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Abstract

In a series of recent papers (Adcock, Hansen and Poon, 2013, Appl. Comput. Harm. Anal.
45(5):3132–3167), (Adcock, Gataric and Hansen, 2014, SIAM J. Imaging Sci. 7(3):1690–1723) and
(Adcock, Hansen, Kutyniok and Ma, 2015, SIAM J. Math. Anal. 47(2):1196–1233), it was shown
that one can optimally recover the wavelet coefficients of an unknown compactly supported func-
tion from pointwise evaluations of its Fourier transform via the method of generalized sampling.
While these papers focused on the optimality of generalized sampling in terms of its stability
and error bounds, the current paper explains how this optimal method can be implemented to
yield a computationally efficient algorithm. In particular, we show that generalized sampling has
a computational complexity of O (M(N) logN) when recovering the first N boundary-corrected
wavelet coefficients of an unknown compactly supported function from M(N) Fourier samples.
Therefore, due to the linear correspondences between the number of samples M and number of
coefficients N shown previously, generalized sampling offers a computationally optimal way of
recovering wavelet coefficients from Fourier data.

1 Introduction

The motivation behind the papers [8, 1, 6] is that, there are countless applications in which one
is concerned with the recovery of a function from finitely many pointwise evaluations of its Fourier
transform. To name a few examples, these applications range from medical imaging [24, 34, 35] to
electron microscopy [30], helium atom scattering [28, 29], reflection seismology [12] and radar imaging
[13]. More precisely, one is tasked with the recovery of an unknown function f ∈ L2(Rd) supported

in a compact domain, from given samples of the form {f̂(ω) : ω ∈ Ω}, where Ω is a countable set in
Rd and the Fourier transform is defined as

f̂(ξ) =

∫
Rd

f(x)e2πiξ·xdx.

The set of sampling points Ω either can be taken on an equidistant grid, which is known as uniform
sampling, or can be an arbitrary countable set of certain density, which is known as nonuniform
sampling. The listed papers described how, using generalized sampling, one can in principle optimally
recover the (continuous) wavelet coefficients of a function, given its Fourier coefficients, and thereby
directly exploit the superior approximation properties of wavelets. The present paper addresses the
computational aspects of this generalized sampling method for both uniform and nonuniform sampling
scenarios.
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1.1 The need for generalized sampling

The classical approach to this recovery problem is to directly invert the Fourier sampling operator. In
the case where Ω consists of equispaced points, one can simply apply the Nyquist-Shannon sampling
theorem to compute a discrete inverse Fourier transform on the given samples, while in the case where
Ω consists of nonequispaced points, one can approximate f by inverting the frame operator associated
with the Fourier frame

{
e2πiω· : ω ∈ Ω

}
[10, 11]. Another approach to nonuniform sampling is so-

called gridding [27], a heuristic method which simply discretizes the inverse Fourier transform on a
nonequidistant mesh by using certain density compensation factors.

In practice, it is always the case that only a finite number of samples is available, i.e. card(Ω) =
M < ∞, and hence, unless the original function is periodic and continuous, these direct Fourier
approaches suffer from a number of drawbacks, including slow convergence rates and artifacts such as
the Gibbs phenomenon. Therefore, these classical approaches are considered unsatisfactory [37, 23].

In order to obtain a better reconstruction, one might seek an approximation represented in a
different, more favorable system than the one used for sampling. In fact, a typical magnetic resonance
(MR) image, for example, is known to be better represented by wavelets than by complex exponentials
[37]. The idea of basis change is not new in signal processing and it is typically referred to as
generalized sampling. It can be tracked down to the work of Unser and Aldroubi [38, 25], which
was later extended by Eldar [19, 20]. Note that some of the early works of generalized sampling are
sometimes referred to as consistent sampling. The idea of generalized sampling has also been applied
in the work of Pruessmann et al. [34] and Sutton, Noll and Fessler [35] for the recovery of voxel
coefficients from Fourier samples and also in the work of Hrycak and Gröchenig [26] for the recovery
of polynomial coefficients from Fourier samples. Furthermore, the efficient recovery of trigonometric
polynomial coefficients of bandlimited functions from its nonuniform samples, or equivalently, the
recovery of Dirac coefficients of compactly supported L2 functions from nonuniform Fourier samples,
was considered in works by Feichtinger, Gröchenig and Strohmer [21].

These approaches were formalized under the framework of Adcock and Hansen [4] in the setting
of a Hilbert space H, where it was shown that one can recover an unknown element f ∈ H in terms of
any frame {ϕj}j∈N when given samples of the form (〈f, ψj〉)j∈N where {ψj}j∈N is an arbitrary frame

in H. More specifically, given the first M samples {〈f, ψj〉 : j = 1, . . . ,M}, one can approximate the
first N reconstruction coefficients {〈f, ϕj〉 : j = 1, . . . , N} in a stable and quasi-optimal manner (see
Section 2 for the definition) provided that M is sufficiently large with respect to N .

The setting where {ϕj}j∈N forms a wavelet basis and {ψj}j∈N forms a Fourier basis was considered

in [8] and [6] in one and two dimensions respectively. It was shown that a linear scaling between the
number of Fourier samples M and the number of wavelet coefficients N is sufficient for stable and
quasi-optimal recovery. In other words, it suffices to take M = O (N) Fourier samples of a function
in order to stably quasi-optimally recover its first N wavelet coefficients. A more general setting
where {ψj}j∈N forms a (weighted) Fourier frame was considered in [1], in one dimension, where it

was shown that it is sufficient to take Fourier samples from the interval [−K,K] with K = O (N) in
order to recover the first N wavelet coefficients. Therefore, as long as the number of samples M scales
linearly with the sampling bandwidth K, the relationship M = O (N) is also sufficient for stable and
quasi-optimal recovery in this more general setting.

1.2 Contribution of this paper

The method of generalized sampling can be recast as the linear system
〈ϕ1, ψ1〉 〈ϕ2, ψ1〉 . . . 〈ϕN , ψ1〉
〈ϕ1, ψ2〉 〈ϕ2, ψ2〉 . . . 〈ϕN , ψ2〉

...
...

. . .
...

