∥∥
`2

= 1, then∥∥PΛjDD
∗y
∥∥2

`1
≤ κj(N, s, p), j = 1, . . . , r.

Numerical example: the Haar frame

In the case where D is associated with a Haar frame on CN , it can be shown that if |supp(x)| = s then
DD∗x has at most O (s logN) nonzero entries (see [27]). Therefore, from Lemma 5.2, κ(N, s) . s log(N)
where s = (sj)

r
j=1 and s = s1 + . . .+ sr. In the case of a Haar frame, experimental results suggest that

the localized level sparsities {κj}j tend to follow a similar pattern to the level sparsities {sj}: Let D be

the discrete Haar frame, and let f ∈ R1024 be as shown on the right of Figure 5. Let ∆ be the support
of Df . Let S consist of 1000 randomly generated vectors, each supported on ∆. For each j = 0, . . . , 10,
let Λj index all Haar framelet coefficients in the jth scale and let

κ̃j = sup
{∥∥PΛjη∞

∥∥
`1
,
∥∥PΛjη2

∥∥2

`1
: η∞ = DD∗x/‖DD∗x‖`∞ , η2 = DD∗x/‖DD∗x‖`∞ , x ∈ S

}
. (5.4)

We also let sj = |∆ ∩ Λj |. The bar charts in Figure 5 show for each j = 0, . . . , 10, {sj/ |Λj |} (centre
plot) and {κ̃j/ |Λj |} (left plot). Note that {κ̃j} merely approximate the localized level sparsities {κj},
because otherwise, we would need to consider all (s,N)-sparse support sets instead of just one support
set ∆ and we would also need to maximize over all vectors supported on ∆, instead of just 1000 randomly
generated vectors. Nonetheless, Figure 5 provides some indication of the behaviour of the localized level
sparsities.
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Figure 5: Left: the original vector. Centre: the level sparsities of Df at each scale. Right: the
approximate localized level sparsities at each scale, as defined in (5.4).

5.1 Intrinsic localization

As mentioned previously, many of the popular frames such as curvelets, shearlets and wavelet frames are
intrinsically localized so that their Gram matrices are near diagonal. This property has been studied for
wavelet frames in [26, 10, 18] and more recently for anisotropic systems such as shearlets and curvelets
in [23, 24]. In this section, we will show how the property of intrinsic localization can yield estimates on
the localized sparsity term, κ, and the localized level sparsity terms, κj ’s. We first recall the notion of
intrinsic localization [22, 21].

Definition 5.5. Let H be a Hilbert space and let Ψ = {ψj}j∈N be a frame for H. Ψ is said to be
intrinsically localized with respect to c > 0 and L ≥ 1 if

|〈ψj , ψk〉| ≤
c

(1 + |j − k|)L
, ∀j, k ∈ N.

Given ∆,Λ ⊆ N and p ∈ (L−1, 1], let

Ip(∆,Λ) = max
j∈∆

∑
k∈Λ

|〈ψk, ψj〉|p .

Remark 5.1 Under this definition, wavelet frames have been shown to be intrinsically localized [10]
with the parameter L being dependent on the regularity of the generating wavelets. For the anisotropic
systems studied in [23] and [24], the definition of intrinsic localization used is more complex than the
definition presented above. However, the key idea of how to exploit this property to obtain bounds on
the localized sparsity values should still be applicable.

Remark 5.2 Given any ∆,Λ ⊆ N and p ∈ (L−1, 1], note that Lp > 1 and

Ip(∆,Λ) ≤ max
j∈∆

∑
k∈Λ

c

(1 + |j − k|)Lp
≤ 1 +

∫ ∞
1

c

|x|Lp
dx ≤ 1 +

c

Lp− 1
.

So Ip(∆,Λ) is finite. Moreover, if we let

d = dist(∆,Λ) := min
k∈∆,j∈Λ

|k − j| ≥ 1,

then

Ip(∆,Λ) ≤
∫ ∞
d

c

|x|Lp
dx =

c

(Lp− 1) · dLp−1

The main result of this section is as follows.
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Proposition 5.6. Let Ψ be a Parseval frame which is intrinsically localized with respect to c = 1 (to
simplify the amount of notation only) and L ≥ 1 and let D be the associated analysis operator. Given
any N = (Nk)rk=1 ∈ Nr and s = (sk)rk=1 ∈ Nr, let s = s1 + · · ·+ sr and N0 = 0,

B = sup
{∥∥(P∆D)†

∥∥ : ∆ ⊂ [Nr], |∆ ∩ (Nk −Nk−1]| = sk
}
<∞,

and
B′ = sup

{∥∥(P∆DD
∗P∆)†

∥∥
`∞→`∞ : ∆ ⊂ [Nr], |∆ ∩ (Nk −Nk−1]| = sk

}
<∞.

Let dj,k = dist(Λj ,∆k), and recall the definition of localized sparsity and localized level sparsities from
Definition 4.1. Let p ∈ (L−1, 1]. Then,

(i)

κ(N, s, p) ≤ s ·max
{

(Bp(1 + 1/(Lp− 1)))
1/(1−p/2)

, Bp(1 + 1/(Lp− 1))
}

(ii) For j = 1, . . . , r,

κj(N, s, p) ≤ sj ·max

Bp/(1−p/2)

(
r∑

k=1

(sk/sj)
1−p/2

dLp−1
j,k

)1/(1−p/2)

, B̃p
r∑

k=1

sk/sj

dLp−1
j,k

 .

Proof. Note that B and B′ are both finite, since there are finitely many subsets of [Nr] and for each
subset ∆, {ψj}j∈∆ is necessarily a frame for its span with a strictly positive lower frame bound. (i)

follows from taking the maximum of (i) and (ii) of Proposition 5.7 over all ∆ subsets with an (s,N)-
sparsity pattern and plugging in the estimate of Ip from Remark 5.2. (ii) follows from (iii) and (iv) of
Proposition 5.7.

Proposition 5.7. Let p ∈ (0, 1] and let ∆ ⊂ N with |∆| = s. Then, for all g ∈ R(D∗P∆),

(i) if ‖Dg‖`2 = 1, then ‖Dg‖p`p ≤
∥∥(P∆D)†

∥∥pIp(∆,N)s1−p/2;

(ii) if ‖Dg‖`∞ = 1, then ‖Dg‖p`p ≤
∥∥(P∆D)†

∥∥pIp(∆,N)s.

Let {Λj}rj=1 be a partition for N, and let ∆j = Λj ∩∆ and sj = |∆j |. Then, for all g ∈ R(D∗P∆),

(iii) if ‖Dg‖`2 = 1, then

‖PΛnDg‖
p
`p ≤

∥∥(P∆D)†
∥∥p r∑

m=1

Ip(∆m,Λn)s1−p/2
m , n = 1, . . . , r;

(iv) if ‖Dg‖`∞ = 1, then

‖PΛnDg‖
p
`p ≤

∥∥(P∆DD
∗P∆)†

∥∥p
`∞→`∞

r∑
m=1

Ip(∆m,Λn)sm, n = 1, . . . , r.

Proof. For (i), suppose that ‖DD∗P∆x‖`2 = 1.

‖DD∗P∆x‖p`p =
∑
k∈N

∣∣∣∣∣∣
∑
j∈∆

xj〈ψk, ψj〉

∣∣∣∣∣∣
p

≤
∑
k∈N

∑
j∈∆

|xj |p |〈ψk, ψj〉|p

=
∑
j∈∆

|xj |p
∑
k∈Λ

|〈ψk, ψj〉|p ≤

(
max
j∈∆

∑
k∈N
|〈ψk, ψj〉|p

)
·
∑
j∈∆

|xj |p

≤

(
max
j∈∆

∑
k∈N
|〈ψk, ψj〉|p

)
· ‖x‖p`2 · |∆|

1−p/2

≤

(
max
j∈∆

∑
k∈N
|〈ψk, ψj〉|p

)
·
∥∥(P∆D)†

∥∥p · ‖D∗P∆x‖p`2 · s
1−p/2,

(5.5)
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where we have applied the Cauchy-Schwarz inequality in the penultimate line. Therefore,

‖DD∗P∆x‖p`p ≤ I(∆,N)
∥∥(P∆D)†

∥∥ps1−p/2.

To show (ii), if we instead assume that ‖DD∗P∆x‖`∞ = 1, then since

‖DD∗P∆x‖p`2 = ‖DD∗‖p`2‖x‖
p
`2 ≤ ‖DD

∗‖p`2s
p/2,

by plugging this into the last line of (5.5), we obtain

‖DD∗P∆x‖p`p ≤ I(∆,Λ)
∥∥(P∆D)†

∥∥ps.
The proof of (iii) is similar to the above: if ‖D∗P∆x‖ = 1, then for each n = 1, . . . , r,

‖PΛnDD
∗P∆x‖p`p ≤

r∑
m=1

(
max
j∈∆m

∑
k∈Λ

|〈ψk, ψj〉|p
)
·
∑
j∈∆m

|xj |p

≤
r∑

m=1

∑
j∈∆m

(
max
j∈∆m

∑
k∈Λ

|〈ψk, ψj〉|p
)
· ‖P∆m

x‖p`2 · |∆m|1−p/2

≤
∥∥(P∆D)†

∥∥p · r∑
m=1

I(∆m,Λn) · s1−p/2
m ,

(5.6)

Finally, to show (iv), if ‖D∗P∆x‖`∞ = 1, then for each n = 1, . . . , r,

‖PΛnDD
∗P∆x‖p`p ≤

r∑
m=1

(
max
j∈∆m

∑
k∈Λ

|〈ψk, ψj〉|p
)
·
∑
j∈∆m

|xj |p

≤
r∑

m=1

∑
j∈∆m

(
max
j∈∆m

∑
k∈Λ

|〈ψk, ψj〉|p
)
· ‖P∆mx‖

p
`∞ · |∆m|

≤
∥∥(P∆DD

∗P∆)†
∥∥p
`∞→`∞ ·

r∑
m=1

I(∆m,Λn) · sm,

(5.7)

6 Conditions for stable and robust recovery

Given ∆ ⊂ N and some f ∈ H, the following proposition presents conditions under which one is guaran-
teed robust and stable recovery up to

∥∥P⊥∆Df∥∥`1 .

Proposition 6.1 (Dual certificate). Let f ∈ H. Let ∆ ⊂ N be such that |∆| = s. Let W = R(D∗P∆).
For r ∈ N, let q = {qj}rj=1 ∈ (0, 1]r and let {Ωk}rk=1 be disjoint subsets of N. Let Ω = Ω1 ∪ · · · ∪ Ωr.
Suppose that

(i)
∥∥QWV ∗(q−1

1 PΩ1
⊕ · · · ⊕ q−1

r PΩr )V QW −QW
∥∥ < 1

4 ,

(ii) supj∈N
∥∥P{j}DQ⊥WV ∗(q−1

1 PΩ1
⊕ · · · ⊕ q−1

r PΩr )V Q
⊥
WD

∗P{j}
∥∥ < 5

4 ,

and that there exists ρ = V ∗PΩw and L > 0 with the following properties.

(iii) ‖D∗P∆sgn(P∆Dx)−QWρ‖ ≤ q1/2/8,

(iv)
∥∥P⊥∆DQ⊥Wρ∥∥`∞ ≤ 1/2,

(v) ‖w‖`2 ≤ L
√
κ.

