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Abstract

We consider the problem of generalized sampling, in which one seeks to obtain reconstructions in
arbitrary finite dimensional spaces from a finite number of samples taken with respect to an arbitrary
orthonormal basis. Typical approaches to this problem consider solutions obtained via the consistent
reconstruction technique or as solutions of an overcomplete linear systems. However, the consistent
reconstruction technique is known to be non-convergent and ill-conditioned in important cases, such
as the recovery of wavelet coefficients from Fourier samples, and whilst the latter approach presents
solutions which are convergent and well-conditioned when the system is sufficiently overcomplete,
the solution becomes inconsistent with the original measurements.

In this paper, we consider generalized sampling via a non-linear minimization problem and prove
that the minimizers present solutions which are convergent, stable and consistent with the original
measurements. We also provide analysis in the case of recovering wavelets coefficients from Fourier
samples. We show that for compactly supported wavelets of sufficient smoothness, there is a linear
relationship between the number of wavelet coefficients which can be accurately recovered and the
number of Fourier samples available.
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1 Introduction

One of the momentous results of modern sampling theory is the Shannon-Nyquist Sampling Theorem,
which enabled bandlimited or compactly supported signals to be fully described via discrete measure-
ments. Formally, by defining the Fourier transform of f ∈ L1(R) as

f̂(ω) =

∫
R
f(t)e−iωt dt, ω ∈ R

and the sinc-function as sinc(x) = sin(x)/x, the theorem can be stated as follows:
Let g ∈ L2(R) be such that supp(g) ⊂ [−T, T ] for some T > 0 and consider also its Fourier transform

f = ĝ. If ε ≤ 1
2T , then

f(t) =
∑
k∈Z

f(2πkε)sinc

(
t+ 2πkε

2ε

)
with L2 and L∞ convergence and

g(t) = ε
∑
k∈Z

f(2πkε)e2πiεkt

with L2 convergence. The quantity 1
2T is often referred to as the Nyquist criterion.
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A direct computational consequence of this is that the functions f and g as described in the theorem
may be approximated by the finite collection of measurements {f(2πkε) : |k| ≤ N} as follows

fN (t) =
∑
|k|≤N

f(2πkε)sinc

(
t+ 2πkε

2ε

)
, fN

L2,L∞−→ f

gN (t) = ε
∑
|k|≤N

f(2πkε)e2πiεkt, gN
L2

−→ g.

However, in many cases, such approximations are not used because the bases generated by the sinc-
function or complex exponentials are considered inappropriate representation systems for the underlying
signals [30]. In fact, many images and signals can be better represented in terms of a different basis (e.g.
splines or wavelets) than the basis in which they are sampled (e.g. the Fourier basis). Consequently,
there is much interest in generalising the Shannon-Nyquist Sampling Theorem to recover the coefficients
of a signal or image in a particular basis from samples taken with respect to another basis [30].

Thus, in this paper, we will be concerned with the following problem: For some Hilbert space H with
inner product 〈·, ·〉, suppose we are given two orthonormal sets {sj : j ∈ N} and {wj : j ∈ N} such that the

sampling space S = span {sj : j ∈ N} and the reconstruction spaceW = span {wj : j ∈ N} satisfyW ⊂ S.
Then for an unknown f ∈ H, we will seek to obtain an approximation R(f) to f in the reconstruction
space WN = span {wj : j = 1, . . . , N} from the finite set of measurements {〈f, sj〉 : j = 1, . . . ,M}. This
problem of obtaining reconstructions in arbitrary spaces W from measurements taken with respect to
arbitrary sampling vectors {sj : j ∈ N} is often referred to as generalized sampling.

1.1 Existing approaches to generalized sampling

The notion of generalized sampling dates back to the work of Aldroubi and Unser [31, 30], in which the
framework of consistent sampling was introduced. This framework was later extended by Eldar et al
[15, 16, 17]. Given samples f̂N = {〈f, sj〉 : j = 1, . . . , N}, the goal was to find RN (f) ∈ WN which is
consistent with the original measurements, i.e.

〈RN (f), sj〉 = 〈f, sj〉, j = 1, . . . , N.

Equivalently, by letting U = (〈wk, sj〉)j,k∈N and letting P[N ] denote the orthogonal projection onto

span {ej : j = 1, . . . , N} where {ej}j∈N denotes the standard canonical basis for `2(N), R(f) =
∑N
j=1 βjwj

where β = (βj)
N
j=1 is such that P[N ]UP[N ]β = f̂N .

Although this technique has been shown to be successful for certain shift invariant spaces [8, 35, 34],
there are a number of problems preventing the use of this technique for arbitrary sampling and recon-
struction spaces [6, 22]. Firstly, there is no guarantee of a well defined reconstruction since P[N ]UP[N ]

is note necessarily invertible. Furthermore, even when P[N ]UP[N ] is invertible, the resultant reconstruc-
tion need not converge and may become ill-conditioned, thus this scheme may become computationally
intractable for large problem sizes. A notable example of this is in the recovery of wavelet coefficients
from Fourier samples, in which the condition number of the matrix P[N ]UP[N ] becomes exponentially
large as N increases [6, 2].

There have been a number of attempts to resolve the non-convergence and ill-conditionedness of
consistent sampling. One notable contribution is the idea that the problem of ill-conditioning can be
resolved by solving an overdetermined linear problem. Given the samples f̂M of f , by letting the size
of the reconstruction space vary from M , the reconstruction is now taken to be R(f) =

∑N
j=1 βjwj ,

where β is the least squares solution to P[M ]UP[N ]β = f̂M . Equivalently, we find a reconstruction
RM (f) ∈ WN which is consistent with f on the reduced subspace QSM (WN ), where QSM denotes the
orthogonal projection from H onto SM .

This idea was initially employed in [27] by Pruessmann et al for the purpose of recovering in voxel
coefficients from Fourier samples in the case of magnetic resonance imaging (MRI) and in [23] by Hrycak
and Gröchenig where they show that one can stably recover N polynomial coefficients from O

(
N2
)

Fourier samples. This technique was later generalized to arbitrary spaces through a reduced consistency
framework by Adcock and Hansen [6, 5, 7]. Although the property of consistency with the original samples
is not preserved, by applying ideas from [20], the work of Adcock and Hansen demonstrates that one
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is always able to construct a convergent and well-conditioned linear scheme for arbitrary reconstruction
and sampling spaces if the number of samples is appropriately chosen with respect to the size of the
reconstruction space. This scaling between the number of samples and the size of the reconstruction
space is known as the stable sampling rate and can be formally defined with respect to some condition
number and some rate of convergence. Furthermore, an understanding of this stable sampling rate is
crucial to successful implementation of this reduced consistency framework. See [1] for further details.

1.2 Main results and overview

In this paper, we will propose an alternative framework for the problem of generalized sampling which
offers solutions which are both convergent and consistent with the original samples. In particular, for

some underlying f =
∑∞
j=1 xjwj , given samples f̂M = (〈f, sj〉)Mj=1, we will let RM (f) =

∑
j∈N β

[M ]
j wj

where
β[M ] ∈ argmin ‖η‖`1 subject to P[M ]Uη = f̂M (1.1)

and show that
∥∥β[M ] − x

∥∥
`1
→ 0 as M →∞. We will also show that this reconstruction is stable in that

for f ≈ g, we have that RM (f) ≈ RM (g). This will be made precise in Section 2. The main contribution
of this paper is the mathematical analysis on the error bounds of this non-linear scheme in the context
of recovering wavelet coefficients from Fourier samples. We prove that for compactly supported wavelet
bases of sufficiently smoothness, the number of wavelet coefficients which are accurately recovered scales
linearly with the number of Fourier samples. Furthermore, the scheme perfectly recovers any function
represented by its first N wavelet coefficients from O (N) Fourier samples. This result echoes that of [2],
in which it was shown that reduced consistency sampling presents a linear correspondence between the
number of wavelet coefficients that one can accurately approximate and the number of Fourier samples
available. However, whilst the reduced consistency framework requires an a-priori decision on the size
of the reconstruction space with respect to the number of available samples, such a consideration is not
required when solving (1.1). Finally, we remark that although sparsity is not considered in this paper,
the analysis here offers some insight into the recovery of sparse signals for continuous problems. We will
discuss this in Section 3. The proofs of our results are presented in Sections 4 and 5.

1.3 Magnetic resonance imaging and related works

There is great interest in solving generalized sampling in the context of recovering wavelet coefficients
from Fourier samples because of the connection to MRI. Mathematically, MRI can be modelled as the
recovery of a function (the image) from a collection of pointwise samples of its Fourier transform. The
classical approach in MRI is to approximate f by a direct application of the Shannon-Nyquist Sampling
Theorem. However, this approach has a number of drawbacks, including slow convergence and artefacts
at edges due to the Gibbs phenomenon. On the other hand, the development of powerful wavelet methods
for image processing [32, 33] has lead to substantial research in recovering wavelet coefficients directly
[18, 26]. Hence, solutions to generalized sampling in this context should be of great relevance, as it
recovers the wavelet coefficients via post-processing without modifying the acquisition process.

In fact, the non-linear approach proposed in this paper has already been applied to the problem of
wavelet reconstructions from Fourier samples in MRI by Guerquin-Kern et al [19]. Numerical evidence
and theoretical analysis of fast algorithms therein demonstrate that such an approach is a practical
solution to the MRI problem. Although there is theoretical work on how to compute the reconstructions
in [19], we are unaware of any analysis on the convergence to the true image. Hence, our theory can be
seen as initial justification for the use of the non-linear scheme proposed in [19] for MRI.