〈ϕ1, ψM 〉 〈ϕ2, ψM 〉 . . . 〈ϕN , ψM 〉



α1

α2

...
αN

 =


〈f, ψ1〉
〈f, ψ2〉

...
〈f, ψM 〉

 , (1.1)
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which is to be solved for the least-squares solution {αj : j = 1, . . . , N} that approximates the desired
coefficients {〈f, ϕj〉 : j = 1, . . . , N}, given the M samples {〈f, ψj〉 : j = 1, . . . ,M}. In the general case,
solving this system has a computational complexity of O (NM). In this paper we show that in the case
of recovering wavelet coefficients from Fourier samples, the computational complexity of generalized
sampling is only O (M logN), since in this case the cost of applying the matrix from (1.1) and its
adjoint is only O (M logN). In fact, in uniform sampling as well as in nonuniform sampling where
M = O (K), the computational complexity is simply O (N logN), due to the linear correspondences
derived in the aforementioned papers. Therefore, one can attain the superior reconstruction qualities
via generalized sampling at a computational cost that is on the same order as the computational cost
of the classical methods that are based on a simple discretization of the inverse Fourier transform.

This paper will describe the computational issues relating to the recovery of boundary-corrected
wavelet coefficients [15] when given either uniform or nonuniform Fourier samples. Although we shall
only address the reconstruction of coefficients in one and two dimensions, the techniques described
in this paper can readily be applied to higher dimensional cases. Generalized sampling may also
be efficiently implemented with wavelets satisfying other boundary conditions (such as periodic or
symmetric boundary conditions), however, here we consider the boundary-corrected wavelets of [15]
since such wavelets preserve vanishing moments at the domain boundaries and form unconditional
bases on function spaces of certain regularity on bounded domains.

While in this paper we mainly focus on the linear recovery model (1.1), the computational aspects
analyzed in this paper arise in various other nonlinear recovery schemes such as the `1-minimization
schemes introduced in [33, 5, 3]. Namely, whenever one wants to recover wavelet coefficients from
Fourier measurements, one needs fast computations involving the same matrix as the one appearing
in (1.1), as well as the fast computations involving its adjoint. Hence, the algorithms described in
this paper can readily be applied to yield efficient implementations of these other nonlinear recovery
schemes.

We remark that although the efficient recovery of wavelet coefficients from Fourier samples was
already considered in [24], that work did not provide a comprehensive explanation of the imple-
mentation using boundary-corrected wavelets and various types of Fourier sampling. Moreover,
the purpose of this work is to provide a practical guide to the use of generalized sampling with
wavelets and Fourier sampling. A MATLAB implementation of our algorithm is available at http:

//www.damtp.cam.ac.uk/research/afha/code/.

1.3 Outline

Section 2 describes the framework of generalized sampling. Section 3 describes the special case of
generalized sampling which produces wavelet reconstructions from Fourier samples. The wavelet
reconstruction space and Fourier sampling space are defined in Section 3.1 and Section 3.2, respectively,
and additionally, in Section 3.3, we recall the results providing the linear stable sampling rate for this
particular pair of spaces. In Section 4, we deliver the detailed reconstruction algorithm for the one-
dimensional case together with the analysis of its computational complexity. The two-dimensional case
is presented in Section 5 in a general setting, and the simplifications arising from uniform sampling
are presented in Section 6. In Section 7, we use the presented algorithm in a few numerical examples.

1.4 Notation

Let H denote a Hilbert space with norm ‖·‖ and inner product 〈·, ·〉. A set {φm}m∈N ⊆ H forms a
frame for H if there exist constants A,B > 0 such that

A‖f‖2 ≤
∑
m∈N
|〈f, φm〉|2 ≤ B‖f‖2, ∀f ∈ H. (1.2)

For any subspace T ⊆ H, let QT denote the orthogonal projection onto T . Throughout the paper,
we shall consider the Hilbert space of square-integrable L2 functions which are compactly supported
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on the cube [0, 1]d ⊆ Rd in the physical domain, for dimension d ∈ N. For a point in the frequency
domain ω ∈ Rd let

eω(x) = e2πiω·xχ[0,1]d(x), x ∈ Rd.

Hence, for a function f ∈ L2([0, 1]d), we can write

f̂(ω) = 〈f, eω〉

for the Fourier transform of f at ω. In particular, if (1.2) holds with φm = eωm , we say that {eωm}m∈N
is a Fourier frame for L2([0, 1]d). For a matrix A ∈ CM×N , we use the notation A = (Am,n)N,Mn=1,m=1

and denote its pseudoinverse by A† and its adjoint by A∗.

2 Generalized sampling

This section recaps the main features of the generalized sampling method described in [4, 7]. Let R,S
be closed subspaces of H such that R∩S⊥ = {0} and R+S⊥ is a closed subspace of H. Let {ϕn}n∈N
and {ψm}m∈N be frames for R and S respectively. For N,M ∈ N, let

RN = span {ϕn : n = 1, . . . , N} , SM = span {ψm : m = 1, . . . ,M}

denote the finite dimensional reconstruction and the sampling space respectively. For an unknown
function f ∈ H, we seek an approximation f̃ ∈ RN to f using only the finite set of samples
{〈f, ψm〉 : m = 1, . . . ,M}.

It was shown in [7] that for each N ∈ N, there exists m0 ∈ N such that for all M ≥ m0, there
exists a unique element f̃ ∈ RN satisfying

〈SM f̃ , ϕn〉 = 〈SMf, ϕn〉, n = 1, . . . , N. (2.1)

where SM : H → SM , g 7→
∑M
m=1〈g, ψm〉ψm. The approximation f̃ is referred to as the generalized

sampling reconstruction. Furthermore, this reconstruction satisfies the sharp bounds

‖f̃ − f‖ ≤ CN,M‖QRN
f − f‖, ‖f̃‖ ≤ CN,M‖f‖, (2.2)

where
C−1
N,M = inf

u∈RN

‖u‖=1

‖QSMu‖ > 0.

Note that the approximation f̃ achieves, up to a constant of CN,M , the same error bound as QRN
f ,

which is the orthogonal projection onto RN and therefore the best possible approximation to f in
RN . Hence, f̃ may be said to be quasi-optimal.

Due to (2.1), by defining the generalized sampling operator

G[N,M ] : CN → CM , α 7→

(
〈
N∑
n=1

αnϕn, ψm〉

)M
m=1

, (2.3)

the solution f̃ can be written as

f̃ =

N∑
j=1

αjϕj ,

where α = (αj)
N
j=1 ∈ CN is the least squares solution to

G[N,M ](α) = (〈f, ψj〉)Mj=1. (2.4)
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Note that this is the same as the system written in (1.1). Furthermore, the condition number of the
operator G[N,M ], which indicates reconstruction stability, can be shown to be

DN,M =

(
inf

u∈RN

M∑
m=1

|〈u, ψm〉|2
)−1/2

> 0.