Let y ∈ `2(N) be such that ‖PΩV f − y‖ ≤ δ. Then, any minimizer f̂ ∈ H of (3.2) satisfies∥∥∥f − f̂∥∥∥
H

. δ
(
q−1/2 + L

√
κ
)

+
∥∥P⊥∆Df∥∥`1 . (6.1)
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Proof. Since D is an isometry, D∗D is the identity on H. Given any g ∈ H,

Q⊥Wg = Q⊥WD
∗Dg = Q⊥WD

∗P⊥∆Dg, (6.2)

since QW is the orthogonal projection onto R(D∗P∆). So, using the assumption that ‖D‖H→`2 ≤ 1, for
any g ∈ H,

‖g‖ ≤ ‖QWg‖+
∥∥Q⊥Wg∥∥ ≤ ‖QWg‖H +

∥∥P⊥∆Dg∥∥`1 .
Now, let h = f − f̂ . To bound ‖h‖H, it suffices to derive bounds for ‖QWh‖ and

∥∥P⊥∆Dh∥∥`1 .

Let VΩ,q = QWV
∗(q−1

1 PΩ1
⊕ · · · ⊕ q−1

r PΩr )V QW . We first observe that (i) implies that VΩ,q has a
bounded inverse on QW(H), with∥∥(QWV

∗(q−1
1 PΩ1

⊕ · · · ⊕ q−1
r PΩr )V QW)−1

∥∥
H→H ≤

4

3
,

and ∥∥∥(q
−1/2
1 PΩ1 ⊕ · · · ⊕ q−1/2

r PΩr )V QW

∥∥∥ ≤√5

4
.

Observe also that
‖PΩV h‖ ≤ ‖PΩV f − y‖+ ‖PΩV f̂ − y‖ ≤ 2δ.

By applying the above observations, we have that

‖QWh‖ =
∥∥∥V −1

Ω,qVΩ,qh
∥∥∥

≤
∥∥∥V −1

Ω,q

∥∥∥
H

∥∥QWV ∗(q−1
1 PΩ1

⊕ · · · ⊕ q−1
r PΩr )V (h−Q⊥W)h

∥∥
≤ 4

3

(
√

5 q−1/2 δ +

√
5

4

∥∥∥(q
−1/2
1 PΩ1

⊕ · · · ⊕ q−1/2
r PΩr )V Q

⊥
Wh
∥∥∥) .

(6.3)

Also, by (ii),∥∥∥(q
−1/2
1 PΩ1

⊕ · · · ⊕ q−1/2
r PΩr )V Q

⊥
Wh
∥∥∥ =

∥∥∥(q
−1/2
1 PΩ1

⊕ · · · ⊕ q−1/2
r PΩr )V Q

⊥
WD

∗P⊥∆Dh
∥∥∥
`2

≤ sup
j∈∆c

∥∥∥(q
−1/2
1 PΩ1

⊕ · · · ⊕ q−1/2
r PΩr )V Q

⊥
WD

∗ej

∥∥∥
`2

∥∥P⊥∆Dh∥∥`1 ≤
√

5

4

∥∥P⊥∆Dh∥∥`1 .
Plugging this into (6.3) yields

‖QWh‖H ≤ 2
(
q−1/2 δ +

∥∥P⊥∆Dh∥∥`1) . (6.4)

So, to bound ‖h‖H, it suffices to bound
∥∥P⊥∆Dh∥∥`1 .

Observe that

‖Df̂‖`1 = ‖P⊥∆D(f + h)‖`1 + ‖P∆D(f + h)‖`1
≥
∥∥P⊥∆Dh∥∥`1 − ∥∥P⊥∆Df∥∥`1 + ‖P∆Df‖1 + Re 〈P∆Dh, sgn(P∆Df)〉

=
∥∥P⊥∆Dh∥∥`1 − 2

∥∥P⊥∆Df∥∥`1 + ‖Df‖1 + Re 〈P∆Dh, sgn(P∆Df)〉.

Since f̂ is a minimizer, we can deduce that∥∥P⊥∆Dh∥∥`1 ≤ |〈P∆Dh, sgn(P∆Df)〉|+ 2
∥∥P⊥∆Df∥∥`1 .

Using the existence of ρ = V ∗PΩw and recalling that Q⊥W = Q⊥WD
∗P⊥∆D from (6.2), we have that

|〈P∆Dh, sgn(P∆Df)〉| = |〈h,D∗sgn(P∆Df)〉|
≤ |〈h,D∗sgn(P∆Df)−QWρ〉|+ |〈h, ρ〉|+

∣∣〈h,Q⊥Wρ〉∣∣
≤ ‖QWh‖H‖D

∗sgn(P∆Df)−QWρ‖H + ‖PΩV h‖`2‖w‖`2 +
∣∣〈D∗P⊥∆Dh,Q⊥Wρ〉∣∣

≤
√
q

8
‖QWh‖H + 2δ L

√
κ+

1

4

∥∥P⊥∆Dh∥∥`1
≤ δ

(
1

4
+ 2L

√
κ

)
+

3

4

∥∥P⊥∆Dh∥∥`1 ,
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where we have used the bound on ‖QWh‖H from (6.4) to obtain the last inequality. Therefore,∥∥P⊥∆Dh∥∥`1 ≤ 8
∥∥P⊥∆Df∥∥`1 + δ

(
1 + 8L

√
κ
)
.

Finally, combining this with (6.4) yields

‖h‖H ≤ δ
(

2q−1/2 + 3
(
1 + 8L

√
κ
))

+ 16
∥∥P⊥∆Df∥∥`1 .

Proposition 6.2 (Dual certificate for the unconstrained problem). Consider the setting of Proposition

6.1 and assume that conditions (i)-(v) are satisfied. Let α > 0 and suppose that f̂ ∈ H is a minimizer of

inf
g∈H

α‖Dg‖`1 + ‖PΩV g − y‖2`2 ,

where y ∈ `2(N) is such that ‖PΩV f − y‖ ≤ δ. Then,∥∥∥f − f̂∥∥∥
H

.
δ2

α
+ α

(
1
√
q

+ L
√
κ

)2

+ δ

(
1
√
q

+ L
√
κ

)
+
∥∥P⊥∆Df∥∥`1 .

Thus, if α =
√
qδ, then ∥∥∥f − f̂∥∥∥

H
. δ

(
1
√
q

+ L
√
κ+
√
qL2κ

)
+
∥∥P⊥∆Df∥∥`1 .

Proof. Let h = f − f̂ , just as in Proposition 6.1,

‖h‖H ≤ ‖QWh‖H +
∥∥P⊥∆Dh∥∥`1

and it suffices to bound the two terms on the right side of the inequality. We first consider ‖QWh‖H.
By applying assumptions (i) and (ii), we can proceed as in the proof of Proposition 6.1 to derive

‖QWh‖H ≤
4

3

(√
3

2
q−1/2‖PΩV h‖`2 +

5

4

∥∥P⊥∆Dh∥∥`1
)
. (6.5)

Then, by letting λ =
∥∥∥y − PΩV f̂

∥∥∥
`2

and observing that

‖PΩV h‖`2 ≤ ‖PΩV f − y‖`2 +
∥∥∥PΩV f̂ − y

∥∥∥
`2
≤ δ + λ,

we have that

‖QWh‖H ≤
4

3

(√
3

2
q−1/2(δ + λ) +

5

4

∥∥P⊥∆Dh∥∥`1
)

≤ 2

(
(δ + λ)
√
q

+
∥∥P⊥∆Dh∥∥`1) .

(6.6)

To bound
∥∥P⊥∆Dh∥∥`1 , first observe that

α
∥∥∥Df̂∥∥∥

`1
≥α
∥∥P⊥∆Dh∥∥`1 − 2α

∥∥P⊥∆Df∥∥`1 + α‖Df‖`1 + αRe 〈P∆Dh, sgn(P∆Df)〉

+ λ2 − λ2 + ‖y − PΩV f‖2`2 − δ
2.

Since f̂ is a minimizer, it follows that α
∥∥∥Df̂∥∥∥

`1
+ λ2 ≤ α‖Df‖`1 + ‖y − PΩV f‖2`2 and therefore,

α
∥∥P⊥∆Dh∥∥`1 + λ2 ≤ 2α

∥∥P⊥∆Df∥∥`1 + α |〈P∆Dh, sgn(P∆Df)〉|+ δ2. (6.7)

23



In the same way as in the proof of Proposition 6.1, we may apply the properties of the dual certificate
ρ = V ∗PΩw to bound |〈P∆Dh, sgn(P∆Df)〉|, so that the following holds.

|〈P∆Dh, sgn(P∆Df)〉| ≤
√
q

8
‖QWh‖H + ‖PΩV h‖`2‖w‖`2 +

1

4

∥∥P⊥∆Dh∥∥`1 .
By inserting the bound from (6.6), recalling that ‖PΩV h‖`2 ≤ δ + λ and that ‖w‖`2 ≤ L

√
κ, it follows

that

|〈P∆Dh, sgn(P∆Df)〉| ≤ (δ + λ)

(
1

4
+ L
√
κ

)
+

1

2

∥∥P⊥∆Dh∥∥`1 .
Plugging this bound into (6.7) now yields

λ2 +
α

2

∥∥P⊥∆Dh∥∥`1 ≤ 2α
∥∥P⊥∆Df∥∥`1 + α(δ + λ)

(
1

4
+ L
√
κ

)
+ δ2. (6.8)

This implies that

λ2 − α
(

1

4
+ L
√
κ

)
λ− δ2 − αδ

(
1

4
+ L
√
κ

)
≤ 0

and by applying the quadratic formula and observing that λ ≥ 0, it follows that

λ ≤
α/4 + Lα

√
κ+

√
(α/4 + Lα

√
κ)2 + 4

(
δ2 + αδ(1/4 + L

√
κ) + 2α

∥∥P⊥∆Df∥∥`1)
2

.

Note that ‖·‖`2 ≤ ‖·‖`1 , and so,

λ ≤ α/4 + Lα
√
κ+ δ +

√
αδ(1/4 + L

√
κ) +

√
2α
∥∥P⊥∆Df∥∥`1

≤ α/4 + Lα
√
κ+ δ + α(1/8 + L

√
κ/2) + δ/2 +

√
2α
∥∥P⊥∆Df∥∥`1

=
3α

2
(1/4 + L

√
κ) +

3δ

2
+
√

2α
∥∥P⊥∆Df∥∥`1 ,

(6.9)

where the second inequality comes from the fact that
√
ab ≤ (a + b)/2 for any a, b ≥ 0. We also know

from (6.8) that ∥∥P⊥∆Dh∥∥`1 ≤ 4
∥∥P⊥∆Df∥∥`1 + (δ + λ)

(
1

2
+ 2L

√
κ

)
+

2δ2

α
.

By combining this with the bound from (6.6),

‖h‖H ≤ ‖QWh‖H +
∥∥P⊥∆Dh∥∥`1

≤ 3

(
4
∥∥P⊥∆Df∥∥`1 + δ

(
1

2
+ 2L

√
κ

)
+

2δ2

α

)
+

2δ
√
q

+

(
2
√
q

+ 3

(
1

2
+ 2L

√
κ

))
λ

.
∥∥P⊥∆Df∥∥`1 + δ(1 + L

√
κ) +

δ2

α
+

δ
√
q

+

(
1
√
q

+ 1 + L
√
κ

)
λ.