Finally, we remark that via generalized sampling, we analyse the number of wavelet coefficients that
can be recovered by finitely many consecutive Fourier samples. A similar question was explored in the
development of finite rates of innovation (FRI) [36, 14] and super resolution [9], under it was shown that
N Diracs can be perfectly recovered from CN consecutive Fourier samples for some constant C (the
theory under FRI gives C = 2). Thus, the linear relationship between sufficiently smooth wavelets and
Fourier samples in our main result can be seen as a parallel to these types of results.
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1.4 Notation

Let H be a separable Hilbert space with inner product 〈·, ·〉, norm ‖·‖ and let B(H) denote the set of
bounded linear operators on H. Suppose that

S = span {sj : j ∈ N} , W = span {wj : j ∈ N}

are closed subspaces of H where {sj}j∈N and {wj}j∈N are orthonormal sets. Furthermore, we will assume
that W ⊆ S. We also define the finite dimensional spaces

SM = span {sj : j = 1, . . . ,M}

and
WN = span {wj : j = 1, . . . , N} .

Given any subspace Y ⊆ H, let the operator QY denote the orthogonal projection onto Y.
We recall here some notation relating to `2(N). Let {ej}j∈N denote the standard canonical basis in

`2(N), and let [M ] := {1, . . . ,M}. Given any x = (xj) ∈ `2(N), sgn(x) is the vector whose jth element
is xj/ |xj | if xj 6= 0 and zero otherwise. Given any Ω ⊂ N, let PΩ denote the orthogonal projection
onto span {ej : j ∈ Ω}. Finally, we often refer to the measurement matrix generated by W and S as the
infinite dimensional matrix U = (uij)i,j∈N, with entries uij = 〈wj , si〉 for i, j ∈ N.

2 A stable and consistent scheme

Suppose we seek to reconstruct f ∈ W such that f =
∑
j∈N xjwj . Letting x = (xj)j∈N, the measurements

can be written as f̂M = P[M ]Ux. Consider the following non-linear problem

inf
η∈H
‖η‖`1 subject to P[M ]Uη = P[M ]Ux (2.1)

where U is as defined in Section 1.4. Any solution to this problem will naturally be consistent with
the original measurements f̂M . It remains to ascertain whether the solution is convergent to f as M
increases.

When considering generalized sampling as a linear reconstruction problem (as considered by consistent
sampling and reduced consistency sampling), it was natural to use the ‖·‖`2 to establish error and stability
estimates. However, in solving (2.1), we will instead consider convergence and stability using ‖·‖`1 . We
now define stability (see also, [4]).

Definition 2.1. Let Ω,∆ be finite subsets of N, U ∈ B(H). If ξ ∈ H, supp(ξ) = ∆ is the unique
minimizer of

inf {‖η‖`1 : PΩUη = PΩUξ} ,

and for any δ > 0 and ζ ∈ H such that ‖ζ − ξ‖`1 ≤ δ, we have that any solution x to

inf {‖η‖`1 : PΩUη = PΩUζ} ,

satisfies
‖x− ξ‖`1 ≤ C · δ

for some constant C, then {U,Ω,∆} is said to be `1 stable at ξ. Moreover, if this holds for all ξ ∈ H,
then {U,Ω,∆} is said to be globally `1 stable.

For p ∈ [1,∞), it is natural to define (e.g. see [29]) the `p absolute condition number of a mapping
F : `p(N)→ `p(N) as

κp(F ) = sup
f̂∈`p

lim
ε→0+

sup
ĝ∈`p

0<‖ĝ‖`p≤ε


∥∥∥F (f̂ + ĝ)− F (f̂)

∥∥∥
`p

‖ĝ‖`p

 . (2.2)
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So, if we consider Definition 2.1 and define a mapping G : `1(N)→ `1(N) such that for ξ ∈ P∆(`1(N)),

G(ξ) ∈ argmin {‖ξ‖`1 : PΩUη = PΩUξ} ,

then `1 stability at ξ for which G(ξ) = ξ implies that

‖G(ξ)−G(ξ + η)‖`1
‖η‖`1

≤ C

for all η ∈ l1(N). Thus, the requirement of `1 stability is simply the requirement that κ1(G) exists and
so Definition 2.1 is related to the standard notion of an absolute condition number.

We remark that well-conditionedness here relates to that of solving an `1 minimization problem, rather
than the well-conditionedness of the reconstruction RM (f) from M samples {〈f, sj〉 : j = 1, . . . ,M}.
In particular, this stability does not encapsulate robustness to noisy measurements, since consistent
reconstructions are only desirable in the absence of noise. We will show that our nonlinear scheme is
stable in the sense of Definition 2.1 and consequently, for any f ∈ W, ‖RM (f)− f‖H → 0 as N →∞.

2.1 Computability of (2.1)

The optimization problem (2.1) is infinite-dimensional, and in practice, one would instead solve the
following finite dimensional problem:

inf
η∈Ck

‖η‖`1 subject to P[M ]Uη = P[M ]Ux (2.3)

for some suitable k ∈ N and for sufficiently large k, minimizers of (2.3) will approximate minimizers of
(2.1). Indeed, it is proved in [4, Proposition 7.4] that given any ε > 0, there exists K ∈ N such that for
all k ≥ K, we have that ‖ξk − ζk‖`1 < ε where ξk and ζk satisfy the following:

‖ξk‖`1 = inf
η∈Ck

‖η‖`1 subject to P[M ]UP[k]η = P[M ]Ux,

‖ζk‖`1 = inf
η∈`1(N)

‖η‖`1 subject to P[M ]Uη = P[M ]Ux.

2.2 Main Results

Our first result concerns the stability and convergence of solutions to (2.1). We show that given M
samples, there always exists some N such that the solution is an accurate reconstruction of the true
signal up to its first N reconstruction coefficients. Thus, although the rate of convergence will depend
on the scaling between N and M , the scheme (2.1) will always yield convergent solutions.

Theorem 2.2. Let U , W, S be defined as in Section 1.4. Let x ∈ `1(N). For each N ∈ N, there exists
m0 ∈ N, such that for all M ≥ m0, if ξ solves (2.1), then

‖ξ − x‖`1 ≤ C ·
∥∥∥P⊥[N ]x

∥∥∥
`1

for some constant C, which is independent of N and x. Hence, given any f ∈ W such that f =∑∞
j=1 xjwj, if ξ solves (2.1) with x = (xj)j∈N, then∥∥∥∥∥∥f −

∞∑
j=1

ξjwj

∥∥∥∥∥∥
H

= ‖ξ − x‖`2 ≤ C ·
∞∑

j=N+1

|xj | .

Theorem 2.2 shows that for given any f =
∑
j∈N xjwj ∈ W and any reconstruction resolution N , there

always exist M such that (2.1 ) can obtain an approximation fM of f with an error of O
(∥∥∥P⊥[N ]x

∥∥∥
`1

)
.

So, fM will converge to f as M →∞.
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2.3 The recovery of wavelet coefficients from Fourier samples

We now let H = L2(R) and apply the non-linear scheme (2.1) to the case where the reconstruction space
W is generated by compactly supported orthonormal wavelets and the sampling space is the space of
complex exponentials S = span

{
e2πiεj· : j ∈ Z

}
for some appropriate ε > 0. In particular, for some given

a ≥ 1, we will be concerned with the recovery of wavelet coefficients of elements of H on the interval
[0, a]. Our main conclusion is that for sufficiently smooth wavelet bases, the number of reconstruction
vectors which can be accurately approximated is linearly proportional to the number of Fourier samples.
Consequently, if it is known that the wavelet coefficients x of f has decay O

(∥∥P⊥N x∥∥`1) = O
(
N−β

)
for some β > 0, then access to N Fourier measurements will yield an approximation with error decay
O
(
N−β

)
and acquiring Fourier samples is up to a constant as good as acquiring the wavelet coefficients

directly. Before stating our result, we first define the wavelet and Fourier spaces to be considered.

The wavelet reconstruction space

Suppose that we are given an orthonormal mother wavelet ψ and an orthonormal scaling function φ such
that supp(ψ) = supp(φ) = [0, a] for some a ≥ 1. We also assume that for some α ≥ 1 and C > 0,∣∣∣φ̂(ξ)

∣∣∣ ≤ C

(1 + |ξ|)α
,
∣∣∣ψ̂(ξ)

∣∣∣ ≤ C

(1 + |ξ|)α
. (2.4)

Now, consider the following collection of functions

Ωa = {φk, ψj,k : supp(φk)o ∩ [0, a] 6= ∅, supp(ψj,k)o ∩ [0, a] 6= ∅, j ∈ Z+, k ∈ Z, },

where
φk = φ(· − k), ψj,k = 2

j
2ψ(2j · −k).

(the notation Ko denotes the interior of a set K ⊆ R). Setting

W := span{ϕ : ϕ ∈ Ωa},

this gives
L2[0, a] ⊆ W ⊆ L2[−T1, T2],

where T1, T2 > 0 are such that [−T1, T2] contains the support of all functions in Ωa. Note that the
inclusions may be proper (but not always, as is the case with the Haar wavelet.) It is straightforward
that

Ωa ={φk : |k| = 0, . . . , dae − 1} ∪ {ψj,k : j ∈ Z+, k ∈ Z,−dae < k < 2jdae}

and we may let T1 = dae − 1, T2 = 2dae − 1. We will order Ωa first by translation factors then in
increasing order of the scaling factor as follows:

{φ−dae+1, . . . , φ−1, φ, φ1, . . . , φdae−1, ψ0,−dae+1, . . . , ψ0,−1, ψ0,0, ψ0,1, . . . , ψ0,dae−1,

ψ1,−dae+1, . . . , ψ1,2·dae−1, ψ2,−dae+1, . . . , ψ2,4·dae−1, . . .}.