The accuracy and stability of generalized sampling are therefore governed by CN,M and DN,M

and it is imperative to determine the correct scaling between the number of reconstruction vectors
N and the number of samples M to ensure boundedness of these two values. For a given number
of reconstruction vectors N and some θ ∈ (0,∞), the stable sampling rate is defined as a minimal
number of sampling vectors M providing a stable and quasi-optimal reconstruction. Formally, the
stable sampling rate is given as

Θ(N, θ) = min {M ∈ N : max {CN,M , DN,M} ≤ θ} . (2.5)

The stable sampling rate for particular choices of wavelet reconstruction spaces and Fourier sampling
spaces is discussed further in Section 3.3.

2.1 The computational challenges

There are two aspects to the implementation of generalized sampling in (2.1):

1. We need to understand the stable sampling rate M = Θ(N, θ) required for quasi-optimal and
stable reconstructions.

2. Having determined the appropriate finite section matrix G[N,M ], it remains to solve least-squares
problem (2.4). Note that given any matrix G ∈ CM×N , there are many iterative schemes for
computing the least-squares solution G†g. For example, one can apply the conjugate gradient
method to the corresponding normal equations [36]. The efficiency of these iterative methods
is always dependent on the computational complexity of applying G and G∗, and in the worst
case, this is O (NM).

In the case of recovering wavelet coefficients from Fourier samples, the first challenge detailed above
has been resolved in [8] where the sampling vectors form a basis, and in [1], where the sampling vectors
form a (weighted) Fourier frame. The main results from these works will be summarised in Section
3.3. The purpose of this paper is to show that the computational complexity of applying G[N,M ]

and its adjoint (G[N,M ])∗ is O (M logN). Thus, because of the linear correspondence between the
number of samples and reconstruction coefficients revealed in [8] and [1], generalized sampling offers
a computationally optimal way of recovering wavelet coefficients from Fourier data.

Remark 2.1 (Generalized sampling and `1 minimization) Based on ideas of compressed sens-
ing introduced in [18, 14], to recover f ∈ L2 from a reduced number of noisy Fourier measurements

y = {f̂(ωj) : j ∈ Ω}+ η, where ‖η‖`2 ≤ δ and Ω is some finite index set, it was proposed in [5, 3] to
solve

x ∈ arg inf
z∈`1(N)

‖z‖`1 subject to ‖GΩz − y‖`1 ≤ δ, (2.6)

where
GΩ = (〈ϕj , e2πik·〉)j∈N,k∈Ω

is a semi-infinite dimensional generalized sampling matrix. Solutions to this minimization problem
were analysed in detail in [3, 33], and we refer to those works for theoretical error estimates. However,
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we simply mention that if Ω = {j : j = −M, . . . ,M} and δ = 0, it was proved in [33] that if {ϕj}j∈N
is a wavelet basis with sufficiently many vanishing moments, then any solution x to (2.6) will satisfy∥∥∥∥∥∥f −

∞∑
j=1

xjϕj

∥∥∥∥∥∥
L2

= O

 ∞∑
j=N ′

|〈f, ϕj〉|


where N ′ = cN for some constant c ∈ (0, 1] which is independent of N . Thus, the reconstruction
error is governed by the decay in the wavelet coefficients of f , rather than the decay in its Fourier
coefficients. Computationally, one can show that any solution to

inf
α∈CK

‖α‖`1 subject to
∥∥∥G[K,M ](α)− β

∥∥∥
`2
≤ δ (2.7)

converges in an `1 sense to solutions of (2.6) as K → ∞ (see [5]) and for the Fourier-wavelets case,
it suffices to let K = O (M) [3]. There are again numerous algorithms such as [40, 39] for solving
problems of the form (2.7) and, similarly as for (2.1), the efficiency of these algorithms amounts to
the efficiency of applying G[K,M ] and its adjoint.

3 The wavelet reconstruction from the Fourier samples

As mentioned before, in this paper we consider the particular reconstruction space consisting of N
boundary-corrected wavelets and the sampling space consisting of M Fourier-type exponentials. In
this section, we define the corresponding spaces and give the stable sampling rate for this pair.

3.1 The reconstruction space

We shall consider the Daubechies wavelets of a vanishing moments, on the interval [0, 1], with the
boundary wavelet construction introduced in [15]. Following convention, we assume that the scaling
function φ and the wavelet ψ are supported on [−a+ 1, a] and denote boundary scaling functions at
the endpoints 0 and 1 by

φ0
k, φ

1
k, k = 0, . . . , a− 1

and boundary wavelets at the endpoints 0 and 1 by

ψ0
k, ψ

1
k, k = 0, . . . , a− 1.

We denote the boundary-corrected scaling functions on the interval [0, 1] by

φ
[0,1]
j,k (x) =


2j/2φ(2jx− k) a ≤ k < 2j − a
2j/2φ0

k(2jx) 0 ≤ k < a
2j/2φ1

2j−k−1(2jx) 2j − a ≤ k < 2j ,

and similarly for the wavelet functions ψ
[0,1]
j,k .

One dimension. Here we define the reconstruction space for dimension d = 1, consisting of
boundary-corrected wavelets on the interval [0, 1] of a vanishing moments. Let J be such that
J ≥ log2(2a). The set

{
φ

[0,1]
j,k : k = 0, . . . , 2j − 1

}
∪

⋃
j≥J

{
ψ

[0,1]
j,k : k = 0, . . . , 2j − 1

} (3.1)
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forms an orthonormal basis for L2([0, 1]). Furthermore, by defining

W
[0,1]
j = span

{
ψ

[0,1]
j,k : k = 0, . . . , 2j − 1

}
, V

[0,1]
j = span

{
φ

[0,1]
j,k : k = 0, . . . , 2j − 1

}
,

we have that L2([0, 1]) = V
[0,1]
J ⊕

(
⊕J≤jW [0,1]

j

)
. We now order elements of (3.1) in increasing order

of wavelet scale, and we denote by WN the space spanned by the first N wavelets. Thus, for fixed
R > J ≥ log2(2a) and N = 2R we have the reconstruction space

WN = V
[0,1]
J ⊕W [0,1]

J ⊕ · · · ⊕W [0,1]
R−1. (3.2)

Note that, by construction, dim(WN ) = N = 2R and also WN = V
[0,1]
R .