Recalling (6.9),(
1
√
q

+ 1 + L
√
κ

)
λ .

(
1
√
q

+ 1 + L
√
κ

)(
α(1 + L

√
κ) + δ +

√
α
∥∥P⊥∆Df∥∥`1

)
.

(
1
√
q

+ 1 + L
√
κ

)(
α(1 + L

√
κ) + δ

)
+
α

q
+
∥∥P⊥∆Df∥∥`1 + α(1 + L

√
κ)

≤ α
(

1
√
q

+ 1 + L
√
κ

)2

+ δ

(
1
√
q

+ 1 + L
√
κ

)
+
∥∥P⊥∆Df∥∥`1 .

Therefore,

‖h‖H ≤
δ2

α
+ α

(
1
√
q

+ 1 + L
√
κ

)2

+ δ

(
1
√
q

+ 1 + L
√
κ

)
+
∥∥P⊥∆Df∥∥`1 .
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7 Overview of the proof of Theorem 4.4

The remainder of this paper is focussed on the proof of Theorem 4.4, and we begin by setting some
notation which will be used throughout.

Let V,D ∈ B(H, `2(N)) be isometries. Let f ∈ H. For r ∈ N, M ∈ N and N ∈ N, let N = {Nk}rk=1 ∈
Nr, M = {Mk}rk=1 ∈ Nr, s = {sk}rk=1 ∈ Nr, m = {mk}rk=1 ∈ Nr, with

• 0 = M0 < M1 < · · · < Mr =: M , and let Γk = (Mk−1,Mk] ∩ N and Ωk ∼ Ber(qk,Γk).

• 0 = N0 < N1 < · · · < Nr =: N , and let Λk = (Nk−1, Nk] ∩ N for k = 1, . . . , r − 1 and Λr =
(Nr−1,∞) ∩ N.

• mk ≤Mk −Mk−1 and let q = {qj}rj=1 ∈ (0, 1]r with qj = mj/(Mj −Mj−1).

• sk ≤ Nk−Nk−1 and let ∆ ⊂ [N ] be such that |∆| = s1 + · · ·+sr =: s and ∆k = Λk∩∆, |∆k| = sk.
Let W = R(D∗P∆).

For some p ∈ (0, 1], we will write κ = {κj}rj=1 with κl = κl(N, s, p) and κ̂l = κ̂l(N,M,κ) for each

l = 1, . . . , r. Let κmin = rminrl=1 κl and κmax = rmaxrl=1 κl. Note that κmin ≤
∑r
l=1 κj ≤ κmax.

We also define T ∈ B(`2(N), `2(N)) such that given any x = (xj)j∈N ∈ `2(N),

Tx = y, yj =
xj

max
{

1,
√
rκk
} , j ∈ Λk, k = 1, . . . , r.

Observe that T is an invertible operator, ‖T‖ ≤ 1/
√
κmin and

∥∥T−1
∥∥ ≤ √κmax.

7.1 Outline of the proof

To prove Theorem 4.4, it suffices to show that conditions (i)-(v) of Proposition 6.1 are satisfied with high
probability whenever the sampling scheme is the multilevel sampling scheme Ω = ΩM,m described in
Theorem 4.4. To this end, we first remark that it has become customary in compressed sensing theory
to deduce recovery statements for uniform sampling models by first proving statements based on some
alternative sampling model which is easier to analyse. One approach, considered in [8, 2, 1] is to consider
a Bernoulli sampling model, defined below.

Definition 7.1. Let M = {Mk}rk=1 with 0 = M0 < M1 < · · · < Mr. Let ΩBer
M,m := ΩBer

1 ∪ · · · ∪ ΩBer
r ,

where ΩBer
k := {δj · j : j ∈ Γk} with Γk = N∩ (Mk−1, · · · ,Mk], and δj are independent random variables

such that P(δj = 1) = mk/(Mk − Mk−1) and P(δj = 0) = 1 − mk/(Mk − Mk−1). The Bernoulli
sampling set ΩBer

k described will be denoted by ΩBer
k ∼ Ber(mk/(Mk − Mk−1),Γk) and we say that

ΩBer
M,m = ΩBer

1 ∪ · · · ∪ ΩBer
r is a Bernoulli (M,m)-sampling scheme.

As explained in [8, II.C] (see also [19]), the probability that one of the conditions of Proposition
6.1 fails for Ω = ΩM,m chosen uniformly at random is up to a constant bounded from above by the
probability that one of these conditions fails under the Bernoulli (M,m)-sampling scheme, Ω = ΩBer

M,m.
So, to prove Theorem 4.4, it suffices to show that conditions (i) to (v) of Proposition 6.1 hold with

probability exceeding (1− ε) with Ω = ΩBer
M,m satisfying the following assumption.

Assumption 7.2. Let L =
(
log(ε−1) + 1

)
log(M̃q−1κ

1/2
max‖DD∗‖`∞→`∞) and

B = max

∥∥DQ⊥WD∗∥∥`∞→`∞ ,
√√√√‖DQWD∗‖`∞→`∞ r

max
l=1

{
r∑
t=1

∥∥PΛlDQR(D∗P∆)D∗PΛt

∥∥
`∞→`∞

} .

Let

M̃ = min

{
i ∈ N : max

j≥i

∥∥P[M ]V D
∗ej
∥∥
`2
≤ q

8
√
κmax

, max
j≥i

∥∥∥QR(D∗P[N])D
∗ej

∥∥∥ ≤ √5q

4

}
,

Suppose that
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(a)
∥∥∥DQWV ∗P⊥[M ]V QWD

∥∥∥
`2→`2

≤
√

κmin

2κmax
log−1/2(4q−1√κmaxM̃).

(b)
∥∥DQ⊥WV ∗P[M ]V QWD

∗T−1
∥∥
`2→`∞ ≤

1
8
√
κmax

.

(c) For k = 1, . . . , r,

qk &
√
rLB

r∑
l=1

µ2
N,M(k, l)κl.

(d) For k = 1, . . . , r, qk ≥ L q̂k with {q̂k}rk=1 satisfying

1 & r B2
r∑

k=1

(q̂−1
k − 1)µ2

N,M(k, j) κ̂k, j = 1, . . . , r.

Note that this assumption is strictly weaker than the assumptions of Theorem 4.4, and by showing
that conditions (i) to (v) of Proposition 6.1, we will prove that the error bound (6.1) holds for one
support set ∆. So, by ensuring that the conditions of this assumption hold over all ∆ sets which are
(N, s) sparse patterns (as required by Theorem 4.4), we can conclude that (6.1) holds for any (N, s)
sparse support sets.

Under this assumption,

• §9 will show that conditions (iii) to (v) of Proposition 6.1 are satisfied with probability exceeding
1− 5ε/6;

• §10 will show that conditions (i) and (ii) of Proposition 6.1 are satisfied with probability exceeding
1− ε/6;

• §8 will present some preliminary results for use in §9 and §10.

The proof of Corollary 4.5 Once we have shown that the conditions of Proposition 6.1 hold with
probability exceeding 1− ε, the conclusion of Proposition 6.2 automatically follows and we may conclude
Corollary 4.5.

8 Preliminary results

In this section, we present four propositions which will be applied to show that the conditions of Proposi-
tion 6.1 are satisfied with high probability under the conditions of Theorem 4.4 with a Bernoulli sampling
scheme. The results in this section are derived using Talagrand’s inequality and Bernstein inequalities
(for random variables and random matrices) which we state below.

Theorem 8.1. (Talagrand [32, Cor. 7.8]) There exists a number K with the following property. Consider
n independent random variables Xi valued in a measurable space Ω and let F be a (countable) class of
measurable functions on Ω. Let Z be the random variable Z = supf∈F

∑
i≤n f(Xi) and define

S = sup
f∈F
‖f‖∞, V = sup

f∈F
E

∑
i≤n

f(Xi)
2

 .

If E(f(Xi)) = 0 for all f ∈ F and i ≤ n, then, for each t > 0, we have

P(|Z − E(Z)| ≥ t) ≤ 3 exp

(
− 1

K

t

S
log

(
1 +

tS

V + SE(Z)

))
,

where Z = supf∈F |
∑
i≤n f(Xi)|.
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Theorem 8.2 (Bernstein inequality for random variables [19]). Let Z1, . . . , ZM ∈ C be independent
random variables with zero mean such that |Zj | ≤ K almost surely for all l = 1, . . . ,M and some

constant K > 0. Assume also that
∑M
j=1 E |Zj |

2 ≤ σ2 for some constant σ2 > 0. Then for t > 0,

P

∣∣∣∣∣∣
M∑
j=1

Zj

∣∣∣∣∣∣ ≥ t
 ≤ 4 exp

(
− t2/4

σ2 +Kt/(3
√

2)

)
.

If Z1, . . . , ZM ∈ R are real instead of complex random variables, then

P

∣∣∣∣∣∣
M∑
j=1

Zj

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
− t2/2

σ2 +Kt/3

)
.

Theorem 8.3 (Bernstein inequality for rectangular matrices [40]). Let Z1, . . . , ZM ∈ Cd1×d2 be inde-
pendent random matrices such that EZj = 0 for each j = 1, . . . ,M and ‖Zj‖2→2 ≤ K almost surely for
each j = 1, . . . ,M and some constant K > 0. Let

σ2 := max


∥∥∥∥∥∥
M∑
j=1

E(ZjZ
∗
j )

∥∥∥∥∥∥
`2→`2

,

∥∥∥∥∥∥
M∑
j=1

E(Z∗jZj)

∥∥∥∥∥∥
`2→`2

 .

Then, for t > 0,

P

∥∥∥∥∥∥
M∑
j=1

Zj

∥∥∥∥∥∥
`2→`2

≥ t

 ≤ 2(d1 + d2) exp

(
−t2/2

σ2 +Kt/3

)
Proposition 8.4. Let g ∈ W and let α > 0 and γ ∈ [0, 1]. Suppose that∥∥TD(QWV

∗P[M ]V QW −QW)D∗T−1
∥∥
`2→`2 ≤ α/2. (8.1)

Then
P
(∥∥TD(QWV

∗(q−1
1 PΩ1

⊕ · · · ⊕ q−1
r PΩr )V QW −QW)g

∥∥
`2
≥ α‖TDg‖`2

)
≤ γ

provided that
√
rB̃ log

(
3

γ

) r∑
l=1

µ2
N,M(k, l)κl . α, k = 1, . . . , r, (8.2)

and

rB̃2 log

(
3

γ

) r∑
k=1

(q−1
k − 1)µ2

N,M(k, l) κ̂k . α2, l = 1, . . . , r, (8.3)

where

B̃2 = ‖DQWD∗‖`∞→`∞
r

max
l=1

r∑
t=1

‖PΛlDQWD
∗PΛt‖`∞→`∞ .