It is often useful to consider the all elements of Ωa of wavelet resolution less than R ∈ N. To this end,
we define

ΩR,a = {ϕ ∈ Ωa : ϕ = ψj,k, j < R, k ∈ Z or ϕ = φk, k ∈ Z}

and denote the size of ΩR,a by NR. It is easy to verify that

NR = 2Rdae+ (R+ 1)(dae − 1) (2.5)

and
WNR ⊂ {φR,k : AR,1 ≤ k ≤ AR,2}

where
AR,1 = −(2R + 1) dae+ 2R + 1, AR,2 = 2R+1 dae − 2R − 1. (2.6)
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The Fourier sampling space

For the Fourier sampling space, we let ε ≤ 1/(T1 + T2) be the sampling density. Note that 1/(T1 + T2)
is the corresponding Nyquist criterion for functions supported on [−T1, T2]. We now define the sampling
vectors by

sl =
√
εe2πilε·χ[−T1/(ε(T1+T2)),T2/(ε(T1+T2))],

the sampling space by

S = span{sl : l ∈ Z} =
{
f ∈ L2(R) : supp(f) ⊆ [−T1/(ε(T1 + T2)), T2/(ε(T1 + T2))]

}
,

and the space spanned by the first M sampling vectors by

SM = span

{
sl : −

⌊
M

2

⌋
≤ l ≤

⌈
M

2

⌉
− 1

}
.

Theorem 2.3. Let U be the measurement matrix associated with the wavelet reconstruction space W
and the Fourier sampling space S described above. Suppose that the Fourier sampling density ε ∈ Q is
such that

0 < ε ≤ δ/(T1 + T2), δ ∈ (0, 1)

where T1, T2 > 0 are such that W ⊂ L2[−T1, T2].
Then for x ∈ `1(N) and N ∈ N, the following holds:

(i) If for some A > 0 and α ≥ 1, ∣∣∣φ̂(ξ)
∣∣∣ ≤ A

(1 + |ξ|)α
, ξ ∈ R

then there exists some constant C independent of N (but dependent on α and ε) such that for
M = C ·N1+1/(2α−1), any solution ξ to (2.1) satisfies

‖ξ − x‖`1 ≤ 6 ·
∥∥∥P⊥[N ]x

∥∥∥
`1
.

(ii) If for k = 0, 1, 2, for some A > 0 and α ≥ 1.5,∣∣∣φ̂(k)(ξ)
∣∣∣ ≤ A

(1 + |ξ|)α
,
∣∣∣ψ̂(k)(ξ)

∣∣∣ ≤ A

(1 + |ξ|)α
, ξ ∈ R,

then there exists some constant C independent of N (but dependent on φ, ψ and ε) such that for
M = C ·N , any solution ξ to (2.1) satisfies

‖ξ − x‖`1 ≤ 6 ·
∥∥∥P⊥[N ]x

∥∥∥
`1
.

Remark 2.1 Intuitively, the restriction on ε should be such that ε ∈ R, and ε ∈ (0, 1/(T1 + T2)], since
1/(T1 + T2) is the Nyquist rate. However, the assumptions on ε in this theorem are stronger, and this
restriction is likely to be an artefact of the proof and does not seem to be necessary in practice.

2.4 Discussion

Recovery of Daubechies wavelet coefficients

We first remark that the assumption in (i) of Theorem 2.3 is natural for Daubechies wavelets, since we
know from [12, Proposition 4.7] that there exists αN > 0 such that for all N ∈ N with N ≥ 2, there
exists a Daubechies-N scaling function, φN , such that∣∣∣φ̂N (ξ)

∣∣∣ ≤ 1

(1 + |ξ|)αN+1
(2.7)

and the same decay estimate holds for the corresponding wavelet, ψ̂N . Table 1 presents estimates of
αN which were derived in [13] and by direct application of Theorem 2.3, estimates on βN for which M
Fourier samples is guaranteed to recover at least O

(
MβN

)
wavelet coefficients.

7



N αN βN
1 0 0.5
2 0.339 0.627
3 0.636 0.694
4 0.913 0.739
5 1.177 0.770
6 1.432 0.794

Table 1: For each Daubechies-N wavelet, this table shows estimates of αN such that (2.7) holds and
βN such that M Fourier samples is guaranteed to recover O

(
MβN

)
wavelet coefficients in the sense of

Theorem 2.3.

To understand which Daubechies wavelets satisfy the assumption in (ii) of Theorem 2.3, we first note
that there is a natural correspondence between the smoothness and the decay of the Fourier transform.
If φ has α derivatives, then ∣∣∣φ̂(ξ)

∣∣∣ ≤ A

(1 + |ξ|)α
, ξ ∈ R.

Furthermore, smoothness of φ also implies decay in the derivatives of its Fourier transform: For k = 1, 2,
φk(x) := xkφ(x) will also possess α derivatives and φk ∈ L1(R) whenever φ is of compact support. Thus,
for k = 0, 1, 2 ∣∣∣∣ dk

dξk
φ̂(ξ)

∣∣∣∣ =
∣∣∣φ̂k(ξ)

∣∣∣ ≤ A

(1 + |ξ|)α
.

From [12], it is known that the first Daubechies wavelet which is twice continuously differentiable is
the wavelet of 7 vanishing moment, thus our theorem implies that this linear correspondence between
Fourier samples and wavelet coefficients is true for Daubechies wavelets of at least 7 vanishing moments.
However, numerical results suggest that this linear relationship actually holds for all Daubechies wavelets,
thus suggesting that this results is perhaps not sharp. See Section 6 for further details.

Necessity of a linear relationship

In [2], it was shown that if N ≥ NR and M = c2R where c < ε−1, then

inf
g∈WN ,‖g‖H

‖QSM g‖H = Ae−BNR+logNR (2.8)

for some positive constants A and B. Thus, for all N , there exists some g ∈ WN such that ‖g‖H = 1, but

the samples ĝ = (〈g, sj〉)dM/2e−1
j=−bM/2c are of exponentially small norm as N increases. Although we do not

consider robustness of noise in the measurements, from a computational viewpoint, such a relationship
is undesirable. Thus, in this respect, it is perhaps necessary to have at least a linear scaling between
the number of Fourier samples, and the number of wavelet coefficients which an algorithm accurately
reconstructs.

3 Links with compressed sensing

The recent field of compressed sensing considers the recovery of signals with a reduced number of samples
via non-linear schemes by exploiting the fact that typical signals have sparse structures in particular
bases, such as wavelet bases.

Generalized sampling makes no assumption on the structure of the underlying signal, however, it
reveals to us the number of consecutive sampling coefficients required to accurately recover N consecutive
reconstruction coefficients in a stable manner. Such knowledge is important to the understanding of
compressed sensing in the context of a separable Hilbert space as demonstrated in [4]. In formulating
generalized sampling as an `1 minimization problem, the main result of this paper shows that N wavelet
coefficients can be exactly recovered from CN consecutive Fourier samples for some constant C (and
provided that the wavelets are twice continuously differentiable). In this section, we will consider the
implications of this linear relationship for compressed sensing in the infinite dimensional setting.
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The infinite dimensional framework of compressed sensing introduced in [4] aims to recover signals of
the form x = x+h, where supp(x) = ∆ ⊂ [N ], |∆| = s and h ∈ `1(N) by solving the following non-linear
problem

inf
η∈`1(N)

‖η‖`1 subject to PΩUη = PΩU(x+ h) (3.1)

where for some M ∈ N, Ω ⊂ [M ] is chosen in a uniformly random manner and is of cardinality dqMe
for some q ∈ [0, 1]. They show that any solution ξ of (3.1) is such that ‖ξ − x‖`2 ≤ C · ‖h‖`1 with high
probability if the following holds:

(i) M and 1/q satisfy some balancing property with respect to N and s.

(ii) m ≥ C · µ · s log(N/q).

where µ = maxi,j∈N |uij |2 is known as the incoherence of U . Note that (ii) is a standard requirement of
compressed sensing algorithms, and the novelty is the balancing property which we recall in Definition
3.1.

There are two decisions to be made when implementing (3.1):

(1) What should be the range of our samples? i.e. What should M be?

(2) How many samples do we require? i.e. What should q be?

We will consider these two question in the context of wavelet reconstructions from Fourier samples,
where the scaling function and wavelet generating the reconstruction space are assumed to have α
continuous derivatives. If the choice of M had to be such that M >> N , then (3.1) will be less of an
attractive scheme, however, as will be explained, the results of this paper show that up to some log
factors, it suffices to let M grow linearly with N .

3.1 The range of samples

In order to consider (1), we recall the definition of the balancing property:

Definition 3.1. [4] Let U ∈ B(`2(N)) be an isometry. Then M ∈ N and K ≥ 1 satisfy the balancing
property with respect to U, N ∈ N and s ∈ N if

‖PNU∗PMUPN − PN‖`∞→`∞ ≤
1

8

(
log

1/2
2

(
4
√
sKN

))−1

, (3.2)

where ‖·‖`∞→`∞ is the norm on B(`∞(N)) and

‖P⊥NU∗PMUPN‖`∞→`∞ ≤
1

8
. (3.3)

The theory from [4] demonstrate that when implementing (3.1), the range of samples M should be
chosen such that M and m/M satisfy the balancing property with respect to the measurement matrix U ,
N and s. Observe that m/M and s will only change the relationship between M and N by a log factor.
So, this balancing property is essentially a relationship between M and N and is such that PMUPN is
close to an isometry. Moreover, it essentially encompasses conditions under which (2.1) guarantees exact
recovery of N reconstruction coefficients from M samples.

The constraints of the balancing property are precisely the quantities covered by the analysis of (2.1)
in the context of wavelet reconstructions from Fourier samples. Assuming that the wavelet and scaling
functions are α continuously differentiable for α ≥ 2, Proposition 5.2 gives that (3.3) holds whenever

M = C ·N and Corollary 5.4 gives that (3.2) holds whenever M = C ·N · (log2(4N
√
s/q))

1/(4α−2)
.

3.2 The amount of subsampling

From the discussion on (1), in order to obtain reconstructions up to wavelet resolution N , up to some log
factors, we are required to subsample from M = O (N) Fourier samples. However, from [4], the number
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of samples m which we need to take from [M ] in order to perfectly reconstruct a signal supported on
∆ ⊂ [N ] with probability exceeding 1− ε is

m ≥ C · (log(ε−1) + 1) · log

(
NM
√
s

m

)
· µ(U) · |∆| ·M.