For a function f ∈ WN we can write

f(x) =

2J−1∑
k=0

cJ,kφ
[0,1]
J,k (x) +

R−1∑
j=J

2j−1∑
k=0

dj,kψ
[0,1]
j,k (x)

and also

f(x) =

2R−1∑
k=0

cR,kφ
[0,1]
R,k (x)

for some scaling coefficients cj,k and some detail coefficients dj,k. We recall that, given the scaling
coefficients {cR,k : k = 0, . . . , 2R − 1}, it is possible compute the scaling coefficients {cJ,k : k =
0, . . . , 2J − 1} and detail coefficients {dj,k : k = 0, . . . , 2j − 1, j = J, . . . , R − 1}, and vice versa.
This can be done by the discrete boundary-corrected Forward Wavelet Transform (FWT), which
we denote by W and by W in two dimensions. The reverse operation is performed by the discrete
boundary-corrected Inverse Wavelet Transform (IWT), denoted by W−1, in one, and by W−1 in two
dimensions.

Two dimensions. The boundary-corrected wavelet basis for L2([0, 1]2) is defined as follows. We
introduce the following two-dimensional functions:

Φj,(k1,k2)(x1, x2) = φ
[0,1]
j,k1

(x1)φ
[0,1]
j,k2

(x2), Ψ1
j,(k1,k2)(x1, x2) = φ

[0,1]
j,k1

(x1)ψ
[0,1]
j,k2

(x2),

Ψ2
j,(k1,k2)(x1, x2) = ψ

[0,1]
j,k1

(x1)φ
[0,1]
j,k2

(x2), Ψ3
j,(k1,k2)(x1, x2) = ψ

[0,1]
j,k1

(x1)ψ
[0,1]
j,k2

(x2).

As before, take J ≥ log2(2a), and let

Υ0
J =

{
ΦJ,(k1,k2) : 0 ≤ k1, k2 ≤ 2J − 1

}
and

Υi
j =

{
Ψi
j,(k1,k2) : 0 ≤ k1, k2 ≤ 2j − 1

}
, j ∈ N, j ≥ J, i = 1, 2, 3.

The set

Υ0
J ∪

⋃
j≥J

{
Υi
j : i = 1, 2, 3

} (3.3)

forms an orthonormal basis for L2([0, 1]2). We now order the basis elements of (3.3) in increasing
order of wavelet scales so that we can write

{ϕn1,n2
}n1,n2∈N2 =


Υ0
J Υ1

J Υ1
J+1 . . .

Υ2
J Υ3

J

Υ2
J+1 Υ3

J+1
...

. . .

 .
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Let WN2 denote the space spanned by the first N × N wavelets via this ordering, so that WN2 =
span {ϕn1,n2 : 0 ≤ n1, n2 ≤ N − 1}. For N = 2R and R > J ≥ log2(2a), we have

WN2 = span Υ0
J ⊕

(
⊕3
i=1 ⊕R−1

j=J span Υi
j

)
= span Υ0

R, (3.4)

which is the two-dimensional reconstruction space.

3.2 The sampling space

Let K > 0 be a sampling bandwidth and ZK ⊆ Rd be a closed, simply connected set in the frequency
domain such that maxz∈ZK

|z|∞ = K. For finite M = M(K), let

ΩM = {ωm : m = 1, . . . ,M} ⊆ ZK ,

be a given sampling scheme, a set of distinct frequency points in ZK which are permitted to be
completely nonuniform. The sampling space that we shall consider in this paper is given by

EM = span {√µmeωm
: ωm ∈ ΩM} , (3.5)

with the weights µm defined as measures of the Voronoi regions associated to the sampling points, i.e,

µωm
=

∫
ZK

χVωm
(x) dx, (3.6)

where
Vωm

= {v ∈ ZK : ∀n 6= m, |v − ωm|`1 ≤ |v − ωn|`1} .

The use of Voronoi weights is common in both practice and nonuniform sampling theory [10, 17].
As shown in [2], it is crucial that the sampling scheme ΩM satisfy an appropriate density condition

in the frequency region ZK ; i.e. it is crucial that

δZK
(ΩM ) = sup

v∈ZK

inf
ω∈ΩM

|v − ω|`1 < 1/2, (3.7)

but due to use of weights, ΩM is allowed to cluster arbitrarily as K,M(K)→∞. Namely, the density
condition ensures that weighted exponentials in EM give a weighted Fourier frame for L2([0, 1]d) as
K,M(K) → ∞, i.e. (1.2) is satisfied with φm =

√
µmeωm

. This, on the other hand, ensures stable
sampling.

The particular examples of nonuniform sampling schemes that we consider in the present paper
are jittered and log sampling schemes in one dimension, and spiral and radial sampling schemes in
two dimensions. The construction of these particular sampling schemes, such that they satisfy density
condition (3.7), was described in [1] for the one-dimensional case, and in [2] for the two-dimensional
case.

A special case of sampling that we also consider in this paper is uniform sampling. Here, the
sampling scheme is taken on an equidistant grid with a fixed spacing. For a given spacing ε ∈ (0, 1],
the uniform sampling space in one dimension is defined as

EM = span {εeεk : k = −dM/2e, . . . , dM/2e − 1} (3.8)

and in two dimensions as

EM2 = span {ε1ε2eε1k1eε2k2 : −dM/2e ≤ k1, k2 ≤ dM/2e − 1} , (3.9)

for some εi ∈ (0, 1], i = 1, 2. It is known that exponentials in the uniform sampling space lead to a tight
Fourier frame for L2([0, 1]d). As we shall see, for this special sampling scenario, the two-dimensional
computations can be considerably simplified.
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Remark 3.1 Since the clustering of the sampling points is allowed, the stable sampling rate in the
case of nonuniform sampling is defined by

Θ(N, θ) = min
{
K > 0 : max

{
CN,M(K), DN,M(K)

}
≤ θ
}
, (3.10)

for a given number of reconstruction vectors N ∈ N and some θ ∈ (0,∞). Therefore, rather than a
minimal number of sampling vectors M , as it is the case in (2.5), here we seek for a minimal sampling
bandwidth K that provides a stable and accurate reconstruction.

3.3 The stable sampling rate

To emphasize the benefits of using generalized sampling to recover wavelet coefficients from Fourier
samples, in this section, we recall the main results of [8, 1] and present a numerical example which
demonstrates the superior convergence rates that generalized sampling offers.

To begin, generalized sampling is particularly effective in the regime of recovering wavelet coeffi-
cients from Fourier samples because a linear scaling between the number of Fourier samples M (or
sampling bandwidth K) and the number of wavelets N is enough for stable and accurate recovery via
generalized sampling. In one dimension we have the following.

Theorem 3.1 ([8, 1]). Let WN be the reconstruction space consisting of N boundary-corrected
Daubechies wavelets given by (3.2).

(i) Let the sampling space EM be given by (3.8). Then for any γ ∈ (0, 1) there exists a constant
c0 = c0(γ) such that

min {M : max {CN,M , DN,M} ≤ γ} ≤ c0N.