Proof. Without loss of generality, assume that ‖TDg‖`2 = 1. Let {δj}Mj=1 be random Bernoulli variables

such that P(δj = 1) = q̃j where q̃j = qk for j = Mk−1 + 1, . . . ,Mk. Then,

TD(QWV
∗(q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr )V QW −QW)g

=

M∑
j=1

(q̃−1
j δj − 1)TDQWV

∗(ej ⊗ ej)V QWg + TD(QWV
∗P[M ]V QW −QW)g,

where ⊗ is the Kronecker product. Since D∗D = I and since (8.1) holds by assumption,∥∥TD(QWV
∗P[M ]V QW −QW)g

∥∥
`2

=
∥∥TD(QWV

∗P[M ]V QW −QW)D∗T−1TDg
∥∥
`2

≤
∥∥TD(QWV

∗P[M ]V QW −QW)D∗T−1
∥∥
`2→`2 ≤ α/2.
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So, it suffices to show that

P

∥∥∥∥∥∥
M∑
j=1

Yj

∥∥∥∥∥∥
`2

≥ α/2

 ≤ γ,
where for each j = 1, . . . ,M , Yj = (q̃−1

j δj − 1)DQWV
∗(ej ⊗ ej)V g. We will aim to apply Talagrand’s

inequality (Theorem 8.1) to obtain this probability bound.
Let G be a countable set of vectors in the unit ball of `2(N) and for each ζ ∈ G, define the linear

functionals ζ̂1, ζ̂2 : `2(N)→ R by

ζ̂1(y) = Re 〈y, ζ〉, ζ̂2(y) = −Re 〈y, ζ〉, ∀y ∈ `2(N).

Let F =
{
ζ̂1, ζ̂2 : ζ ∈ G

}
. Then, Z := supf∈F

∑M
j=1 f(Yj) =

∥∥∥∑M
j=1 Yj

∥∥∥
`2

.

• To bound S = maxj ‖Yj‖`2 :

‖Yj‖`2 ≤ q̃
−1
j ‖TDQWV

∗(ej ⊗ ej)V g‖`2 = q̃−1
j sup
‖x‖`2=1

|〈TDQWV ∗(ej ⊗ ej)V g, x〉|

= q̃−1
j sup
‖x‖`2=1

|〈V g, ej〉〈TDQWV ∗ej , x〉|

For each j ∈ Γk,

|〈V g, ej〉| = |〈V D∗Dg, ej〉| ≤
r∑
l=1

|〈V D∗PΛlDg, ej〉| ≤
r∑
l=1

µ(PΓkV D
∗PΛl)‖PΛlDg‖`1 .

Observe that ‖TDg‖`2 = 1 implies ‖PΛlDg‖`2 ≤
√
rκl for each l = 1, . . . , r. Furthermore, by (4)

of Corollary 5.4, this implies that ‖PΛlDg‖`1 ≤ κl
√
r. So, it follows that

|〈V g, ej〉| ≤
√
r

r∑
l=1

µ(PΓkV D
∗PΛl)κl.

Also, if ‖x‖`2 = 1,

|〈TDQWV ∗ej , x〉|2 ≤
r∑
l=1

‖PΛlTDQWV
∗ej‖2`2 =

r∑
l=1

1

rκl
‖PΛlDQWD

∗DV ∗ej‖2`2

≤
r∑
l=1

1

rκl
‖PΛlDQWD

∗‖2`∞→`2‖DV
∗ej‖2`∞ ≤ ‖DQWD

∗‖2`∞→`∞µ
2(PΓkV D),

(8.4)

where the last inequality follows because ‖PΛlDf‖
2
`2 ≤ κl for all f ∈ W with ‖Df‖`∞ ≤ 1.

Therefore,

max
j
‖Yj‖`2 ≤

r
max
k=1
‖DQWD∗‖`∞→`∞

√
r

r∑
l=1

µ2
N,M(k, l)κl.

• To bound V = supf∈F E
∑M
j=1 f(Yj)

2 = supζ∈G E
∑M
j=1 |〈ζ, Yj〉|

2
:

V ≤ sup
ζ∈G

M∑
j=1

(q̃−1
j − 1) |〈ej , V g〉|2 |〈V ∗ej , QWD∗Tζ〉|2

≤ sup
ζ∈G

r∑
k=1

(q−1
k − 1)‖PΓkV g‖

2
`2 max
j∈Γk

|〈V ∗ej , QWD∗Tζ〉|2

≤
r∑

k=1

(q−1
k − 1)‖PΓkV g‖

2
`2 max
j∈Γk

‖TDQWV ∗ej‖2`2 .

(8.5)
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By combining ‖PΛlDg‖`2 ≤
√
rκl (which follows from ‖TDg‖`2 = 1) with the definition of κ̂k, we

obtain ‖PΓkV g‖
2
`2 ≤ rκ̂k. Also, for each j ∈ Γk,

‖TDQWV ∗ej‖2`2 =

r∑
t=1

1

rκt
‖PΛtDQWV

∗ej‖2`2

=

r∑
t=1

1

rκt
‖PΛtDQWD

∗‖`∞→`2‖DV
∗ej‖`∞‖PΛtDQWV

∗ej‖`2

≤
r∑
t=1

1

r
√
κt
‖DQWD∗‖`∞→`∞‖DV

∗ej‖`∞
r∑
l=1

‖PΛtDQWD
∗Λl‖`∞→`2‖PΛlV

∗ej‖`∞

≤
r∑
t=1

1

r
‖DQWD∗‖`∞→`∞

r∑
l=1

‖PΛtDQWD
∗Λl‖`∞→`∞µN,M(k, l)

where we have used, from the definition of the κj ’s, ‖PΛtDf‖`2 ≤
√
κt whenever t = 1, . . . , r,

f ∈ W and ‖Df‖`∞ ≤ 1. Therefore,

V ≤ r‖DQWD∗‖`∞→`∞
r∑
l=1

r∑
k=1

(q−1
k − 1)κ̂kµ

2
N,M(k, l)

r∑
t=1

1

r
‖PΛtDQWD

∗PΛl‖`∞→`∞

≤ rB̃2 r
max
l=1

r∑
k=1

(q−1
k − 1)µ2

N,M(k, l) κ̂k,

where we have applied

1

r
‖DQWD∗‖`∞→`∞

r∑
l=1

r∑
t=1

‖PΛtDQWD
∗PΛl‖`∞→`∞

≤ ‖DQWD∗‖`∞→`∞
r

max
l=1

r∑
t=1

‖PΛlDQWD
∗PΛt‖`∞→`∞ =: B̃2.

• To bound E(Z) = E
∥∥∥∑M

j=1 Yj

∥∥∥:

E


∥∥∥∥∥∥
M∑
j=1

Yj

∥∥∥∥∥∥
2

`2

 =

M∑
j=1

E‖Yj‖2`2 =

M∑
j=1

(q̃−1
j − 1)‖TDQWV ∗ej‖2`2 |〈V g, ej〉|

2

≤
r∑

k=1

(q−1
k − 1)‖PΓkV g‖

2
`2 max
j∈Γk

‖TDQWV ∗ej‖2`2 .

This is the same upper bound as obtained in (8.5), so from the bound on V, we have that

E


∥∥∥∥∥∥
M∑
j=1

Yj

∥∥∥∥∥∥
2

`2

 ≤ B̃2 r
max
l=1

r∑
k=1

(q−1
k − 1)µ2

N,M(k, l) κ̂k.

Finally, by Jensen’s inequality,

E

∥∥∥∥∥∥
M∑
j=1

Yj

∥∥∥∥∥∥ ≤
√√√√√√E


∥∥∥∥∥∥
M∑
j=1

Yj

∥∥∥∥∥∥
2

`2

 ≤
√√√√B̃2 r

max
l=1

r∑
k=1

(q−1
k − 1)µ2

N,M(k, l) κ̂k.

Let C = max {C1, 4C2/α}, where

C1 = ‖DQWD∗‖`∞→`∞
√
r

r
max
k=1

r∑
l=1

µN,M(k, l)κl,
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and

C2 = rB̃2 r
max
l=1

r∑
k=1

(q−1
k − 1)µ2

N,M(k, l) κ̂k.

Note that C ≥ S, αC/4 ≥ V. Suppose that C2 ≤ α2/16, then E(Z) ≤ α/4, since (E(Z))
2 ≤ C2. By

applying Talagrand’s inequality with the upper bound of C ≥ S and E(Z) ≤ α/4,

P
(
Z ≥ α

2

)
≤ P

(
Z ≥ α

4
+ E(Z)

)
≥ P

(
|Z − E(Z)| ≤ α

4

)
≤ 3 exp

(
− α

4KC
log

(
1 +

Cα/4

V + Cα/4

))
≤ 3 exp

(
− α

4KC
log

(
1 +

Cα/4

Cα/4 + Cα/4

))
≤ 3 exp

(
− α

4KC
log

(
3

2

))
,

where K is the constant from Talagrand’s inequality. So, P
(
Z ≥ α

2

)
≤ γ provided that

C log

(
3

γ

)
≤ α

4K
log

(
3

2

)
.

as well as C2 ≤ α2/16. Therefore, the require result would follow provided that

‖DQWD∗‖`∞→`∞
√
r log

(
3

γ

) r∑
l=1

µN,M(k, l)κl ≤
α

4K
log

(
3

2

)
, k = 1, . . . , r,

and

rB̃2 log

(
3

γ

) r∑
k=1

(q−1
k − 1)µ2

N,M(k, l) κ̂k ≤
α2

16
min

{
1,

1

K
log

(
3

2

)}
, l = 1, . . . , r.

Proposition 8.5. Fix g ∈ H and let α > 0 and γ ∈ [0, 1]. Suppose that∥∥DQ⊥WV ∗P[M ]V QWD
∗T−1

∥∥
`2→`∞ ≤

α

2
. (8.6)

Let B =
∥∥DQ⊥WD∗∥∥`∞→`∞ . Let

M̃ = min

{
i ∈ N : max

j≥i
2
√
κmax ·

r
max
k=1

q−1
k ·

∥∥P[M ]V D
∗ej
∥∥
`2
≤ α

}
, κmax = rmax {κj}rj=1 .

Then M̃ is finite and

P
(∥∥P⊥∆DQ⊥WV ∗(q−1

1 PΩ1
⊕ · · · ⊕ q−1

r PΩr )V QWg
∥∥
`∞
≥ α‖TDg‖`2

)
≤ γ,

provided that

√
r B log

(
4M̃

γ

)
q−1
k

r∑
l=1

µ2
N,M(k, l)κl . α, k = 1, . . . , r

and

r B2 log

(
4M̃

γ

)
r∑

k=1

(q−1
k − 1)µ2

N,M(k, j) κ̂k . α2, j = 1, . . . , r.

Proof. Without loss of generality, assume that ‖TDg‖`2 = 1. Let {δj}Mj=1 be random Bernoulli variables

such that P(δj = 1) = q̃j where q̃j = qk for j = Mk−1 + 1, . . . ,Mk. Observe that

Q⊥W = Q⊥WD
∗D = Q⊥WD

∗P⊥∆D,
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so we have that

P⊥∆DQ
⊥
WV

∗(q−1
1 PΩ1 ⊕ · · · ⊕ q−1

r PΩr )V g

=

M∑
j=1

(q̃−1
j δj − 1)P⊥∆DQ

⊥
WD

∗P⊥∆DV
∗(ej ⊗ ej)V g + P⊥∆Q

⊥
WV

∗P[M ]V QWD
∗T−1TDg.

Since
∥∥P⊥∆DQ⊥WV ∗P[M ]V QWD

∗T−1
∥∥
`2→`∞ ≤ α/2, it suffices to show that

P

∥∥∥∥∥∥
M∑
j=1

(q̃−1
j δj − 1)P⊥∆DQ

⊥
WV

∗(ej ⊗ ej)V g

∥∥∥∥∥∥
`∞

> α/2

 ≤ γ.
For each i ∈ ∆c and j = 1, . . . ,M , let

Zij = (q̃−1
j δj − 1)〈P⊥∆DQ⊥WV ∗(ej ⊗ ej)V Dg, ei〉.