So, up to log factors, the amount of subsampling depends on the sparsity of the signal |∆| and the

coherence of the measurement matrix matrix µ(U) = maxi,j∈N |uij |2. This is problematic as it can be
shown that µ = o(1) in this case. To mitigate this, variable density sampling or half-half schemes are
implemented in practice[28, 24], in which one considers problems of the form

inf
η∈H
‖η‖`1 subject to (P[M1] ⊕ PΩ)Uη = (P[M1] ⊕ PΩ)Ux (3.4)

where Ω ⊆ {M1 + 1, . . . ,M} is chosen in an uniformly random manner. The success of such schemes was
mathematically analysed in [3]. We recall some of the key aspects here and link it to the work presented
in this paper, although the interested reader should refer to [3] for details. Despite µ(U) not being small
and the underlying signal x may not be sparse, we have that µ(P⊥[N ]U) → 0 as N → ∞ and generally

supp(x) ⊂ [N1] ∪∆, where ∆ ⊂ {N1 + 1, . . . , N} is such that |∆| /(N −N1) is small. These properties
are respectively referred to as asymptotic incoherence and asymptotic sparsity. In addition, if M1,M
are correctly chosen with respect to N1, N , then |Ω| depends on the smaller values of µ(P⊥[M1]U) and

|∆|. So, the amount of subsampling can be based on the sparse part of the signal and the incoherent
part of the sampling matrix. In particular, a suitable choice of M1 with respect to N1 is such that∥∥∥P⊥[M1]UP[N1]

∥∥∥
`2
≤ γ√

M1
for sufficiently small γ. This is precisely the quantity studied in Lemma 5.1

and holds whenever M1 = O
(
N

1+1/(2α−1)
1

)
. Furthermore, for more complex signal structures, [3] also

generalizes (3.4) for the purpose of recovering signals such that

supp(x) ⊂ ∆1 ∪ . . . ∪∆r, ∆k ⊂ {Mk−1 + 1, . . . ,Mk} , 0 = M0 < M1 < . . . < Mr

to multiple levels of the form

inf
η∈H
‖η‖`1 subject to (PΩ1 ⊕ · · · ⊕ PΩr )Uη = (PΩ1 ⊕ · · · ⊕ PΩr )Ux

where 0 = N0 < N1 < . . . < Nr and for each 1 ≤ k ≤ r, Ωk ⊂ {Nk−1 + 1, . . . , Nk} is taken uniformly at
random. Similarly to the two level scheme, effective subsampling can be achieved when for k = 1, . . . , r−1,
the values

∥∥P⊥Mk
UPNk

∥∥
`2

are sufficiently small, so there is little ‘interference’ between different levels.

Thus, Lemma 5.1 serves as a starting point in understanding the effects of the choice of {Nk}rk=1 on the
recovery of signals.

4 Proofs

4.1 Existence of unique minimizers and stability

In order to prove Theorem 2.2, we will first present a result, now of common usage in the compressed
sensing literature. A similar result was proved in [4] (see also [10]) to establish conditions for the existence
of unique minimizers. However, we repeat the proof here in order to derive a statement which includes
sufficient conditions for `1 stability.

Proposition 4.1. Let U ∈ B(`2(N)) with ‖U‖`2 ≤ 1 and let Ω,∆ ⊂ N be such that |Ω| , |∆| < ∞.
Suppose that x, h ∈ `1(N) and supp(x) = ∆ and supp(h) ∩∆ = ∅. Consider the optimisation problem

inf
η∈`1(N)

‖η‖`1 subject to PΩUη = PΩU(x+ h). (4.1)

If there exists ρ such that

(i) ρ = U∗PΩη for some η.
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(ii) 〈ρ, ej〉 = 〈sgn(x), ej〉, j ∈ ∆.

(iii) |〈ρ, ej〉| ≤ 1/2, j 6∈ ∆

and

(iv) (P∆U
∗PΩUP∆)−1 exists on P∆(`1(N)) and

∥∥P⊥∆U∗PΩUP∆(P∆U
∗PΩUP∆)−1

∥∥
`∞
≤ 2,

then any minimizer ξ of (4.1) satisfies

‖ξ − x‖`1 ≤ 11 ‖h‖`1 .

Proof. First observe that since ξ satisfies the constraint of (4.1), we have that PΩU(x − P∆ξ) =
PΩUP

⊥
∆ (ξ − h). Thus,

‖x− P∆ξ‖`1 =
∥∥(P∆U

∗PΩUP∆)−1P∆U
∗PΩUP∆(x− ξ)

∥∥
`1

=
∥∥(P∆U

∗PΩUP∆)−1P∆U
∗PΩUP

⊥
∆ (ξ − h)

∥∥
`1

≤
∥∥(P∆U

∗PΩUP∆)−1P∆U
∗PΩUP

⊥
∆

∥∥
`1

∥∥P⊥∆ (ξ − h)
∥∥
`1
≤ 2

(∥∥P⊥∆ ξ∥∥`1 + ‖h‖`1
)

where the last line follows from (iv). It then follows that

‖x− ξ‖`1 ≤ 3
∥∥P⊥∆ ξ∥∥`1 + 2 ‖h‖`1 . (4.2)

We will now proceed to bound
∥∥P⊥∆ ξ∥∥`1 in terms of ‖h‖`1 :

‖ξ‖`1 = ‖P∆ξ − x+ x‖`1 +
∥∥P⊥∆ ξ∥∥`1 ≥ ‖x‖`1 + Re 〈P∆ξ − x, sgn(x)〉+

∥∥P⊥∆ ξ∥∥`1
≥ ‖x+ h‖`1 − ‖h‖`1 + Re 〈P∆ξ − x, sgn(x)〉+

∥∥P⊥∆ ξ∥∥`1 .
Since (ii) holds and ‖ξ‖`1 ≥ ‖x+ h‖`1 , it follows that∥∥P⊥∆ ξ∥∥`1 ≤ |〈P∆ξ − x, sgn(x)〉|+ ‖h‖`1

= |〈P∆ξ − x, P∆ρ〉|+ ‖h‖`1 =
∣∣〈ξ − x, ρ〉 − 〈P⊥∆ ξ, ρ〉∣∣+ ‖h‖`1 .

Now, since ρ = U∗PΩUη and PΩU(x− ξ) = −PΩUh, we have that∥∥P⊥∆ ξ∥∥`1 ≤ |〈h, ρ〉|+ ∣∣〈P⊥∆ ξ, ρ〉∣∣+ ‖h‖`1 ≤
3

2
‖h‖`1 +

1

2

∥∥P⊥∆ ξ∥∥`1
where the last line follows from (iii). Finally, plugging

∥∥P⊥∆ ξ∥∥`1 ≤ 3 ‖h‖`1 into (4.2) yields

‖x− ξ‖`1 ≤ 11 ‖h‖`1 .

4.2 Proof of Theorem 2.2

Proof of Theorem 2.2. Fix N ∈ N. By Proposition 4.1, it is sufficient to show that for M sufficiently
large,

(a) P[N ]U
∗P[M ]UP[N ] is invertible on P[N ](`

1(N)) such that∥∥∥P⊥[N ]U
∗P[M ]UP[N ](P[N ]U

∗P[M ]UP[N ])
−1
∥∥∥
`∞
≤ 2,

(b) there exists ρ ∈ range(U∗P[M ]) such that P[N ]ρ = sgn(P[N ]x) and
∥∥∥P⊥[N ]ρ

∥∥∥
`∞

< 1/2.
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We know from the analysis of [6] that since U∗U is self adjoint and positive, there exist C > 0 andm0 ∈
N such that for allM ≥ m0, P[N ]U

∗P[M ]UP[N ] is invertible on P[N ](`
1(N)) and ‖(P[N ]U

∗P[M ]UP[N ])
−1‖ ≤

C. Furthermore, for fixed N ∈ N,
∥∥∥P⊥[M ]UP[N ]

∥∥∥
`2
→ 0 as M → ∞. Thus, using the fact that U is an

isometry,∥∥∥P⊥[N ]U
∗P[M ]UP[N ](P[N ]U

∗P[M ]UP[N ])
−1
∥∥∥
`∞

=
∥∥∥P⊥[N ]U

∗P⊥[M ]UP[N ](P[N ]U
∗P[M ]UP[N ])

−1
∥∥∥
`∞

≤
√
N
∥∥∥P⊥[M ]UP[N ]

∥∥∥
`2

∥∥(P[N ]U
∗P[M ]UP[N ])

−1
∥∥
`2
≤ 2

for M sufficiently large. So, (a) is satisfied.
Now,

ρ = U∗P[M ]UP[N ](P[N ]U
∗P[M ]UP[N ])

−1sgn(P[N ]x)

is well defined. Moreover, P[N ]ρ = P[N ]sgn(x). For j > N

|〈ρ, ej〉| =
∣∣∣〈U∗P⊥[M ]UP[N ](P[N ]U

∗P[M ]UP[N ])
−1sgn(P[N ]x), ej〉

∣∣∣
≤
∥∥∥P⊥[M ]UP[N ]

∥∥∥
`2

∥∥(P[N ]U
∗P[M ]UP[N ])

−1
∥∥
`2

√
N ≤ C

√
N
∥∥∥P⊥[M ]UP[N ]

∥∥∥
`2
→ 0 as M →∞.

So, (b) is satisfied. Therefore, by Proposition 4.1, for sufficiently large M , the optimisation problem
(2.1) has a unique solution if supp(x) ⊂ {1, . . . , N} and for any x ∈ H,

‖ξ − x‖`1 ≤ 12 ·
∥∥∥P⊥[N ]x

∥∥∥
`1

5 Proof of Theorem 2.3

Throughout this section, we will be concerned with the reconstruction of functions compactly supported
on [0, a] for some a ≥ 1 and the reconstruction space W and sampling space S will be the wavelet and
Fourier spaces as defined in Section 2.3.