(ii) More generally, let ΩM be contained in the interval [−K,K] and such that δ = δ[−K,K](ΩM ) <
1/2, i.e. let the sampling space EM be given by (3.5). Then for any γ ∈ (0, 1− δ) there exists a
constant c0 = c0(γ) such that

min

{
K : max {CN,M , DN,M} ≤

1 + δ

1− δ − γ

}
≤ c0N.

This result characterizes the Fourier samplings which permit stable and accurate recovery in spaces
of boundary-corrected wavelets. Both parts of this theorem provide estimates on a stable sampling
rate of the type

Θ(N, cγ) = O(N),

where Θ is defined by (2.5) for uniform sampling, and by (3.10) for nonuniform sampling. Let us
mention here that similar higher-dimensional results were obtained for the uniform Fourier samples
in [6], while for nonuniform sampling, the higher-dimensional case remains an open problem.

The result given in [32] states that if f ∈ Hs[0, 1], s ∈ (0, a), then ‖f −QWN
f‖ = O(N−s), where

Hs denotes the usual Sobolev space and WN is the space of N boundary-corrected wavelets with a
vanishing moments. This result in combination with Theorem 3.1 gives the following.

Corollary 3.2 ([9, 1]). Let WN be the reconstruction space consisting of N boundary-corrected
Daubechies wavelets of a vanishing moments (3.2). Let f ∈ Hs[0, 1] with s ∈ (0, a) be an arbitrary
function.

(i) Let the sampling space EM be given by (3.8), then the generalized sampling solution f̃ imple-
mented with M = Θ(N, γ) samples satisfies

‖f − f̃‖ = O(M−s).

9



(ii) Let the sampling space EM be given by (3.5), then the generalized sampling solution f̃ imple-
mented with the sampling bandwidth K(M) = Θ(N, (1 + δ)/(1− δ − γ)) satisfies

‖f − f̃‖ = O(K−s).

Hence, up to constant factors, generalized sampling obtains optimal convergence rates in terms
of the number of sampling points M (or the sampling bandwidth K), when reconstructing smooth
functions with boundary-corrected Daubechies wavelets.

These superior convergence rates given by Corollary 3.2 are depicted in Figure 1. Namely, using
an example of a continuous, nonperiodic function, we compare the convergence rates of generalized
sampling with boundary-corrected Daubechies wavelets to the suboptimal convergence rates of the
simple direct approaches based on the discretization of the Fourier integral.

Equispaced sampling Jittered sampling Log sampling

−
lo

g
‖f
−
f̃
‖

✻ ✼ ✽ ✾

✺

✶�

✶✺

✷� ❚❋❙
❍❛❛r
❉❇✁
❉❇✸

✺ ✻ ✼ ✽

✺

✶�

✶✺

✷� ●r
❍❛❛r
❉❇✁
❉❇✸

✺ ✻ ✼ ✽

✺

✶�

✶✺

✷� ●r
❍❛❛r
❉❇✁
❉❇✸

logM logK logK

Figure 1: A nonperiodic continuous function f(x) = x cos(3πx)χ[0,1](x) is reconstructed from pointwise
samples of its Fourier transform taken on an equispaced grid with ε = 1 (left), on a jittered scheme with jitter
0.1 (middle) and on a log scheme (right), where the last two satisfy δ < 0.97. Reconstruction is performed
via GS using different types of boundary-corrected Daubechies wavelets: Haar, DB2 and DB3, and also
via truncated Fourier series (TFS) in the uniform case, and gridding in the nonuniform cases, with density
compensation factors defined as in (3.6).

4 Computations in one dimension

Let a be the number of vanishing moments of Daubechies wavelets, R > log2(2a) the finest wavelet
scale and N = 2R the dimension of the reconstruction space WN defined by (3.2). Let M ≥ N , and
let ΩM = {ωm : m = 1, . . . ,M} be the given set of sampling points with associated Voronoi weights
µm defined as in (3.6), and let EM be the sampling space defined by (3.5). For these choices of the
reconstruction and the sampling spaces, generalized sampling reduces to the weighted least-squares
system

G[N,M ](α) = (
√
µm〈f, eωm〉)Mj=1, (4.1)

for a given vector of Fourier samples (〈f, eωm
〉)Mj=1 and solving for an unknown vector of boundary-

corrected wavelet coefficients α = (αn)Nn=1 of a function f .

Remark 4.1 As explained previously, efficient implementation of generalized sampling leans on the
efficient implementation of the forward and adjoint operations, G[N,M ] and (G[N,M ])∗, which we
describe in detail below. They can be implemented as a function handle in Matlab, for example,
and then used in Matlab’s function lsqr for iterative solving of the least squares system (4.1).
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From (2.3), it follows that, for spaces WN and EM , given α ∈ CN and ζ ∈ CM , the forward
operation can be written as

β := G[N,M ](α) =

(
〈
N−1∑
n=0

αnϕn,
√
µωmeωm〉

)M
m=1

, (4.2)

and the adjoint operation can be written as

γ := (G[N,M ])∗(ζ) =

(
〈
M∑
m=1

√
µωm

ζmeωm
, ϕn〉

)N−1

n=0

, (4.3)

We now describe how these operations can be computed efficiently by using the following operators:

i) For the set of frequencies ΩM and the corresponding set of Voronoi weights µm > 0, the diagonal
weighting operator V = VΩM

: CM → CM is given by

V (γ) = (
√
µmγm)

M
m=1 , γ ∈ CM . (4.4)

ii) For the set of frequencies ΩM , the operator F = FΩM
: CN → CM is given by

F (γ) =

(
1√
N

N−a−1∑
k=a

γkeωm

(
− k

N

))M
m=1

, γ ∈ CN . (4.5)

iii) For the set of frequencies ΩM and the scaling function φ, the operator D = DΩM ,φ : CM → CM
is given by

D(ζ) =
(
φ̂
(ωm
N

)
ζm

)M
m=1

, ζ ∈ CM . (4.6)

For the weighting operator we have V ∗ = V . The adjoint operator of F is F ∗ : CM → CN given by

(F ∗(ζ))k =

{
1√
N

∑M
m=1 ζmeωm

(
k
N

)
k = a, . . . , N − a− 1

0 otherwise
, ζ ∈ CM (4.7)

and the adjoint operator of D is D∗ : CM → CM given by

D∗(ζ) =

(
φ̂
(ωm
N

)
ζm

)M
m=1

, ζ ∈ CM . (4.8)

Now we can analyse the operations (4.2) and (4.3). We first consider the forward operation. Given
α ∈ CN , by the definition of discrete IWT, the equation β = G[N,M ](α) is equivalent to

βm =
√
µm

N−1∑
k=0

α̃k〈φ[0,1]
R,k , eωm

〉, m = 1, . . . ,M,

where α̃ = W−1(α) ∈ CN . Since the Fourier transform of the internal scaling function 〈φ[0,1]
R,k , eω〉 can

be written as

φ̂
[0,1]
R,k (ω) =

1√
N
φ̂
( ω
N

)
eω

(
− k

N

)
, k = a, . . . , N − a− 1,

by using definitions of operators F and D, we get

β̃m =
1
√
µm

βm =
1√
N

a−1∑
k=0

α̃kφ̂
0
k

(ωm
N

)
+ (D (F (α̃)))m+

1√
N

N−1∑
k=N−a

α̃kφ̂
1
N−k−1

(ωm
N

)
, m = 1, . . . ,M.
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Once β̃ has been computed, it is left to apply the weighting operator and get β = V (β̃).