For each i ∈ ∆c, we will first apply Bernstein’s inequality (Theorem 8.2) to consider upper bounds for

P
(∣∣∣∑M

j=1 Z
i
j

∣∣∣ ≥ α). Observe that

E
(∣∣Zij∣∣2) = (q̃−1

j − 1)|〈P⊥∆DQ⊥WV ∗(ej ⊗ ej)V g, ei〉|2

= (q̃−1
j − 1)|〈V ∗ej , Q⊥WP⊥∆Dei〉|2|〈ej , V g〉|2.

Let B =
∥∥DQ⊥WD∗∥∥`∞→`∞ , Then,

M∑
j=1

E(
∣∣Zij∣∣2) ≤ sup

‖α‖`1≤B

r∑
k=1

(q−1
k − 1)‖PΓkV D

∗α‖2`∞‖PΓkV g‖
2
`2

≤ B sup
‖α‖`1≤B

r∑
k=1

(q−1
k − 1)µ(PΓkV D

∗)‖PΓkV D
∗α‖`∞‖PΓkV g‖

2
`2

≤ B sup
‖α‖`1≤B

r∑
k=1

(q−1
k − 1)µ(PΓkV D

∗)
∑
l∈N
|αl| ‖PΓkV D

∗el‖`∞‖PΓkV g‖
2
`2

= B sup
‖α‖`1≤B

∑
l∈N
|αl|

r∑
k=1

(q−1
k − 1)µ(PΓkV D

∗)‖PΓkV D
∗el‖`∞‖PΓkV g‖

2
`2

≤ B2 sup
l∈N

r∑
k=1

(q−1
k − 1)µ(PΓkV D

∗)‖PΓkV D
∗el‖`∞‖PΓkV g‖

2
`2

≤ B2 r
max
j=1

r∑
k=1

(q−1
k − 1)µ2

N,M(k, j)‖PΓkV g‖
2
`2

≤ rB2 r
max
j=1

r∑
k=1

(q−1
k − 1)µ2

N,M(k, j)κ̂k =: σ2,

(8.7)

where the last line follows because ‖TDg‖`2 = 1 implies that ‖PΛkDg‖`2 ≤
√
rκk, and by definition of

κ̂k, ‖PΓkV g‖
2
`2 ≤ rκ̂k.

Also, we have that∣∣Zij∣∣ ≤ q̃−1
j |〈V

∗ej , Q
⊥
WD

∗ei〉||〈ej , V D∗Dg〉|

≤ r
max
k=1

q−1
k µ(PΓkV Q

⊥
WD

∗P⊥∆ )

r∑
l=1

µ(PΓkV D
∗PΛl) ‖PΛlDg‖`1

≤
∥∥DQ⊥WD∗∥∥`∞→`∞ r

max
k=1

q−1
k

r∑
l=1

µN,M(k, l) ‖PΛlDg‖`1

≤
√
r
∥∥DQ⊥WD∗∥∥`∞→`∞ r

max
k=1

q−1
k

r∑
l=1

µN,M(k, l)κl =: K,

31



where the last line follows because ‖PΛlDg‖`2 ≤
√
rκl along with (4) of Corollary 5.4 implies that

‖PΛlDg‖`1 ≤
√
rκl.

Let Υ ⊂ N be such that

P

sup
i∈Υ

∣∣∣∣∣∣
M∑
j=1

Zij

∣∣∣∣∣∣ ≥ α
 = 0

and suppose that |Υc| ≤ M̃ . Then, by Theorem 8.2 and the union bound,

P

 sup
i∈∆c

∣∣∣∣∣∣
M∑
j=1

Zij

∣∣∣∣∣∣ ≥ α

2

 ≤ P

 sup
i∈Υc

∣∣∣∣∣∣
M∑
j=1

Zij

∣∣∣∣∣∣ ≥ α

2

 ≤ 4 |Υc| exp

(
− α2/16

σ2 +Kα/(6
√

2)

)
,

which is true provided that

log

(
4M̃

γ

)
σ2 ≤ α2

32
, log

(
4M̃

γ

)
K ≤ α

8
.

which are simply the assumptions of this theorem.
It remains to show that such as set Υc exists: First note that ‖Dg‖ ≤

∥∥T−1
∥∥‖TDg‖ ≤ √κmax with

κmax = rmax {κj}rj=1. So, using the fact that D and V are isometries and hence of norm 1, notice that∣∣∣∣∣∣
M∑
j=1

Zij

∣∣∣∣∣∣ =
∣∣〈(q̃−1

k − 1)P⊥∆DQ
⊥
WV

∗(q−1
1 PΩ1

⊕ · · · ⊕ q−1
r PΩr )V g, ei〉

∣∣
≤ ‖Dg‖`2

∥∥DQWV ∗(q−1
1 Ω1 ⊕ · · · q−1

r Ωr)V Q
⊥
WD

∗P⊥∆ ei
∥∥
`2

≤
√
κmax

r
max
k=1

q−1
k

∥∥P[M ]V Q
⊥
WD

∗ei
∥∥
`2
→ 0

as i→∞ since P[M ]V Q
⊥
WD

∗ is of finite rank. Thus, for α > 0, it suffices to let

Υc :=

{
i ∈ N :

√
κmax

r
max
k=1

q−1
k

∥∥P[M ]V Q
⊥
WD

∗ei
∥∥
`2
≥ α

}
which is a finite set. To conclude this proof, observe that |Υc| ≤ M̃ <∞.

Proposition 8.6. Let α > 0 and γ ∈ [0, 1]. Suppose that∥∥∥QWV ∗P⊥[M ]V QW

∥∥∥
H→H

≤ α/2. (8.8)

Then,
P
(∥∥QWV ∗(q−1

1 PΩ1
⊕ · · · ⊕ q−1

r PΩr )V QW −QWV ∗V QW
∥∥
H→H ≥ α

)
≤ γ,

provided that

qk & α−2 log

(
4M̃

γ

)
r∑
l=1

µ2
N,M(k, l)κl, k = 1, . . . , r.

Proof. Let q̃j = qk for j ∈ Γk. Let {δj}rj=1 be Bernoulli random variables such that P(δj = 1) = q̃j .

∥∥QWV ∗(q−1
1 PΩ1

⊕ · · · ⊕ q−1
r PΩr )V QW −QWV ∗V QW

∥∥ ≤
∥∥∥∥∥∥
M∑
j=1

q̃−1
j δjQWV

∗(ej ⊗ ej)V QW

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
M∑
j=1

(q̃−1
j δj − 1)DQWV

∗(ej ⊗ ej)V QWD∗
∥∥∥∥∥∥+

∥∥∥QWV ∗P⊥[M ]V QW

∥∥∥
≤

∥∥∥∥∥∥
M∑
j=1

(q̃−1
j δj − 1)DQWV

∗(ej ⊗ ej)V QWD∗
∥∥∥∥∥∥+ α/2.
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Let

U =

M∑
j=1

(q̃−1
j δj − 1)(ej ⊗ ej).

Then, for each J ∈ N, ‖DQWV ∗UV QWD‖ is bounded above by∥∥P[J]DQWV
∗UV QWD

∗P[J]

∥∥+
∥∥∥DQWV ∗UV QWD∗P⊥[J]

∥∥∥+
∥∥∥P⊥[J]DQWV

∗UV QWD
∗
∥∥∥

≤
∥∥P[J]DQWV

∗UV QWD
∗P[J]

∥∥+ 2
∥∥∥P⊥[J]DQW

∥∥∥‖U‖
≤
∥∥P[J]DQWV

∗UV QWD
∗P[J]

∥∥+ 2q−1
∥∥∥P⊥[J]DQW

∥∥∥
where q = min {qj}rj=1. Note that since DQW has finite rank,

∥∥∥P⊥[J]DQW

∥∥∥→ 0 as J →∞. Let

M̃ = min
{
j ∈ N : 8

∥∥∥P⊥[j]DQW∥∥∥ ≤ qα} .
Then, it suffices to show that

P
(∥∥∥P[M̃ ]DQWV

∗UV QWD
∗P[M̃ ]

∥∥∥ > α/4
)
≤ γ

For each j = 1, . . . ,M , define Zj = (q̃−1
j δj − 1)P[M̃ ]DQWV

∗(ej ⊗ ej)V QWD∗P[M̃ ]. We will aim to apply
Theorem 8.3 to derive the following.

P

∥∥∥∥∥∥
M∑
j=1

Zj

∥∥∥∥∥∥ ≥ α

4

 ≤ γ.
Notice that {Zj}Mj=1 are independent mean-zero matrices. Let ξj = P[M̃ ]DQWV

∗ej . Then,

‖Zj‖ ≤ q̃−1
j

∥∥ξj ⊗ ξj∥∥ ≤ q̃−1
j ‖ξj‖

2
.

To bound this, note that for each j = 1, . . . ,M ,

‖ξj‖2 = sup
α∈CM̃

|〈DQWV ∗ej , α〉|2 = sup
α∈CM̃ ,‖α‖`2=1

|〈DQWD∗DV ∗ej , α〉|2

≤ sup
α∈CM̃ ,‖α‖`2=1

r∑
l=1

|〈DQWD∗PΛlDV
∗ej , α〉|2

≤ sup
α∈CM̃ ,‖α‖`2=1

r∑
l=1

‖PΛlDV
∗ej‖2`∞‖PΛlDQWD

∗α‖2`1

≤ sup
g∈W,‖g‖=1

r∑
l=1

‖PΛlDV
∗ej‖2`∞‖PΛlDg‖

2
`1 = sup

g∈W,‖g‖=1

r∑
l=1

µ2
N,M(j, l)‖PΛlDg‖

2
`1 .

So, since ‖Dg‖ = 1 implies that ‖PΛlDg‖
2
`1 ≤ κl(N, s) for l = 1, . . . , r by (4) of Corollary 5.4, we have

that

‖Zj‖ ≤
r

max
j=1

q−1
j sup

g∈W

r∑
l=1

µ2
N,M(j, l)κl(N, s) =: K.
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Also, ∥∥∥∥∥∥
M∑
j=1

E(Z∗jZj)

∥∥∥∥∥∥
`2→`2

= sup
‖x‖`2=1

∣∣∣∣∣∣
M∑
j=1

(q̃−1
j − 1)〈(ξj ⊗ ξj)x, (ξj ⊗ ξj)x〉

∣∣∣∣∣∣
= sup
‖x‖=1

∣∣∣∣∣∣
M∑
j=1

(q̃−1
j − 1)〈ξj , ξj〉〈ξj , x〉〈ξj , x〉

∣∣∣∣∣∣
≤ sup
‖x‖=1

(
M

max
k=1

{
(q̃−1
k − 1) ‖ξk‖2

}) M∑
j=1

∣∣∣〈ej , V D∗P[M̃ ]x〉
∣∣∣2

≤ sup
‖x‖=1

(
M

max
k=1

{
(q̃−1
k − 1) ‖ξk‖2

})
‖V D∗‖‖x‖

=
M

max
k=1

{
(q̃−1
k − 1) ‖ξk‖2

}
≤ K.