Before presenting the proof of Theorem 2.3, we first require some results on the relationship between
the Fourier sampling space S and the wavelet reconstruction space W. This will be the purpose of the
next section.

5.1 Preliminary results

The following is a result from [2], we however derive more precise bounds due the additional assumption
of polynomial decay on the Fourier transform of the scaling function φ.

Lemma 5.1. Assume that the scaling function and wavelet, φ and ψ, are supported on [0, a] and for
some A > 0 and α ≥ 1, ∣∣∣φ̂(ξ)

∣∣∣ ≤ A

(1 + |ξ|)α
, ξ ∈ R.

Suppose also that ε ∈ Q is such that 0 < ε ≤ 1/(T1 +T2) where T1, T2 > 0 are such that W ⊂ L2[−T1, T2].
Then, given any γ ∈ (0, 1) and N ∈ N, there exists some Cα,A,ε ∈ N which depends only on ε, α and

A such that
sup

ϕ∈WN ,
‖ϕ‖H≤1

∥∥Q⊥SMϕ∥∥H ≤ γ. (5.1)

whenever
M ≥ Cα,A,ε ·N · γ−2/(2α−1). (5.2)
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Remark 5.1 In the case where ε−1 ∈ N and N ≤ NR, it suffices to replace (5.2) by

M ≥ ε−1

(
4A2

(2π)2α(2α− 1)

) 1
2α−1

2R+1γ−
2

2α−1 .

This dependence on ε is necessary because, as mentioned in (2.8), it can be shown that infϕ∈TN ‖QSMϕ‖H
becomes exponentially small as M increases if M = c2R with c < ε−1. However, when ε−1 ∈ Q, the
dependence of Cε on ε which arises out of the proof is more complex and this is likely to be an artefact
of the proof technique.

Proof of Lemma 5.1. Recalling the definition of NR from (2.5), we first choose R ∈ N such that NR−1 <
N ≤ NR, so N = O

(
2R
)
. Also, since ε ∈ Q, we can choose Cε ∈ N such that ε−1Cε ∈ N. In particular,

if ε−1 ∈ N, then we can let Cε = 1. Let M = ε−1Cε · S · 2R+1, for some S ∈ N. The goal is to determine
S such that

sup
ϕ∈WN ,
‖ϕ‖H≤1

∥∥Q⊥SMϕ∥∥H ≤ γ.
Let ϕ ∈ WN such that ‖ϕ‖H = 1. From (2.6), ϕ =

∑AR,2
l=AR,1

βlφR,l such that
∑AR,2
l=AR,1

|βl|2 = 1. Observe
that

∥∥Q⊥SMϕ∥∥2

H =
∑

k≥dM2 e,k<bM2 c

∣∣∣∣∣∣
AR,2∑
l=AR,1

βl〈φR,l, sk〉

∣∣∣∣∣∣
2

=
∑

k≥dM2 e,k<bM2 c

ε

2R

∣∣∣∣Φ( εk2R
)
φ̂

(
−2πεk

2R

)∣∣∣∣2
where

Φ(z) =

AR,2∑
l=AR,1

βle
2πilz.

Let L = Cε2
R/ε ∈ N, then, by our choice of M , we can write k = mL + j for m < −S,m ≥ S and

j = 0, . . . , L− 1, giving

∥∥Q⊥SMϕ∥∥2

H =

L−1∑
j=0

Cε
L

∣∣∣∣Φ(CεjL
)∣∣∣∣2 ∑

k<−S,k≥S

∣∣∣∣φ̂(−2πCε

(
j

L
+ k

))∣∣∣∣2 .
Now, it is a consequence of the Parseval property of the Discrete Fourier transform that given any even
B ∈ N, and A1, A2 ∈ N such that B ≥ A2 −A1 + 1,

B−1∑
j=1

1

B

∣∣∣∣Ψ( j

B

)∣∣∣∣2 =

A2∑
j=A1

|ξl|2 (5.3)

where Ψ(z) =
∑A2

l=A1
ξle

2πilz. In our case, recalling the definition of AR,2 and AR,1 from (2.6), we have
that

L ≥ 2R/ε ≥ (3dae − 2)2R, AR,2 −AR,1 + 1 = 2R(3dae − 2) + dae − 1.

So, to apply (5.3), we let AR,3 = d(AR,2 −AR,1 + 1)/2e − 1 and

Φ1(z) =

AR,3∑
l=AR,1

βle
2πilz, Φ2(z) =

AR,2∑
l=AR,3+1

βle
2πilz.

Thus, by applying (5.3), we have that

L−1∑
j=0

Cε
L

∣∣∣∣Φ(CεjL
)∣∣∣∣2 ≤ 2

L−1∑
j=0

Cε
L

(∣∣∣∣Φ1

(
Cεj

L

)∣∣∣∣2 +

∣∣∣∣Φ2

(
Cεj

L

)∣∣∣∣2
)

≤ 2C2
ε

AR,2∑
l=AR,1

|βl|2 = 2C2
ε .
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From the estimate on the decay of φ̂, for j = 0, . . . , L− 1,∑
k<−S,k≥S

∣∣∣∣φ̂(−2πCεj

L
− 2πkCε

)∣∣∣∣2 ≤ ∑
|k|≥S

A2

(2πCε)2αk2α
≤ 2A2

(2πCε)2α(2α− 1)S2α−1
.

Thus,
∥∥Q⊥SMϕ∥∥H ≤ γ whenever

S ≥
(

4A2

γ2(2π)2α(2α− 1)

) 1
2α−1

,

i.e. whenever M = ε−1CεCα,A2R+1γ−
2

2α−1 for some constant

Cα,A ≥
(

4A2

(2π)2α(2α− 1)

) 1
2α−1

.

Proposition 5.2. Assume that the scaling and wavelet functions, φ and ψ, are supported on [0, a] and
for k = 0, 1, 2, for some A > 0 and α ≥ 1.5,∣∣∣φ̂(k)(ξ)

∣∣∣ ≤ A

(1 + |ξ|)α
,
∣∣∣ψ̂(k)(ξ)

∣∣∣ ≤ A

(1 + |ξ|)α
, ξ ∈ R.

Suppose also that the Fourier sampling density ε ∈ Q is such that

0 < ε ≤ δ/(T1 + T2), δ ∈ (0, 1)

where T1, T2 > 0 are such that W ⊂ L2[−T1, T2]. Then, for N ∈ N and any γ ∈ (0, 1), there exists S
independent of R (but dependent on φ, ψ and ε) such that

(i) for M ≥ S · γ−1/(α−1) ·N ,

sup
{β∈CN :‖β‖`∞=1}

sup
l∈N

∣∣∣∣∣∣∣∣〈QSM
N∑
j=1,
j 6=l

βjϕj , ϕl〉

∣∣∣∣∣∣∣∣ ≤ γ. (5.4)

(ii) for M ≥ S · γ−1/(2α−1) ·N ,

sup
{β∈CN :‖β‖`∞=1}

sup
l∈[N ]

∣∣∣∣∣∣∣∣〈QSM
N∑
j=1,
j 6=l

βjϕj , ϕl〉

∣∣∣∣∣∣∣∣ ≤ γ. (5.5)

Proof. Without loss of generality, we will assume throughout that N = NR for some R ∈ N. First note
that ϕl takes the form of either φJ,j or ψJ,j for some J ∈ N and j ∈ Z. In this proof, when considering

ϕl, we will only be making use of the decay of ψ̂ and φ̂ which are assumed to have the same decay.
Consequently, we will assume that l is sufficiently large such that the lth element of Ωa is denoted by

ϕl = ψRl,jl , in accordance with the ordering defined in (2.3). Let β̃ = (β̃j) be such that
∥∥∥β̃∥∥∥

`∞
≤ 1.

Then, from (2.6), for such β̃, there exists (βj) such that

NR∑
j=1

β̃jϕj =

AR,2∑
j=AR,1

βjφR,j . (5.6)

Observe also that for any ξ ∈ R, there are at most dae + 1 elements of {ψj,l : l ∈ Z} whose support
contains ξ. Hence,∣∣∣∣∣∣

NR∑
j=1

β̃jϕj(ξ)

∣∣∣∣∣∣ ≤ (dae+ 1) max {‖φ‖L∞ , ‖ψ‖L∞}
(

1 + 1 +
√

2 + · · ·+
√

2R−1
)

= (dae+ 1) max {‖φ‖L∞ , ‖ψ‖L∞}
(

1 +
2R/2 − 1√

2− 1

)
,
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so

|βj | =

∣∣∣∣∣∣〈
NR∑
j=1

β̃jϕj , φR,j〉

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ NR∑

j=1

β̃jϕj(t)φR,j(t)dt

∣∣∣∣∣∣ ≤
∥∥∥∥∥∥
NR∑
j=1

β̃jϕj

∥∥∥∥∥∥
L∞

∫
|φR,j(t)|dt

≤

∥∥∥∥∥∥
NR∑
j=1

β̃jϕj

∥∥∥∥∥∥
L∞

√∫
|φR,j(t)|2 dt

√
|supp(φR,j)|

≤
√
dae(dae+ 1) max {‖φ‖L∞ , ‖ψ‖L∞}

(
1 +

1√
2− 1

)
=: Mφ,ψ

(5.7)

and ‖(βj)‖`∞ is bounded by a constant Mφ,ψ, independent of R.
Using the observations (5.6) and (5.7),

sup
l∈N

∣∣∣∣∣∣∣∣〈QSM
NR∑
j=1
j 6=l

β̃jϕj , ϕl〉

∣∣∣∣∣∣∣∣ = sup
l∈N

∣∣∣∣∣∣∣∣〈Q
⊥
SM

NR∑
j=1
j 6=l

β̃jϕj , ϕl〉

∣∣∣∣∣∣∣∣
≤ sup

l∈N

∣∣∣∣∣∣∣∣∣∣
AR,2∑
j=AR,1

βj
∑

k<−bM2 c,
k≥dM2 e

ε√
2R+Rl

φ̂

(
−2πεk

2R

)
e2πiεkj/2R ψ̂

(
−2πεk

2Rl

)
e−2πiεkjl/2

Rl

∣∣∣∣∣∣∣∣∣∣
.