For the adjoint operation, to compute γ =
(
G[N,M ]

)∗
(ζ) given ζ ∈ CM , we first apply the weighting

operator and set ζ̃ = V (ζ). Then, similarly to the forward operation case, one can check that
γ̃ = W−1γ and ζ are related by the following equations.

γ̃k =
1√
N

M∑
m=1

ζ̃mφ̂0
k

(ωm
N

)
, k = 0, . . . , a−1, γ̃k =

1√
N

M∑
m=1

ζ̃mφ̂1
N−k−1

(ωm
N

)
, k = N−a, . . . , N−1,

and

γ̃k =
1√
N

M∑
m=1

φ̂
(ωm
N

)
ζ̃meωm

(
k

N

)
, k = a, . . . , N − a− 1.

Note that, by using adjoint operators D∗ and F ∗, this last part can be written as

γ̃k =
(
F ∗
(
D∗(ζ̃)

))
k
, k = a, . . . , N − a− 1.

These computational steps, which we summarize below, lead to the efficient algorithm for forward
and adjoint operations, and therefore to to the efficient algorithm for solving the weighted least-squares
system (4.1).

The one-dimensional algorithm

Precompute the Voronoi weights (µm)Mm=1 and pointwise measurements of the Fourier transforms of
the three scaling functions:(

φ̂
(ωm
N

))M
m=1

,
(
φ̂0
k

(ωm
N

))M
m=1

,
(
φ̂1
k

(ωm
N

))M
m=1

, k = 1, . . . , a.

The forward operation

Given α ∈ CN , β = G[N,M ](α) can be obtained by applying the following steps.

1. Compute the scaling coefficients α̃ = W−1(α), where W−1 is the one-dimensional discrete
boundary-corrected IWT.

2. Compute contributions from the boundary scaling functions:

β̃0 =

(
1√
N

a−1∑
k=0

α̃kφ̂
0
k

(ωm
N

))M
m=1

, β̃1 =

(
1√
N

N−1∑
k=N−a

α̃kφ̂
1
N−k−1

(ωm
N

))M
m=1

.

3. Compute contribution from the internal scaling functions:

3.1. Apply F to α̃ to get α̂ = F (α̃), where F is defined by (4.5).

3.2. Apply D to α̂ to get β̃int = D(α̂), where D is defined by (4.6).

4. Compute β̃ = β̃0 + β̃1 + β̃int.

5. Apply V to compute β = V (β̃), where V is defined by (4.4).
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The adjoint operation

Given ζ ∈ CM , γ =
(
G[N,M ]

)∗
(ζ) can be computed as follows.

1. Apply the weighting operator V and set ζ̃ = V (ζ).

2. Compute the coefficients of the boundary scaling functions:

γ̃k =
1√
N

M∑
m=1

ζ̃mφ̂0
k

(ωm
N

)
, γ̃N−k−1 =

1√
N

M∑
m=1

ζ̃mφ̂1
k

(ωm
N

)
,

for k = 0, . . . , a− 1.

3. Compute the coefficients of the internal scaling functions:

3.1. Compute ζ̃φ = D∗(ζ̃), where D∗ is defined by (4.8).

3.2. Compute γ̃k =
(
F ∗(ζ̃φ)

)
k
, k = a− 1, . . . , N − a− 1, where F ∗ is defined by (4.7).

4. Compute γ = W (γ̃), where W is a discrete one-dimensional boundary-corrected FWT.

Remark 4.2 Note that when the sampling points are uniform with spacing ε, the weights are simply
µm = ε for all m, and the precomputation of Voronoi weights is not required.

Remark 4.3 The above algorithm requires the precomputation of pointwise evaluations of the Fourier
transform of the internal and boundary scaling functions. Note that for the internal scaling function
φ, we may use the approximation

N∏
j=1

m0(2−jξ)→ φ̂(ξ), N →∞

where m0 is a trigonometric polynomial [16]. A similar approximation may be used in the case of the
boundary scaling functions. This is outlined in detail in the appendix.

Remark 4.4 On evaluating the reconstructed signal: Recall that in solving

G[N,M ](α) = (〈f, ψj〉)Mj=1.

for an appropriate M = O (N), we obtain α which is an approximation of the first N wavelet coeffi-

cients of f and the reconstructed signal is f̃ =
∑N
j=1 αjφj . To evaluate f̃ on the grid points (k2−J)2J

k=1

for J ∈ N, it suffices to evaluate each φ on these grid points and we may do so by either implementing
the cascade algorithm [16] or the dyadic dilation algorithm [31].

Computational cost of the one-dimensional algorithm. Let us analyse the computational
cost of the forward operation. The adjoint operation can be analysed similarly leading to the same
computational cost. The computational cost of applying the discrete boundary-corrected IWT is
O (N). The cost of step 2, involving boundary scaling functions, is O (aM). For step 3.1, the key
point is to observe that F is simply a restricted and shifted version of the discrete (nonuniform)
Fourier transform, and thus its fast implementation (FFT/NUFFT) can be used when computing
F (α̃). Hence, the the cost of step 3.1 is O (M log(N/ε)) in the uniform case and O (L log(N) + JM)
in the nonuniform case, where L is the length of underlying interpolating FFT for NUFFT, and J
is the number of interpolating coefficients (typically J = 7) [22]. Finally, the cost of the diagonal
operations in both steps 3.2 and 5 is O (M). Therefore, given that ε ∼ 1, J ∼ a and L ∼M , the total
cost is essentially O (aM +M log(N)).
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5 Computations in two dimensions

Again, let a be the number of vanishing moments, R > log2(2a) the finest wavelet scale and N = 2R.
Let WN2 be the reconstruction space defined by (3.4). Let M ≥ N , and let

ΩM =
{
ωm : ωm = (ω1

m, ω
2
m), m = 1, . . . ,M

}
be the set of sampling points in R2, which we write as ΩM = (Ω1

M ,Ω
2
M ) correspondingly. Let EM be

the associated sampling space defined by (3.5), with the Voronoi weights µm defined as in (3.6). In
this case, the least-squares system (2.4) becomes(

µm〈
N∑

n1,n2=1

αn1,n2ϕn1,n2 , eωm〉

)M
m=1

= (µm〈f, eωm〉)
M
m=1 .