Thus, by Theorem 8.3,

P
(∥∥QWV ∗(q−1

1 PΩ1 ⊕ · · · ⊕ q−1
r PΩr )V QW −QWV ∗V QW

∥∥
H→H ≥ α

)
≤ 4M̃ exp

(
− α2/8

K +Kα/6

)
≤ γ

provided that

log

(
4M̃

γ

)
K ≤ α2

16
, log

(
4M̃

γ

)
K ≤ α/2, (8.9)

which are implied by the given assumptions.

Proposition 8.7. Let α > 0 and let γ ∈ [0, 1]. Let

M̃ = min

{
i ∈ N : sup

j≥i

∥∥P[M ]V D
∗ej
∥∥
`2

+
∥∥∥QR(D∗P[N])D

∗ej

∥∥∥
`2
<

√
5q

4

}
.

Then M̃ is finite and

P
(

sup
j∈N

∥∥P{j}DQ⊥WV ∗(q−1
1 PΩ1

⊕ · · · ⊕ q−1
r PΩr )V Q

⊥
WD

∗P{j}
∥∥ ≥ 5

4

)
≤ γ

provided that for each k = 1, . . . , r and each j ∈ N,

1 & B2 r
max
j=1

(q−1
k − 1)µN,M(k, j) log

(
2M̃

γ

)
,

where B =
∥∥DQ⊥WD∗∥∥`∞→`∞ .

Proof. Let {δj}Mj=1 be Bernoulli random variables such that P(δj = 1) = q̃j where q̃j = qk for j = Γk.
Observe that for each j ∈ N,∥∥P{j}DQ⊥WV ∗(q−1

1 Ω1 ⊕ · · · ⊕ q−1
r Ωr)V Q

⊥
WD

∗P{j}
∥∥

=

∣∣∣∣∣
M∑
k=1

(q̃−1
k δk − 1)P{j}DQ

⊥
WV

∗(ek ⊗ ek)V Q⊥WD
∗P{j} + P{j}DQ

⊥
WV

∗P[M ]V Q
⊥
WD

∗P{j}

∣∣∣∣∣
≤

∣∣∣∣∣
M∑
k=1

(q̃−1
k δk − 1)

∣∣〈V Q⊥WD∗ej , ek〉∣∣2
∣∣∣∣∣+ 1,
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where we have applied ‖V ‖ = ‖D‖ = 1 in the last line. For each j ∈ N and k = 1, . . . ,M , define

Zjk = (q̃−1
k δk − 1)

∣∣〈V Q⊥WD∗ej , ek〉∣∣2. To prove this proposition, we need to derive conditions under
which

P

(
sup
j∈N

∣∣∣∣∣
M∑
k=1

Zjk

∣∣∣∣∣ ≥ 1

4

)
. (8.10)

We first seek to apply Theorem 8.2 to analyse P
(∣∣∣∑M

k=1 Z
j
k

∣∣∣ > 1
4

)
for each j ∈ N. Observe that∣∣∣Zjk∣∣∣ ≤ sup

j∈N

r
max
l=1

(q−1
l − 1)µ2(PΓlV Q

⊥
WD

∗P{j}) =: K,

and

M∑
k=1

E(|Zjk|
2) =

M∑
k=1

(q̃−1
k − 1)

∣∣〈V Q⊥WD∗ej , ek〉∣∣4
≤ r

max
l=1

(q−1
l − 1)µ2(PΓlV Q

⊥
WD

∗P{j})
∥∥V Q⊥WD∗ej∥∥2

`2

≤ sup
j∈N

r
max
l=1

(q−1
l − 1)µ(PΓlV Q

⊥
WD

∗P{j})
2 =: σ2.

Thus, by applying Theorem 8.2,

P

∣∣∣∣∣
r∑

k=1

Zjk

∣∣∣∣∣
2

≥ 1

4

 ≤ 2 exp

(
− 1/32

σ2 +K/12

)
.

In order to use this to bound (8.10), we will proceed as in Proposition 8.5 to show that there exists Υ
be such that Υc is a finite set and

P
(

sup
j∈Υ

∥∥P{j}DQ⊥WV ∗(q−1
1 Ω1 ⊕ · · · ⊕ q−1

r Ωr)V Q
⊥
WD

∗P{j}
∥∥
`2→`2 ≥

5

4

)
= 0.

Let q = min {qk : k = 1, . . . , r}. Since P[M ]V D
∗ and QR(D∗P[N])D

∗ are both of finite rank,∥∥P{j}DQ⊥WV ∗(q−1
1 Ω1 ⊕ · · · ⊕ q−1

r Ωr)V Q
⊥
WD

∗P{j}
∥∥
`2→`2

≤ 1

q

∥∥P[M ]V Q
⊥
WD

∗ej
∥∥2

`2
≤ 1

q

(∥∥P[M ]V D
∗ej
∥∥
`2

+
∥∥∥QR(D∗P[N])D

∗ej

∥∥∥
`2

)2

→ 0

as j →∞. Therefore, it suffices to let

Υc =

{
j ∈ N :

∥∥P[M ]V D
∗ej
∥∥
`2

+
∥∥∥QR(D∗P[N])D

∗ej

∥∥∥
`2
>

√
5q

4

}

which is a finite set. Observe also that |Υc| ≤ M̃ <∞. Therefore, by applying the union bound,

P
(

sup
j∈N

∥∥P{j}DQ⊥WV ∗(q−1
1 Ω1 ⊕ · · · ⊕ q−1

r Ωr)V Q
⊥
WD

∗P{j}
∥∥ ≥ 5

4

)
≤ 2M̃ exp

(
− 1/32

σ2 +K/12

)
.

Thus, it suffices to let, for each k = 1, . . . , r and each j ∈ N,

1 & (q−1
k − 1)µ(PΓkV Q

⊥
WD

∗ej)
2 log

(
2M̃

γ

)
.

35



Let B =
∥∥DQ⊥WD∗ej∥∥`1 . Finally, the following observation concludes the proof of this proposition.

(q−1
k − 1)µ(PΓkV Q

⊥
WD

∗ej)
2 log

(
2M̃

γ

)

≤ B sup
‖α‖`1≤B

(q−1
k − 1)µ(PΓkV D

∗)‖PΓkV D
∗α‖`∞ log

(
2M̃

γ

)

≤ B sup
‖α‖`1≤B

∑
j∈N
|αj | (q−1

k − 1)µ(PΓkV D
∗)‖PΓkV D

∗ej‖`∞ log

(
2M̃

γ

)

≤ B2 r
max
j=1

(q−1
k − 1)µ2

N,M(k, j) log

(
2M̃

γ

)
.

9 Constructing the dual certificate

This section will show that, with high probability, one can construct ρ ∈ R(V ∗PΩ) which satisfies
conditions (iii) to (v) of Proposition 6.1 if Ω = ΩBer

M,m is a Bernoulli multilevel sampling scheme satisfying
Assumption 7.2.

As explained in [1], the sampling model of Ω = Ω1 ∪ · · · ∪ Ωr with Ωi ∼ Ber(qk,Γk) is equivalent to
the following sampling model. Ω = Ω1 ∪ · · ·Ωr with

Ωk = Ω1
k ∪ · · ·Ω

µ
k , Ωjk ∼ Ber(qjk,Γk), k = 1, . . . , r, j = 1, . . . , µ,

for µ ∈ N and
{
qjk

}µ
j=1

such that

(1− q1
k)(1− qrk) · · · (1− qµk ) = 1− qk. (9.1)

We will consider this alternative sampling model throughout this section so that we can apply the golfing
scheme of [25] to construct the dual certificate described in Proposition 6.3. This section consists of the
following steps:

1. Define the dual certificate.

2. Show that the constructed dual certificate satisfies conditions (iii) to (v) of Proposition 6.1 provided
that certain events occur.

3. Show that the events described in step 2 occur with high probability.

Definition of the dual certificate Let γ = ε/6. Let L = log(4q−1
√
κM̃‖DD∗‖`∞→`∞). Define

µ, ν ∈ N, {αj}µj=1 and {βj}µj=1 as follows.

µ = 8d3ν + log(γ−1/2)e, ν = log
(

8q−1√κmaxM̃‖DD∗‖`∞→`∞
)
,

q1
k = q1

k =
1

4
qk, q̃k = q3

k = · · · = qµk , k = 1, . . . , r,

α1 = α2 =
1

2L1/2
, αi =

1

2
, i = 3, . . . , µ,

β1 = β2 =
1

4
, βi =

L
4
, i = 3, . . . , µ.

For j = 1, . . . , µ, define Uj : B(`2(N), `2(N)) by

Uj =
1

qj1
PΩj1
⊕ · · · ⊕ 1

qjr
PΩjr

.
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Let Z0 = D∗sgn(P∆Df) and for i = 1, 2, define

Zi = Z0 −QWYi, Yi =

i∑
j=1

V ∗UjV Zj−1.

Let Θ1 = {1}, Θ2 = {1, 2} and for i ≥ 3, define

Θi =


Θi−1 ∪ {i} ‖TD(Zi−1 − V ∗UiV Zi−1)‖`2 ≤ αi‖TDZi−1‖`2∥∥P⊥∆DQ⊥WV ∗UiV Zi−1

∥∥
`∞
≤ βi‖TDZi−1‖`2

Θi−1 otherwise.

Yi =

{∑
j∈Θi

V ∗UjV Zj−1 i ∈ Θi

Yi−1 otherwise.

Zi =

{
Z0 −QWYi i ∈ Θi

Zi−1 otherwise.

Note that Zi ∈ W for each i = 1, . . . , µ. Define the following events.

Ai : ‖TD(Zi−1 − V ∗UiV Zi−1)‖`2 ≤ αi‖TDZi−1‖`2 , i = 1, 2,

Bi :
∥∥P⊥∆DQ⊥WV ∗UiV Zi−1

∥∥
`∞
≤ βi‖TDZi−1‖`2 , i = 1, 2,

B3 : |Θµ| ≥ ν,
B4 : ∩2

i=1 Ai ∩ ∩3
i=1Bi.

Let τ(j) denote the jth element of Θµ (in order of appearance).

Properties of the dual certificate Suppose that B4 occurs, and let ρ = Yτ(ν). By definition,
ρ = V ∗PΩw for some w ∈ `2(N). We now show that ρ satisfies (iii) and (iv) of Proposition 6.1 and derive
an upper bound on ‖w‖`2 . By definition,

Zτ(i) = Z0 −QW
∑
j∈Θ(i)

V ∗UjV Zj−1 = (QW −QWV ∗Uτ(i)V )Zτ(i−1). (9.2)

1. Since D∗D = I, by construction of ρ,

‖Z0 −QWρ‖ =
∥∥Z0 −QWYτ(ν)

∥∥ =
∥∥Zτ(ν)

∥∥
=
∥∥D∗D(QW −QWV ∗Uτ(ν)V QW)Zτ(ν−1)

∥∥
=
∥∥T−1TD(QW −QWV ∗Uτ(ν)V QW)Zτ(ν−1)

∥∥.
Recalling the definition of (αi)

µ
i=1 and recalling that κmax = rmax {κj} and

∥∥T−1
∥∥ ≤ √κmax , it

follows that

‖Z0 −QWρ‖ ≤
√
rκ
∥∥TD (Zτ(ν−1) − V ∗Uτ(ν)V QWZτ(ν−1)

)∥∥
`2

≤
√
κmax ατ(ν)

∥∥TDZτ(ν−1)

∥∥
`2

≤
√
κmax ‖TDZ0‖`2

ν∏
j=1

ατ(j)

≤
√
κmax ‖DD∗‖`∞→`∞

ν∏
j=1

ατ(j)

≤
√
κmax ‖DD∗‖`∞→`∞ 2−ν ≤

√
q

8
,
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by our choice of ν. Note that to get from the third line to the forth line, we observe that ‖DZ0‖`∞ ≤
‖DD∗‖`∞→`∞ , then recall from (3) of Corollary 5.4 that

∥∥PΛjDg
∥∥2

`2
≤ κj for all g = D∗P∆x with

‖Dg‖`∞ ≤ 1. Therefore,

‖TDZ0‖2`2 =

r∑
j=1

∥∥PΛjDZ0

∥∥
rκj

≤ ‖DD∗‖`∞→`∞ .