(5.8)

Since ε ∈ Q, we can choose Cε ∈ N such that Cεε
−1 ∈ N. Now, for some S ∈ N which will be

determined, let L = 2RCεε
−1 and M = 2SL. The goal is to show that there exists some constant S ∈ N

independent of R such that (5.8) is bounded by γ.
Now, by writing k = mL+ b with m such that m < −S and m ≥ S and b = 0, . . . , L− 1,∑

k<−bM2 c,k≥dM2 e
φ̂

(
−2πεk

2R

)
e2πiεkj/2R ψ̂

(
−2πεk

2Rl

)
e−2πiεkjl/2

Rl

=

L−1∑
b=0

Hl

(
b

L

)
exp

(
2πiεbj

2R
− 2πiεbjl

2Rl

)
where

Hl(ξ) =
∑

m<−S,m≥S

φ̂ (−2πCε(m+ ξ)) ψ̂

(
−2π

2R

2Rl
Cε (m+ ξ)

)
exp

(
− i2

R+1jlπmCε
2Rl

)
.

So, plugging this back into (5.8) and using (5.7),

sup
l∈N

∣∣∣∣∣∣∣∣〈QSM
NR∑
j=1
j 6=l

β̃jϕj , ϕl〉

∣∣∣∣∣∣∣∣ = sup
l∈N

∣∣∣∣∣∣
AR,2∑
j=AR,1

βj
ε√

2R+Rl

L−1∑
b=0

Hl

(
b

L

)
exp

(
2πiεbj

2R
− 2πiεbjl

2Rl

)∣∣∣∣∣∣
≤Mφ,ψ sup

l∈N

AR,2∑
j=AR,1

∣∣∣∣∣ ε√
2R+Rl

L−1∑
b=0

Hl

(
b

L

)
exp

(
2πiεbj

2R
− 2πiεbjl

2Rl

)∣∣∣∣∣
≤Mφ,ψ sup

l∈N

Cε√
2Rl−R

AR,2∑
j=AR,1

|gl(j)|

(5.9)

where

gl(j) =
1

L

L−1∑
b=0

Hl

(
b

L

)
exp

(
2πiεbj

2R
− 2πiεbjl

2Rl

)
.

15



Note that Hl(0) = Hl(1) = 0 since it is known that φ̂(2πm) = 0 whenever m ∈ Z\{0} [21, Proposition
2.17, pg 64].

To gain some intuition as to why ( 5.9) should be bounded by a small constant, first observe that

gl(j) ≈
∫ 1

0

Hl(t)e
2πiCε(j−2R−Rl jl)tdt = F̂l(−2πiCε(j − 2R−Rljl))

where Fl = Hl · χ[0,1]. Now, Hl is zero at 0 and at 1, and if it is twice differentiable on [0,1), then (by

integration by parts) F̂l(−2πiCε(j − 2R−Rljl)) ≤ C(2πCε(j − 2R−Rljl))
−2 where C depends on H

(k)
l for

k = 1, 2. Moreover, we will aim to make C small by an appropriate choice of S in the definition of Hl.

We then use that the fact that
∑
n∈N n

−2 < ∞ to estimate
∑AR,2
j=AR,1

|gl(j)|. With this in mind, we will
now proceed to approximate gl.

Given sequences (ak) and (bk), the following summation by parts formula holds:

N∑
k=0

akbk = aN

N∑
k=0

bk −
N−1∑
k=0

(ak+1 − ak)

k∑
j=0

bj . (5.10)

Observe also that
−dae+ 1

2Rl
≤ jl

2Rl
≤ dae − 1

2Rl
,

−(1 + 2−R)dae − 1− 2−R =
AR,1
2R
≤ j

2R
≤ AR,2

2R
= 2dae − 1− 2−R.

Thus, ε ≤ δ/(3dae − 2) implies that

−δ < εj

2R
− εjl

2Rl
< δ (5.11)

and

exp

(
2πi

(
εj

2R
− εjl

2Rl

))
6= 1

whenever
∣∣j − jl

2Rl−R

∣∣ 6= 0.

Assuming that j is such that
∣∣j − jl

2Rl−R

∣∣ ≥ max
{

(2R−Rl)α−1/2, 1
}

, we may apply (5.10) to obtain
the following.

gl(j) =
1

L

L∑
b=0

Hl

(
b

L

)
exp

(
2πiεbj

2R
− 2πiεbjl

2Rl

)

= − 1

L

L−1∑
b=0

(
Hl

(
b+ 1

L

)
−Hl

(
b

L

)) b∑
k=0

exp

(
2πik

(
εj

2R
− εjl

2Rl

))

= − 1

L

L−1∑
b=0

(
Hl

(
b+ 1

L

)
−Hl

(
b

L

))(
exp

(
2πi(b+ 1)

(
εj
2R
− εjl

2Rl

))
− 1

exp
(
2πi

(
εj
2R
− εjl

2Rl

))
− 1

)

= − 1

L

L−1∑
b=0

(
Hl

(
b+ 1

L

)
−Hl

(
b

L

)) e
2πib

(
εj

2R
− εjl

2Rl

)

1− e−2πi
(
εj

2R
− εjl

2Rl

)


+
1

L

L−1∑
b=0

(
Hl

(
b+ 1

L

)
−Hl

(
b

L

)) e
−2πi

(
εj

2R
− εjl

2Rl

)

1− e−2πi
(
εj

2R
− εjl

2Rl

)


= − 1

L

L−1∑
b=0

(
Hl

(
b+ 1

L

)
−Hl

(
b

L

)) e
2πib

(
εj

2R
− εjl

2Rl

)

1− e−2πi
(
εj

2R
− εjl

2Rl

)


(5.12)

where the last line follows because

L−1∑
b=0

(
Hl

(
b+ 1

L

)
−Hl

(
b

L

))
= Hl(1)−Hl(0) = 0.
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We now let

J(L− 1) = Hl

(
L− 1

L

)
, J(b) = Hl

(
b+ 2

L

)
− 2Hl

(
b+ 1

L

)
+Hl

(
b

L

)
, b = 0, . . . , L− 2,

then, by applying (5.10) to (5.12), we obtain

gl(j) =
1

L

(
1− e−2πiε

(
j

2R
− jl

2Rl

))
J(L− 1) ·

 e
− 2πijl2

R

2Rl − 1

1− e2πiε
(
j

2R
− jl

2Rl

)
− L−2∑

b=0

J(b) ·

e2πiε(b+1)
(
j

2R
− jl

2Rl

)
− 1

1− e2πiε
(
j

2R
− jl

2Rl

)


=
1

L
∣∣2 sin

(
πε
(
j

2R
− jl

2Rl

))∣∣2
{
J(L− 1) ·

(
e
− 2πijl2

R

2Rl − 1

)
−
L−2∑
b=0

J(b) ·
(
e

2πiε(b+1)
(
j

2R
− jl

2Rl

)
− 1

)}
.

(5.13)

Note that Hl is twice continuously differentiable on [0, 1] by Lemma 5.3. Hence, by the mean value
theorem, for b = 0, 1, . . . , L− 2,

J(b) = Hl

(
b+ 2

L

)
− 2Hl

(
b+ 1

L

)
+Hl

(
b

L

)
=

1

L

(
H ′l

(
ξb+1

L

)
−H ′l

(
ξb
L

))
=

(ξb+1 − ξb)
L2

H ′′l

(
ξb+1/2

L

)
where ξb ∈ [b, b+ 1] and ξb+1/2 ∈ [ξb, ξb+1] ⊂ [b, b+ 2] and also, since Hl(1) = 0,

J(L− 1) = −Hl

(
L− 1

L

)
= Hl(1)−Hl

(
L− 1

L

)
=
h′(η)

L

for some η ∈ [1− 1/L, 1]. Since δ ∈ (0, 1), there exists cδ > 0 such that for all x ∈ [−δ, δ],

1 ≥ |sin(x)/x| ≥ cδ.

So from (5.11), for
∣∣j − jl

2Rl−R

∣∣ ≥ max
{

(2R−Rl)α−1/2, 1
}

|gl(j)| ≤
1

4c2δLπ
2
∣∣( εj

2R
− εjl

2Rl

)∣∣2
∣∣∣∣∣J(L− 1)

(
e
− 2πiεjlL

2Rl − 1

)
−
L−2∑
b=0

J(b)

(
e

2πiε(b+1)
(
j

2R
− jl

2Rl

)
− 1

)∣∣∣∣∣
≤ 1

4c2δπ
2C2

ε

∣∣(j − jl
2Rl−R

)∣∣2
2 |H ′l(η)|+ 4

∣∣∣∣∣∣
L−2∑
b=0

H ′′l

(
ξb+1/2

L

)
L

∣∣∣∣∣∣


≤ 1

4c2δπ
2C2

ε

∣∣(j − jl
2Rl−R

)∣∣2 (2 ‖H ′l‖L∞[0,1] + 4 ‖H ′′l ‖L∞[0,1]

)
(5.14)

Let K = max
{

(2R−Rl)α−1/2, 1
}

and note that∣∣∣∣{j :

∣∣∣∣j − jl
2Rl−R

∣∣∣∣ < K

}∣∣∣∣ ≤ 2K,

and
|gl(j)| ≤ ‖Hl‖L∞[0,1] . (5.15)
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By (5.9),(5.14) and (5.15),

sup
l∈N

∣∣∣∣∣∣〈QSM
NR∑
j=1

β̃jϕj , ϕl〉

∣∣∣∣∣∣ ≤ sup
l∈N

Mφ,ψCε√
2Rl−R

AR,2∑
j=AR,1

|gl(j)|

≤ sup
l∈N

Mφ,ψ√
2Rl−R

2CεK ‖Hl‖L∞[0,1] +
‖H ′l‖L∞[0,1] + 2 ‖H ′′l ‖L∞[0,1]

2c2δπ
2Cε

∑
{
j:
∣∣∣j− jl

2Rl−R

∣∣∣≥K}
1∣∣(j − jl

2Rl−R

)∣∣2


≤ sup
l∈N

Mφ,ψ√
2Rl−R

(
2KCε ‖Hl‖L∞[0,1] + min

{
π2

6
,

2

K

} ‖H ′l‖L∞[0,1] + 2 ‖H ′′l ‖L∞[0,1]

c2δπ
2Cε

)

≤ sup
l∈N

2Mφ,ψ

(
2(R−Rl)αCε ‖Hl‖L∞[0,1] + min

{
π2
√

2R−Rl

3
, 2(R−Rl)(−α+1)

}
‖H ′l‖L∞[0,1] + 2 ‖H ′′l ‖L∞[0,1]

c2δπ
2Cε

)
(5.16)

where the penultimate line follows from∑
{j:|j−jl2R−Rl |≥K}

1

|(j − jl2R−Rl)|2
≤ 2

∑
j≥K

1

j2
≤ min

{
π2

3
,

4

K

}
.