If we apply the two-dimensional boundary-corrected IWT to the matrix of wavelet coefficients α ∈
CN×N , so that α̃ = W−1(α) ∈ CN×N , we getµm〈 N∑

k1,k2=1

α̃k1,k2ΦR,(k1,k2), eωm
〉

M

m=1

= (µm〈f, eωm
〉)Mm=1 .

Since ΦR,(k1,k2)(x1, x2) = φ
[0,1]
R,k1

(x1)φ
[0,1]
R,k2

(x2), we can write the following algorithm.

The two-dimensional algorithm

Precompute the vectors (µm)Mm=1 and(
φ̂

(
ωim
N

))M
m=1

,

(
φ̂0
k

(
ωim
N

))M
m=1

,

(
φ̂1
k

(
ωim
N

))M
m=1

, k = 1, . . . , a, i = 1, 2.

The forward operation

Given α ∈ CN×N , β = G[N2,M ](α) ∈ CM can be obtained by applying the following steps.

1. Compute the scaling coefficients α̃ = W−1(α), where W−1 is the discrete two-dimensional
boundary corrected IWT.

2. Compute contributions from the corners (the boundary scaling functions in the both axes):

β00 =

(
1

N

a−1∑
k1=0

a−1∑
k2=0

α̃k1,k2 φ̂
0
k1

(
ω1
m

N

)
φ̂0
k2

(
ω2
m

N

))M
m=1

β01 =

(
1

N

a−1∑
k1=0

N−1∑
k2=N−a

α̃k1,k2 φ̂
0
k1

(
ω1
m

N

)
φ̂1
N−k2−1

(
ω2
m

N

))M
m=1

β10 =

(
1

N

N−1∑
k1=N−a

a−1∑
k2=0

α̃k1,k2 φ̂
1
N−k1−1

(
ω1
m

N

)
φ̂0
k2

(
ω2
m

N

))M
m=1

β11 =

(
1

N

N−1∑
k1=N−a

N−1∑
k2=N−a

α̃k1,k2 φ̂
1
N−k1−1

(
ω1
m

N

)
φ̂1
N−k2−1

(
ω2
m

N

))M
m=1
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3. Compute contributions from the edges (the boundary scaling functions in only one of the axes):

β̃0int =
1√
N

a−1∑
k1=0

DΩ1
Mφ0

k1
DΩ2

MφFΩ2
M

(α̃k1,·)

β̃1int =
1√
N

N−1∑
k1=N−a

DΩ1
Mφ1

N−k1−1
DΩ2

MφFΩ2
M

(α̃k1,·)

β̃int0 =
1√
N

a−1∑
k2=0

DΩ1
MφDΩ2

Mφ0
k2
FΩ1

M
(α̃·,k2)

β̃int1 =
1√
N

a−1∑
k2=0

DΩ1
MφDΩ2

Mφ1
N−k2−1

FΩ1
M

(α̃·,k2)

where F and D are defined by (4.5) and (4.6), respectively.

4. Compute the contribution from the internal scaling functions:

4.1. α̂ = FΩM
(α̃), where FΩM

: CN×N → CM is such that for each γ ∈ CN×N

FΩM
(γ) =

 1

N

N−a−1∑
k1,k2=a

γk1,k2eωm

(
− (k1, k2)

N

)M

m=1

.

4.2. β̃intint = DΩ1
M ,φDΩ2

M ,φ(α̂).

5. Compute β̃ = β̃00 + β̃01 + β̃10 + β̃11 + β̃0int + β̃1int + β̃int0 + β̃int1 + β̃intint.

6. Apply V to get β = V (β̃), where V is defined by (4.4).

The adjoint operation

Given ζ ∈ CM , γ =
(
G[N2,M ]

)∗
(ζ) ∈ CN,N can be computed as follows.

1. Apply the weighting operator V and set ζ̃ = V (ζ).

2. Compute the scaling coefficients at the corners

γ̃k1,k2 =
1

N

M∑
m=1

ζmφ̂0
k1

(
ω1
m

N

)
φ̂0
k2

(
ω2
m

N

)
,

γ̃k1,N−a+k2 =
1

N

M∑
m=1

ζmφ̂0
k1

(
ω1
m

N

)
φ̂1
a−k2−1

(
ω2
m

N

)

γ̃N−a+k1,k2 =
1

N

M∑
m=1

ζmφ̂1
a−k1−1

(
ω1
m

N

)
φ̂0
k2

(
ω2
m

N

)
,

γ̃N−a+k1,N−a+k2 =
1

N

M∑
m=1

ζmφ̂1
a−k1−1

(
ω1
m

N

)
φ̂1
a−k2−1

(
ω2
m

N

)
.

for k1, k2 = 0, . . . , a− 1.
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3. Compute the scaling coefficients at the edges

γ̃k1,k2 =
1√
N

((
FΩ1

M

)∗ (
DΩ1

Mφ

)∗ (
DΩ2

Mφ0
k2

)∗
(ζ̃)
)
k1
,

γ̃k1,k2 =
1√
N

((
FΩ1

M

)∗ (
DΩ1

Mφ

)∗ (
DΩ2

Mφ1
a−k2−1

)∗
(ζ̃)
)
k1
,

for k1 = a, . . . , N − a− 1, k2 = 0, . . . , a− 1 and

γ̃k1,k2 =
1√
N

((
FΩ2

M

)∗ (
DΩ1

Mφ0
k1

)∗ (
DΩ2

Mφ

)∗
(ζ̃)
)
k2
,

γ̃k1,k2 =
1√
N

((
FΩ2

M

)∗ (
DΩ1

Mφ1
a−k1−1

)∗ (
DΩ2

Mφ

)∗
(ζ̃)
)
k2
,

for k1 = 0, . . . , a − 1, k2 = a, . . . , N − a − 1, where F ∗ and D∗ are defined by (4.7) and (4.8),
respectively.

4. Compute the scaling coefficients of the internal wavelets

4.1. ζ̃φ,φ =
(
DΩ1

M ,φ

)∗ (
DΩ2

M ,φ

)∗
(ζ̃).