2. Recalling our definition of (βj)
µ
j=1 and the estimate used in the previous step to bound

∥∥TDZτ(j)

∥∥
`2

,

∥∥P⊥∆DQ⊥Wρ∥∥`∞ ≤ ν∑
j=1

∥∥P⊥∆DQ⊥WV ∗Uτ(j)V QWZτ(j−1)

∥∥
`∞

≤
ν∑
j=1

βτ(j)

∥∥TDZτ(j−1)

∥∥
`2

≤ ‖DD∗‖`∞→`∞
ν∑
j=1

βτ(j)

j−1∏
i=1

ατ(i)

≤ 1

4

(
1 +

1

2
√
L

+
L

22L
+ · · ·+ L

L2ν−1

)
≤ 1

2
.

3. By definition, ρ = V ∗PΩw with w =
∑ν
j=1 wj and wj = Uτ(j)V Zτ(j−1). For each j = 1, . . . , ν,

‖wj‖2 = 〈Uτ(j)V Zτ(j−1), Uτ(j)V Zτ(j−1)〉 =

r∑
k=1

1

(q
τ(j)
k )2

∥∥∥PΩ
τ(j)
k

V Zτ(j−1)

∥∥∥2

≤ Kτ(j)

r∑
k=1

1

q
τ(j)
k

〈V ∗P
Ω
τ(j)
k

V Zτ(j−1),Zτ(j−1)〉 = Kτ(j)〈V ∗Uτ(j)V Zτ(j−1), Zτ(j−1)〉,

where Kτ(j) = max
{

1/q
τ(j)
k : k = 1, . . . , r

}
. Using (9.2), we have that

〈V ∗Uτ(j)V Zτ(j−1), Zτ(j−1)〉
= 〈V ∗Uτ(j)V Zτ(j−1) − Zτ(j−1), Zτ(j−1)〉+ 〈Zτ(j−1), Zτ(j−1)〉
= 〈Zτ(j), Zτ(j−1)〉+ 〈Zτ(j−1), Zτ(j−1)〉.

Since I = D∗D and
∥∥T−1

∥∥ ≤ κmax, we have that∣∣〈V ∗Uτ(j)V Zτ(j−1), Zτ(j−1)〉
∣∣ =

∣∣〈DZτ(j), DZτ(j−1)〉+ 〈DZτ(j−1), DZτ(j−1)〉
∣∣

≤
∥∥DZτ(j−1)

∥∥ (∥∥DZτ(j)

∥∥+
∥∥DZτ(j−1)

∥∥)
≤ κmax

∥∥TDZτ(j−1)

∥∥
`2

(∥∥TDZτ(j)

∥∥
`2

+
∥∥TDZτ(j−1)

∥∥
`2

)
.

Using
∥∥TDZτ(j)

∥∥
`2
≤ ατ(j)

∥∥TDZτ(j−1)

∥∥
`2

, we obtain,

∣∣〈V ∗Uτ(j)V Zτ(j−1), Zτ(j−1)〉
∣∣ ≤ κmax (ατ(j) + 1)

(
j−1∏
i=1

ατ(i)

)2

.

Therefore,

‖wj‖`2 ≤
√
Kτ(j) κmax (ατ(j) + 1)

(
j−1∏
i=1

ατ(i)

)
.

Recall that for k = 1, . . . , r, qjk = qk/4 for j = 1, 2 and qjk = q̃k for all j ≥ 3. Let K = maxrk=1

{
q−1
k

}
and for j ≥ 3, first note that (1− q1

k) · · · (1− qµk ) = 1− qk implies that q1
k + · · ·+ qµk ≥ qk. So, we

have that 2(µ− 2)q̃k ≥ qk since q1
k = q2

k = qk/4. By our choice of µ, this implies that

2
(

8
⌈
3 log

(
8q−1√κmaxM̃‖DD∗‖`∞→`∞

)
+ log(γ−1)

⌉
− 2
)
q̃k ≥ qk,

38



and for j ≥ 3,

Kτ(j) ≤ 2
(

8
⌈
3 log

(
8q−1√κmaxM̃‖DD∗‖`∞→`∞

)
+ log(γ−1)

⌉
− 2
)
K.

So, ‖wj‖`2 are bounded as follows.

‖w1‖`2 ≤ 2
√
Kκmax

√
1 +

1

2L1/2
, ‖w2‖`2 ≤ 2

√
Kκmax

√
1 +

1

2L1/2

√
1

2L1/2
,

and for j ≥ 3,

‖wj‖`2 ≤ 2
√

3
√
Kκmax

√
1

2j−1L1/2

√(
8
⌈
3 log

(
8q−1

√
κmaxM̃‖DD∗‖`∞→`∞

)
+ log(γ−1)

⌉
− 2
)
.

Summing these terms yields

‖w‖`2 .

√√√√√K κmax

 log
(

8q−1
√
κmaxM̃‖DD∗‖`∞→`∞

)
+ log(6/ε)

log(4q−1
√
κmaxM̃‖DD∗‖`∞→`∞)

.
To show that conditions (iii) to (v) of Proposition 6.1 are satisfied with probability exceeding 1−5γ =

1− 5ε/6 under Assumption 7.2, we will show that P(Aci ) < γ for i = 1, 2 and P(Bcj ) < γ for j = 1, 2, 3.

Proof of P(Bc3) < γ Define the random variables X1, · · · , Xµ−2 by

Xj =

{
0 Θj+2 6= Θj+1,

1 otherwise.

Observe that
P(Bc3) = P(|Θµ| < ν) = P (X1 + · · ·+Xµ−2 > µ− ν) .

Although {Xj}µ−2
j=1 are not independent random variables, from [2, Eqn. (7.80) - (7.85)] the above

probability can be controlled by independent binary random variables and the standard Chernoff bound,
so that P(Bc3) ≤ γ provided that

1

4
≥ P(Xj = 1|Xl1 = · · · = Xlk = 1) (9.3)

for all j = 1, . . . , µ − 2 and l1, . . . , lk ∈ {1, . . . , µ− 2} such that j 6∈ {l1, . . . , lk} and t µ ≥ 8d3ν +
log(γ−1/2)e. It remains to verify that (9.3) holds with p = 1/4. Observe that Xj = 0 whenever

‖TD(QW −QWV ∗UjV QW)Zi−1‖`2 ≤
1

2
‖TDZi−1‖`2

and ∥∥P⊥∆DQ⊥WV ∗UjV QWZi−1

∥∥
`∞
≤ L

4
‖TDZi−1‖`2

for i = j + 2. Thus, (9.3) holds with p = 1/4 if

P
(
‖TD(QW −QWV ∗UjV QW)Zi−1‖`2 >

1

2
‖TDZi−1‖`2

)
≤ 1

8
, (9.4)

and

P
(∥∥P⊥∆DQ⊥WV ∗UjV QWZi−1

∥∥
`∞

>
L
4
‖TDZi−1‖`2

)
≤ 1

8
. (9.5)

By Proposition 8.4, (9.4) is implied by (C1) below, and by Proposition 8.5, (9.5) is implied by (C2)
below.
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(C1) Let ∥∥TD(QWV
∗P[M ]V QW −QW)D∗T−1

∥∥
`2→`2 ≤

1

4
, (9.6)

q̃k &
√
rB

r∑
l=1

µ2
N,M(k, l)κl, k = 1, . . . , r, (9.7)

and

1 & rB2
r∑

k=1

(q̃−1
k − 1)µ2

N,M(k, j) κ̂k, j = 1, . . . , r. (9.8)

(C2) Let ∥∥P⊥∆DQ⊥WV ∗P[M ]V QWD
∗T−1

∥∥
`2→`∞ ≤

L
8
, (9.9)

q̃k &

√
rB log

(
32M̃

)
L

r∑
l=1

µ2
N,M(k, l)κl, k = 1, . . . , r, (9.10)

and

1 &
rB2 log

(
32M̃

)
L2

r∑
k=1

(q̃−1
k − 1)µ2

N,M(k, j) κ̂k, j = 1, . . . , r. (9.11)

It remains to show that (C1) and (C2) are implied by Assumption 7.2. First, (9.6) and (9.9) are implied
by (a) and (b) of Assumption 7.2 respectively because

∥∥T−1
∥∥ ≤ √κmax and ‖T‖ ≤ 1/

√
κmin. We now

show that (d) of Assumption 7.2 implies conditions (9.8) and (9.11). Since (1− q1
k) · · · (1− qµk ) = 1− qk

implies that q1
k + · · · + qµk ≥ qk, by our choice of q1

k = q2
k = qk/4 and qjk = q̃k for j ≥ 3, it follows

that 2(µ − 2)q̃k ≥ qk. From (d) of Assumption 7.2, we have that for some appropriate constant C,
qk & rB(log(ε−1) + 1) log(M̃

√
κmax) q̂k such that {q̂k}rk=1 satisfies,

1 &
r∑

k=1

(q̂−1
k − 1)µ2

N,M(k, j) κ̂k, j = 1, . . . , r.

So,

2(8d3 log(8q−1M̃
√
κmax‖DD∗‖`∞→`∞) + log(γ−1)e − 2)q̃k

≥ qk & (log(ε−1) + 1) log(8M̃q−1√κmax‖DD∗‖`∞→`∞) q̂k.

Since γ = ε/6, it follows that q̃k & q̂k. Thus, it follows that given any j = 1, . . . , r,

1 &
r∑

k=1

(q̂−1
k − 1)µ2

N,M(k, j) κ̂k

&
r∑

k=1

(q̃−1
k − 1)µ2

N,M(k, j) κ̂k

as required.
Finally, we show that the remaining conditions (9.7) and (9.10) are implied by (c) of Assumption 7.2.

Recall that (c) imposes that for some appropriate constant C and each k = 1, . . . , r

qk ≥ C (log(ε−1) + 1) log(8M̃q−1√κmax‖DD∗‖`∞→`∞)

r∑
l=1

µ2
N,M(k, l)κk.

Since
2(8d3 log(8q−1M̃

√
κmax‖DD∗‖`∞→`∞) + log(γ−1)e − 2)q̃k ≥ qk,

it follows that

q̃k &
r∑
l=1

µ2
N,M(k, l)κl,

as required.
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Proof of P(Aci ) ≤ γ for i = 1, 2 Recall from (a) of Assumption 7.2 that∥∥∥TDQWV ∗P⊥[M ]V QWD
∗
∥∥∥
`2→`2

≤
√
κmin

4
√
Lκmax

,

which implies (8.1) of Proposition 8.4 with α = α1. So, by Proposition 8.4,

P (Aci ) ≤ γ

provided that

qk & L1/2 log(3/γ)
√
rB

r∑
l=1

µ2
N,M(k, l)κl, k = 1, . . . , r

and

1 & L log(3/γ) rB2
r∑

k=1

(q−1
k − 1)µ2

N,M(k, j) κ̂k, j = 1, . . . , r.