Now, by Lemma 5.3 , we know that for k = 0, 1, 2 and some constant C > 0,

∥∥∥H(k)
l

∥∥∥
L∞[0,1]

≤ C ·


2k

(2πCε)α−k(α−1)Sα−1 R ≤ Rl
1

(2πCε)2α−k(α−1)S2α−1

(
2Rl
2R

)α−k
R > Rl.

(5.17)

Thus, by plugging the estimates in (5.17) into (5.16) and recalling that α ≥ 1.5 and Cε ≥ 1, we have
that

sup
{l∈N:R≤Rl}

∣∣∣∣∣∣〈QSM
NR∑
j=1

β̃jϕj , ϕl〉

∣∣∣∣∣∣
≤ 2Mφ,ψC

Sα−1(α− 1)

(
1

(2π)αCα−1
ε

+
4

c2δ2
α−1πα+1Cαε

+
8

c2δ2
α−2παCα−1

ε

)
≤ 6Mφ,ψC

Sα−1(α− 1)c2δ

and

sup
{l∈N:R>Rl}

∣∣∣∣∣∣〈QSM
NR∑
j=1

β̃jϕj , ϕl〉

∣∣∣∣∣∣
≤ 2Mφ,ψC

S2α−1(α− 1)

(
1

(2π)2αC2α−1
ε

+
2(Rl−R)(2α−2)

c2δ2
2α−1π2α+1C2α

ε

+
2(Rl−R)(2α−3)

c2δ2
2α−3π2αC2α−1

ε

)
≤ 2Mφ,ψC

S2α−1(α− 1)c2δ
.

Recalling that M = 2R+1ε−1CεS, (i) follows by choosing

S ≥
(

6Mφ,ψC

(α− 1)c2δγ

)1/(α−1)

and (ii) follows by choosing

S ≥
(

6Mφ,ψC

(α− 1)c2δγ

)1/(2α−1)

.
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Lemma 5.3. Assume that φ, ψ are compactly supported and for k = 0, 1, 2 and ϕ = φ̂, ψ̂, C > 0, Y ∈ N
and α ≥ 1.5, ∣∣∣∣ dk

dξk
ϕ(ξ)

∣∣∣∣ ≤ C

(1 + |ξ|)α
.

Let
H(ξ) =

∑
m<−S,m≥S

hm(ξ).

where

hm(ξ) = φ̂ (−2πY (m+ ξ)) ψ̂

(
−2R+1πY

2Rl
(m+ ξ)

)
exp

(
− i2

R+1jlπY m

2Rl

)
.

Then there exists some constant C such that for all ξ ∈ [0, 1], the following holds:

(i) ∑
m<−S,m≥S

|hm(ξ)| ≤ C

(2πY )α(α− 1)Sα−1(1 + 2R−Rl+1πY S)α
,

(ii) ∑
m<−S,m≥S

|h′m(ξ)| ≤
C
(
1 + 2R−Rl

)
(2πY )α−1(α− 1)Sα−1(1 + 2R−Rl+1πY S)α

,

(iii) ∑
m<−S,m≥S

|h′′m(ξ)| ≤ C(1 + 2R−Rl)2

(2πY )α−2(α− 1)Sα−1(1 + 2R−Rl+1πY S)α
.

Then, H ∈ C2[0, 1] and there exists some constant C such that for k = 0, 1, 2,

∥∥∥H(k)
∥∥∥
L∞[0,1]

≤ sup
ξ∈[0,1]

 ∑
m<−S,m≥S

∣∣∣h(k)
m (ξ)

∣∣∣
 ≤ C(1 + 2R−Rl)k

(2πY )α−k(α− 1)Sα−1(1 + 2R−Rl+1πY S)α
. (5.18)

Proof. First note that φ̂ ∈ C∞ and ψ̂ ∈ C∞, so hm ∈ C∞. Moreover, the absolute convergence in (i),
(ii) and (iii) implies that h ∈ C2[0, 1] and (5.18). So, it remains to show (i), (ii) and (iii).

(i) For ξ ∈ [0, 1],∑
m<−S,m≥S

|hm(ξ)| ≤ sup
|η|≥2R−Rl+1πY S

∣∣∣ψ̂(η)
∣∣∣ ∑
m<−S,m≥S

∣∣∣φ̂(−2πY (m+ ξ))
∣∣∣

≤ C

(2πY )α(1 + 2R−Rl+1πY S)α

∑
m<−S,m≥S

1

|m+ ξ|α
≤ C

(2πY )α(1 + 2R−Rl+1πY S)α

∑
m>S

1

mα

≤ C

(2πY )α(α− 1)Sα−1(1 + 2R−Rl+1πY S)α
.

(ii)

h′m(ξ) =− 2πY φ̂′ (−2πY (m+ ξ)) ψ̂

(
−2R+1πY

2Rl
(m+ ξ)

)
exp

(
− i2

R+1jlπY m

2Rl

)
− 2R+1Y π

2Rl
φ̂ (−2πY (m+ ξ)) ψ̂′

(
−2R+1Y π

2Rl
(m+ ξ)

)
exp

(
− i2

R+1jlπY m

2Rl

)
.

So, for ξ ∈ [0, 1], by arguing as in (i),

∑
m<−S,m≥S

|h′m(ξ)| ≤ C

(2πY )α−1(1 + 2R−Rl+1πY S)α

(1 + 2R−Rl)
∑

m<−S,m≥S

1

|m+ ξ|α


≤

C
(
1 + 2R−Rl

)
(2πY )α−1(α− 1)Sα−1(1 + 2R−Rl+1πY S)α

.
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(iii)

h′′m(ξ) =4π2Y 2φ̂′′ (−2πY (m+ ξ)) ψ̂

(
−2R+1πY

2Rl
(m+ ξ)

)
exp

(
− i2

R+1jlπY m

2Rl

)
+

2R+3π2Y 2

2Rl
φ̂′ (−2πY (m+ ξ)) ψ̂′

(
−2R+1πY

2Rl
(m+ ξ)

)
exp

(
− i2

R+1jlπY m

2Rl

)
+

22R+2π2Y 2

22Rl
φ̂ (−2πY (m+ ξ)) ψ̂′′

(
−2R+1πY

2Rl
(m+ ξ)

)
exp

(
− i2

R+1jlπY m

2Rl

)

So, for ξ ∈ [0, 1], by arguing as in (i),∑
m<−S,m≥S

|h′′m(ξ)| ≤ C(1 + 2R−Rl+1 + 22R−2Rl)

(2πY )α−2(1 + 2R−Rl+1πY S)α

∑
m<−S,m≥S

1

|m+ ξ|α

≤ C(1 + 2R−Rl)2

(2πY )α−2(α− 1)Sα−1(1 + 2R−Rl+1πY S)α
.

5.2 Proof of Theorem 2.3

We begin with an corollary.

Corollary 5.4. Consider the setting of Proposition 5.2 and let C be some constant independent of N
but dependent on φ, ψ and ε. Then∥∥P[N ]U

∗P[M ]UP[N ] − P[N ]

∥∥
`∞
≤ γ

wherever M ≥ Cγ−1/(2α−1)N and ∥∥∥P⊥[N ]U
∗P[M ]UP[N ]

∥∥∥
`∞
≤ γ

wherever M ≥ Cγ−1/(α−1)N .

Let x = (xj)
N
j=1 such that ‖x‖`∞ = 1. First observe that

Proof.

∥∥(P[N ]U
∗P[M ]UP[N ] − P[N ])x

∥∥
`∞

= sup
l=1,...,N

∣∣∣∣∣∣〈QSM
N∑
j=1

xjϕj , ϕl〉 − xl

∣∣∣∣∣∣
≤ sup
l=1,...,N

∣∣∣∣∣∣∣∣〈QSM
N∑
j=1
j 6=l

xjϕj , ϕl〉

∣∣∣∣∣∣∣∣+ ‖x‖`∞
∣∣∣‖QSMϕl‖2H − 1

∣∣∣ = sup
l=1,...,N

∣∣∣∣∣∣∣∣〈QSM
N∑
j=1
j 6=l

xjϕj , ϕl〉

∣∣∣∣∣∣∣∣+
∥∥Q⊥SMϕl∥∥2

H .

(5.19)

It now follows from (ii) of Proposition 5.2 and Lemma 5.1 that for M ≥ Cγ−1/(2α−1)N∥∥(P[N ]U
∗P[M ]UP[N ] − P[N ])x

∥∥
`∞
≤ γ.

Finally, ∥∥∥P⊥[N ]U
∗P[M ]UP[N ]x

∥∥∥
`∞

= sup
l≥N

∣∣∣∣∣∣〈QSM
N∑
j=1

xjϕj , ϕl〉

∣∣∣∣∣∣ ≤ γ
whenever M ≥ Cγ−1/(α−1)N by (i) of Proposition 5.2.

20



Proof of Theorem 2.3. As in the proof of Theorem 2.2, we will show that

(a) P[N ]U
∗P[M ]UP[N ] is invertible on P[N ](`

1(N)) such that∥∥∥P⊥[N ]U
∗P[M ]UP[N ](P[N ]U

∗P[M ]UP[N ])
−1
∥∥∥
`∞
≤ 2,

(b) there exists ρ ∈ range(U∗P[M ]) such that P[N ]ρ = sgn(P[N ]x) and
∥∥∥P⊥[N ]ρ

∥∥∥
`∞

< 1/2.

and a direct application of Proposition 4.1 concludes this proof.
Suppose first that ∥∥(P[N ]U

∗P[M ]UP[N ] − P[N ])
∥∥
`∞
≤ 1

2
(5.20)

and ∥∥∥(P⊥[N ]U
∗P[M ]UP[N ]

∥∥∥
`∞
≤ 1

4
. (5.21)

Then (P[N ]U
∗P[M ]UP[N ])

−1 exists,∥∥(P[N ]U
∗P[M ]UP[N ])

−1
∥∥
`∞
≤
∞∑
j=0

∥∥P[N ]U
∗P[M ]UP[N ] − P[N ]

∥∥j
`∞
≤ 2.

and ∥∥∥P⊥[N ]U
∗P[M ]UP[N ](P[N ]U

∗P[M ]UP[N ])
−1
∥∥∥
`∞
≤ 1

2
. (5.22)

So (a) is satisfied.
We now let

ρ = U∗P[M ]UP[N ](P[N ]U
∗P[M ]UP[N ])

−1P[N ]sgn(x) ∈ range(U∗P[M ]).

Clearly, P[N ]ρ = P[N ]sgn(x) and since (5.22) holds, we have that
∥∥∥P⊥[N ]ρ

∥∥∥
`∞
≤ 1

2 and (b) holds. Thus, it

remains to show that (5.20) and (5.20) hold.
Under the assumptions of (ii), by Corollary 5.4, (5.20) and (5.20) hold whenever M ≥ C ·N for some

constant dependent only on φ, ψ and ε.

Finally, under the assumptions of (i), by Lemma 5.1,
∥∥∥P⊥[M ]UP[N ]

∥∥∥
`2
≤ 1

4
√
N

whenever M ≥ C ·
N1+1/(2α−1) for some constant C dependent only on φ, ψ and ε. Thus, using the fact that U is an
isometry, ∥∥P[N ]U

∗P[M ]UP[N ] − P[N ]

∥∥
`∞

∥∥∥P[N ]U
∗P⊥[M ]UP[N ]

∥∥∥
`∞
≤
√
N
∥∥∥P⊥[M ]UP[N ]

∥∥∥
`2
≤ 1

4

and ∥∥∥P⊥[N ]U
∗P[M ]UP[N ]

∥∥∥
`∞
≤
√
N
∥∥∥P⊥[M ]UP[N ]

∥∥∥
`2
≤ 1

4
.

6 A numerical example

In this section, we will be considering the use of generalized sampling in the recovery of wavelet coefficients
from Fourier samples. The wavelet bases used will be the orthogonal Daubechies wavelets adapted to the
unit interval, by modifying the boundary wavelets [11]. Note that although the previous sections only
considered orthogonal wavelets with zero boundary conditions, all the results proved hold also for these
interval adapted wavelet bases. This is because the proofs are only dependent on the decay properties
of the Fourier transform of the scaling function and wavelet, which are preserved in the construction of
boundary adapted wavelets.

We will consider the recovery of the function f(x) = x3 + 1 on the interval [0, 1] from its Fourier
samples, with Fourier sampling density ε = 1/2. Namely, forM ∈ N, let ΛM = {−bM/2c, . . . , dM/2e−1},
then the samples observed are FM =

(
2−1/2f̂(πk)

)
k∈ΛM

.

For fixed v ∈ N, let ϕvj denote the jth Daubechies-v wavelet, where the ordering is in increasing order
of wavelet scale. We will compute two types of reconstructions.
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Figure 1: The two figures are reconstructions of f(x) = x3+1 on the unit interval from its first 128 Fourier
samples. The left figure shows the generalized sampling reconstruction using Daubechies-3 wavelets, and
the right figure shows the truncated Fourier representation.

(i) The truncated Fourier representation TM (f) = ε
∑
j∈ΛM

f̂(2πεj)e2πiεj·.

(ii) The generalized sampling reconstruction RM (f, v) =
∑214

j=1 βjϕ
v
j where β = (βj)

214

j=1 is such that

β ∈ argminη∈C214 ‖η‖`1 subject to PΛMU
vη = FM . (6.1)

where PΛMU
vη =

(
〈
∑214

j=1 ηjϕ
v
j ,
√
εe2πiεk·〉

)
k∈ΛM

. Recall from Section 2.1 that although β is finite

dimensional, it can then be understood as an approximation to an infinite dimensional generalized
sampling reconstruction.

Figure 1 shows plots of the RM (f, 3) and TM (f) for M = 128 and Table 2 shows the errors of the
reconstructions TM (f) and RM (f, v) for v = 1, 2, 3.

Since f is smooth but not periodic, it is expected that the truncated Fourier representation of f has
slow decay in its coefficients: ‖TM (f)− f‖H = O

(
M−1/2

)
. This is reflected in Table 2. On the other

hand, if one has direct access to the wavelet coefficients of f , such that we can compute

QWM
(f) =

M∑
j=1

〈f, ϕvj 〉ϕvj ,

then it is known [25] (since the boundary corrected Daubechies wavelets preserve v vanishing moments
on the unit interval), that

‖QWM
(f)− f‖H = O

(
M−v

)
.

In the results of Table 2, although RM (f, v) is constructed only from M Fourier samples, it achieves
an error close to O (M−v). This suggests that there is a linear correspondence between the number of
Fourier samples and the number of wavelet coefficients recovered. In particular, one does not need to
directly access the wavelets coefficients to attain their benefits.

Our results in Theorem 2.3 suggests such a linear correspondence for sufficiently smooth wavelets,
however the results here suggest that this relationship might hold even for nonsmooth wavelets. Thus,
the question of whether the result in Theorem 2.3 can be improved remains an open problem. Finally,
we remark that this example demonstrates that the nonlinear approach to generalized sampling not
only achieves consistent reconstructions but also the same error bounds as the generalized sampling
reconstructions derived from least squares approaches.

7 Concluding remarks

We have provided analysis of a non-linear scheme for generalized sampling in arbitrary spaces and have
proved that the scheme is consistent, convergent and stable in an `1 sense. Furthermore, we have
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M Reconstruction ErrorM − log2(ErrorM )

log2(M)

64 RM (f, 1) 0.0113 1.0783
128 RM (f, 1) 0.0058 1.0597
256 RM (f, 1) 0.0030 1.0490
512 RM (f, 1) 0.0015 1.0421

64 RM (f, 2) 3.58 × 10−4 1.9079
128 RM (f, 2) 9.21 × 10−5 1.9152
256 RM (f, 2) 2.33 × 10−5 1.9236
512 RM (f, 2) 5.88 × 10−6 1.9307

64 RM (f, 3) 8.43 × 10−6 2.8092
128 RM (f, 3) 1.11 × 10−6 2.8258
256 RM (f, 3) 2.24 × 10−7 2.7616
512 RM (f, 3) 1.75 × 10−7 2.4937

64 TM (f) 0.0911 0.5760
128 TM (f) 0.0642 0.5658
256 TM (f) 0.0457 0.5563
512 TM (f) 0.0330 0.5466

Table 2: Comparison of the truncated Fourier representation of f , TM (f) and the generalized sampling
reconstruction of f with Daubechies-v wavelets, RM (f, v). Note that Daubechies-1 refers to the Haar
wavelet. In this table, for each reconstruction, say FM (f), we let ErrorM = ‖FM (f)− f‖H. Note that
all reconstructions have as input the first M Fourier samples.

derived error bounds for this scheme in the context of wavelet reconstructions from Fourier samples. In
particular, for wavelets of sufficient smoothness, there is a linear correspondence between the number of
Fourier samples and the number of wavelets that can be accurately recovered.

Although the work presented in this paper make no assumption on sparsity of the underlying signal,
we have remarked upon the relevance of the analysis of this paper for the implementation of compressed
sensing. In particular, the choice of an effective sampling strategy in the presence of sparsity requires
an a-priori understanding of how many wavelet coefficients can be accurately recovered from M Fourier
coefficients.

As previously mentioned, the scheme presented in this paper is already used in practice for the
reconstruction of MR images. Although the analysis in this paper has been conducted in one-dimension
and for orthonormal systems of wavelets with zero boundary conditions only, the actual properties
required for the proofs are very general. The key properties of the space W that our proofs exploit
are the smoothness and hence Fourier decay of the scaling function φ and the wavelet ψ and that the
existence of an increasing sequence

0 < N1 < · · · < NR < NR+1 < · · ·

such that NR = O
(
2R
)
,
⋃
R∈NWNR =W and

WNR ⊆ span {φR,j : AR,1 ≤ j ≤ AR,2} , AR,2 −AR,1 = O
(
2R
)
. (7.1)

Consequently, the results of this paper can be readily extended to other types of boundary conditions,
in particular, the Daubechies wavelets with special boundary wavelet and scaling functions as described
in [11], since it is known from the construction that the boundary scaling function can be written as
a linear combination of finitely many elements in {φ(· − k) : k ∈ Z}. Furthermore, since the properties
of the wavelet bases described here are easily preserved when extended to separable two-dimensional
wavelet bases, the results here are applicable also to two-dimensions. Thus, the work here may be seen
as theoretical foundations for the use of this non-linear framework of generalized sampling in MRI.
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