These two conditions are implied by (c) and (d) of Assumption 7.2.

Proof of P(Bci ) ≤ γ for i = 1, 2 Recall from (b) of Assumption 7.2 that∥∥DQ⊥WV ∗P[M ]V QWD
∗∥∥
`2→`∞ ≤

1

8
√
κmax

,

which implies (8.6) with α = β1. So, by Proposition 8.5,

P (Bci ) ≤ γ

provided that

1 &
√
rB log

(
4M̃

γ

)
r∑

k=1

(q−1
k − 1)µ2

N,M(k, j) κ̂k, j = 1, . . . , r,

and

qk & rB2 log

(
4M̃

γ

)
r∑
l=1

µ2
N,M(k, l)κl, k = 1, . . . , r, .

These two conditions are implied by (c) and (d) of Assumption 7.2.

10 Properties of the subsampled matrix

In this section we show that conditions (i) and (ii) of Proposition 6.1 are satisfied with probability
exceeding 1− ε/6 under Assumption 7.2.

Recall that conditions (i) and (ii) of Proposition 6.1 are

(i)
∥∥QWV ∗(q−1

1 PΩ1
⊕ · · · ⊕ q−1

r PΩr )V QW −QW
∥∥
H→H <

1
4 .

(ii) supj∈N
∥∥P{j}DQ⊥WV ∗(q−1

1 Ω1 ⊕ · · · ⊕ q−1
r Ωr)V Q

⊥
WD

∗P{j}
∥∥
`2→`2 <

5
4 .

It is sufficient to show that

P
(∥∥QWV ∗(q−1

1 PΩ1
⊕ · · · ⊕ q−1

r PΩr )V QW −QW
∥∥
H→H ≥

1

4

)
< ε/12. (10.1)

and

P
(

sup
j∈N

∥∥P{j}DQ⊥WV ∗(q−1
1 Ω1 ⊕ · · · ⊕ q−1

r Ωr)V Q
⊥
WD

∗P{j}
∥∥
`2→`2 ≥

5

4

)
≤ ε/12. (10.2)

The fact that (10.1) holds under Assumption 7.2 follows from Proposition 8.6.
To see that Proposition 8.7 implies that (10.2) under Assumption 7.2, first note that by our choice

of M̃ and Proposition 8.7, (10.2) follows if for each k, j = 1, . . . , r,

1 & (q−1
k − 1)B2 µN,M(k, j)2 log

(
12M̃

ε

)
. (10.3)

which is implied by (d) of Assumption 7.2.
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11 Concluding remarks

Recent works [29, 2] have identified the need for further theoretical development on the use of variable
density sampling in compressed sensing. Furthermore, variable density sampling schemes are dependent
not only on sparsity but also the sparsity structure of the underlying signal. To address this, [2] showed
that in the case of where the sparsifying operator is associated with an orthonormal basis, by considering
levels of the sampling and sparsifying operators, the amount of subsampling possible can be described
in terms of the local coherences between the different sections and the sparsity of the underlying signal
within each level. This paper presented an extension of this result to the case where the sparsifying
operator is constructed from a tight frame. By defining the notions of localized sparsity and localized level
sparsities, we derived a recovery guarantee for multilevel sampling patterns based on local coherences
and localized level sparsities. One direction of future work would be to apply our abstract result to
analyse the use of multilevel sampling schemes in the case of Fourier sampling with some multi-scale
analysis operator such as wavelet frames and shearlets. By deriving estimates on the local coherences of
such operators, one can expect to obtain a better understanding on how to exploit sparsity structure to
subsample. Finally, although this paper considered only the case of a tight frame regularizer, this does
not seem to be necessary in practice and it is likely that that similar estimates to Theorem 4.4 can be
derived by considering the canonical dual operator of D.
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A The discrete Haar wavelet frame

The discrete Haar frame of redundancy two is defined as follows. Let N = 2p for some p ∈ N and {c0} ∪
{hk,j : k = 0, . . . , p− 1, j = 1, . . . , 2p} be the discrete Haar basis for CN . Specifically, c0 = 2−p/2(1, . . . , 1)
and for l = 0, . . . , p− 1 and k = 1, . . . , 2k,

hl,k[j] =

{
2(l−p)/2 j = k2p−l + 1, . . . , k2p−l + 2p−l−1

−2(l−p)/2 j = k2p−l + 2p−l−1 + 1, . . . , k2p−l + 2p−l
, 1 ≤ j ≤ 2p.

Let c̃0 = c0, and for each k = 0, . . . , p− 1, j = 1, . . . , 2k, let

h̃k,j [n] =

{
hk,j [n− 1] n = 2, . . . , N

hk,j [N ] n = 1
.

The two discrete Haar wavelet frame of redundancy two is defined by{
2−1/2c0

}
∪
{

2−1/2hk,j : k = 0, . . . , p− 1, j = 1, . . . , 2k
}

∪
{

2−1/2c̃0

}
∪
{

2−1/2h̃k,j : k = 0, . . . , p− 1, j = 1, . . . , 2k
}
.

For analysis purposes, we will order these frame elements in increasing order of scaling with

{ϕj}2Nj=1 =

{
2−1/2c0, 2

−1/2c̃0, 2
−1/2h0,1, 2

−1/2h̃0,1, . . . , 2
−1/2hk,j , h̃k,j , 2

−1/2hk,j+1, 2
−1/2h̃k,j+1, . . .

. . . , 2−1/2hk+1,j , 2̃
−1/2hk+1,j , . . . , 2

−1/2h̃p−1,N , 2
−1/2h̃p−1,N

}

and let Dx = (〈x, ϕk〉)2N
k=1. Note that D∗D = I.

The following lemma shows that ‖DD∗‖`∞→`∞ can be upper bounded independently of N .
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Lemma A.1. ‖DD∗‖`∞→`∞ ≤ 2/(
√

2− 1).

Proof. Let ϕt = 2−1/2h̃m,n. Then, since
{
h̃i,j

}
i,j

is an orthonormal system,

∑
j

|〈ϕj , ϕt〉| =
1

2

∑
l,k

∣∣∣〈h̃m,n, hl,k〉∣∣∣ =
1

2

∑
l,k

∣∣∣〈h̃m,n − hm,n, hl,k〉∣∣∣+
1

2

∑
l,k

|〈hm,n, hl,k〉|

1

2
+

1

2

∑
l,k

∣∣∣〈h̃m,n − hm,n, hl,k〉∣∣∣ .
Now,

h̃m,n − hm,n[j] =


2(m−p)/2 j ∈ {n2p−m − 1, n2p−m + 2p−m − 1}
2(m−p)/2+1 j = n2p−m + 2p−m−1 − 1

0 otherwise

.

Note that for each l, 〈h̃m,n − hm,n, hl,k〉 6= 0 for at most 3 values of k in
{

0, . . . , 2l − 1
}

, and∑
k

∣∣∣〈h̃m,n − hm,n, hl,k〉∣∣∣ ≤ 4 · 2(m+l)/2−p.

Therefore, ∑
l,k

∣∣∣〈h̃m,n − hm,n, hl,k〉∣∣∣ ≤ 4 · 2m/2

2p

p−1∑
l=0

2l/2 ≤ 4√
2− 1

,

and ∑
j

|〈ϕj , ϕt〉| ≤
2√

2− 1
.

The case where ϕt = 2−1/2hn,m for some n,m can be approached similarly with the same upper bound.
Thus, ‖DD∗‖`∞ = supj ‖DD∗ej‖`1 ≤

2√
2−1

.

B Existence of minimizers

Proposition B.1. Let Ω ⊂ N be finite and let y ∈ `2(N). There exists g∗ ∈ H such that

g∗ ∈ argmin
g∈H

‖Dg‖`1 subject to ‖PΩV g − y‖`2 ≤ δ.

Proof. Let (fn)n∈N ⊂ H be a minimizing sequence such that ‖PΩV fn − y‖`2 ≤ δ for each n ∈ N and

‖Dfn‖`1 → inf
g∈H
‖Dg‖`1 subject to ‖PΩV g − y‖ ≤ δ, n→∞.

This implies that (Dfn)n∈N is a bounded sequence in `1(N). Since the dual of c0(N) (the Banach space of
sequences converging to zero) is `1(N), and the unit ball of `1 is weak-* compact, there exists x ∈ `1(N)

and a subsequence (Dfnk)k∈N such that Dfnk
∗
⇀ x as k →∞, and for each z ∈ c0(N), 〈Dfnk , z〉 → 〈x, z〉

as k →∞.
Since DD∗ ∈ B(`∞(N), `∞(N)), it follows that given any z ∈ c0(N), DD∗z ∈ c0(N). To see this, note

that given any δ > 0, we can choose N1 ∈ N such that
∥∥∥P⊥[N ]z

∥∥∥
`∞
≤ δ/(2‖DD∗‖`1→`1) for all N ≥ N1.

Furthermore, for this choice of N1, we can choose N2 such that
∥∥P[N1]DD

∗ek
∥∥
`1
≤ δ/(2‖z‖`∞) for all

k ≥ N2. Thus, for all k ≥ max {N1, N2},

|〈D∗Dz, ek〉| ≤
∣∣〈D∗P[N1]Dz, ek〉

∣∣+
∣∣∣〈D∗P⊥[N1]Dz, ek〉

∣∣∣
≤ ‖DD∗‖`1→`1

∥∥∥P⊥[N1]z
∥∥∥
`∞

+ ‖z‖`∞
∥∥P[N1]DD

∗ek
∥∥
`1
≤ δ.
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Therefore, D∗Dz ∈ c0(N), 〈Dfnk , DD∗z〉 → 〈x,DD∗z〉 as k → ∞ and consequently, DD∗Dfnk =

Dfnk
∗
⇀ DD∗x. This implies that,

lim inf
k→∞

‖Dfnk‖`1 ≥ ‖DD
∗x‖`1 .

Furthermore, because Dfnk converges weakly to x in `2(N) and PΩV D
∗ is a compact operator (since

it is of finite rank), PΩV fnk = PΩV D
∗Dfnk → PΩV D

∗x as k → ∞. So, ‖PΩV D
∗x− y‖`2 ≤ δ. Thus,

g∗ := D∗x is a minimizer.
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[22] K. Gröchenig. Localization of frames, Banach frames, and the invertibility of the frame operator.
Journal of Fourier Analysis and Applications, 10(2):105–132, 2004.

[23] P. Grohs. Intrinsic localization of anisotropic frames. Applied and Computational Harmonic Anal-
ysis, 35(2):264–283, 2013.

[24] P. Grohs and S. Vigogna. Intrinsic localization of anisotropic frames II: α -molecules. Journal of
Fourier Analysis and Applications, 21(1):182–205, 2015.

[25] D. Gross. Recovering low-rank matrices from few coefficients in any basis. Information Theory,
IEEE Transactions on, 57(3):1548–1566, 2011.

[26] S. Jaffard. Propriétés des matrices bien localisées près de leur diagonale et quelques applications. In
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