4.2. γ̃k1,k2 =
(
F∗
(
ζ̃φ,φ

))
k1,k2

, k1, k2 = a− 1, . . . , N − a− 1.

5. Compute γ = W(γ̃), where W is the discrete two-dimensional boundary corrected FWT.

Computational cost of the two-dimensional algorithm. For the forward operation, the com-
putational cost of step 1 is O

(
N2
)

and that of step 2 is O
(
a2M

)
. Step 3 is O (a(M +M log(N/ε)))

in the uniform case and O (a(M + L log(N) + JM)) computations in the nonuniform case. The cost
of step 4.1 is basically the cost of the two-dimensional NUFFT or FFT, i.e, O

(
L2 log(N2) + J2M

)
or

O
(
M log(N2/ε2)

)
. The cost of step 4.2 as well as step 6 is O (M). Hence, if we assume ε ∼ 1, J ∼ a

and L2 ∼M , the total cost is O
(
a2M +M logN2

)
. The same cost holds for the adjoint operation.

6 Simplifications in the uniform two-dimensional case

Let us assume the setting from the previous section, but now the sampling points are given uniformly
i.e, the sampling space EM2 is given by (3.9) where, for convenience and without loss of generality, we
assume ε1 = ε2 = 1. In this case, we have

G[N2,M2] : CN×N → CM×M , α 7→

(
〈

N∑
n1,n2=1

αn1,n2ϕn1,n2 , em1em2〉

)
−dM/2e≤m1,m2≤dM/2e−1

.

Let us analyze the forward operation, i.e. the computation of β = G[N2,M2](α), for a given α. As
usual, we can apply the discrete wavelet transform to get

βm1,m2
= 〈

N−1∑
k1,k2=0

α̃k1,k2ΦR,(k1,k2), em1
em2
〉, −dM/2e ≤ |m1| , |m2| ≤M

where α̃ = W−1α. Now denote steps 2-3 of the forward operation in the one-dimensional algorithm
applied to the scaling coefficients by Gφ : CN → CM . Given the special structure of both the
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reconstruction and the sampling vectors, i.e, by using the definition of ΦR,(k1,k2) and em1
em2

, we
obtain

βm1,m2 = 〈
N−1∑
k1=0

〈
N−1∑
k2=0

α̃k1,k2φ
[0,1]
R,k2

, em2〉φ
[0,1]
R,k1

, em1〉 = 〈
N−1∑
k1=0

γk1,m2φ
[0,1]
R,k1

, em1〉 = ηm1,m2

where for each k1 = 0, . . . , N − 1

(γk1,m2
)
dM/2e−1
m2=−dM/2e =

(
〈
N−1∑
k2=0

α̃k1,k2φ
[0,1]
R,k2

, em2
〉

)dM/2e−1

m2=−dM/2e

= Gφ

(
(α̃k1,k2)

N−1
k2=0

)
and for each m2 = −dM/2e, . . . , dM/2e − 1

(ηm1,m2)
dM/2e−1
m1=−dM/2e = Gφ

(
(γk1,m2)

N−1
k1=0

)
.

Hence we can write the following algorithm.

The two-dimensional algorithm in the uniform case

Precompute the vectors(
φ̂
(m
N

))dM/2e−1

m=−dM/2e
,
(
φ̂0
k

(m
N

))dM/2e−1

m=−dM/2e
,
(
φ̂1
k

(m
N

))dM/2e−1

m=−dM/2e
, k = 1, . . . , a.

The forward operation

Given α ∈ CN×N , β = G[N2,M2](α) can be obtained as follows.

1. Compute the scaling coefficients α̃ = W−1(α).

2. For each k1 = 0, . . . , N − 1, apply Gφ to the nth1 row of α̃ to obtain

β̃k1 = Gφ

(
(α̃k1,k2)

N−1
k2=0

)
∈ CM .

Let

β̃ =

 β̃T0
...

β̃TN−1

 ∈ CN×M .

3. For each m2 = −dM/2e, . . . , dM/2e − 1, apply Gφ to the mth
2 column of β̃ to obtain

βm2
= Gφ

((
β̃k1,m2

)N−1

k1=0

)
∈ CM .

Let
β =

(
β−dM/2e| . . . |βdM/2e−1

)
∈ CM×M .
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The adjoint operation

Given ζ ∈ CM×M , γ =
(
G[N2,M2]

)∗
(ζ) can be computed as follows.

1. For each k2 = −dM/2e, . . . , dM/2e− 1, let the column of ζ indexed by k2 be denoted by ζk2 , so

ζk2 = (ζk1,k2)
dM/2e−1
k1=−dM/2e. Apply (Gφ)

∗
to every column of ζ to obtain

γ =
(
(Gφ)

∗
(ζ−dM/2e) (Gφ)

∗
(ζ−dM/2e+1) . . . (Gφ)

∗
(ζdM/2e−1)

)
∈ CN×M .

2. For n1 = 0, . . . , N − 1, let the row of γ indexed by n1 be denoted by γn1 . Apply (Gφ)
∗

to each
γn1 to obtain

γ̃ =


(
(Gφ)

∗
(γ0)

)T
...(

(Gφ)
∗

(γN−1)
)T
 ∈ CN×N .

3. γ = W(γ̃).

Computational cost of the simplified two-dimensional algorithm. Again, for the first step
of the forward operation we have the computational cost O

(
N2
)
. Since the cost of each application of

operation Gφ is O (aM +M log(N/ε)), and the cost of each transposing of an M -dimensional vector
is O (M), we have that the cost of step 2 is O (N(aM +M log(N/ε) +M)) and the cost of step 3 is
O (M(aM +M log(N/ε) +M)). Therefore, the total cost amounts to O

(
aM2 +M2 log(N/ε)

)
. Note

that the cost of the non-simplified two-dimensional algorithm in this case isO
(
a2M2 +M2 log(N/ε)2

)
.

7 Numerical examples

Finally, we present a few numerical examples using the algorithms from Sections 4-6. MATLAB
scripts for reproducing all the examples in this section are available at http://www.damtp.cam.ac.

uk/research/afha/code/.

Example 1. In Figure 2, we reconstruct a one-dimensional continuous, but nonperiodic, function

f(x) = − exp(x cos(4πx)) cos(7πx)χ[0,1](x) + sin(3πx)χ[0,1](x) (7.1)

from its Fourier samples taken on three different sampling schemes: equispaced, jittered and log. We
use GS with boundary-corrected Daubechies wavelets of order 4 (DB4), and compare its performance
to the direct approaches based on a discretization of the Fourier integral (truncated Fourier series and
gridding). While the direct approaches are apparently plagued by Gibbs artifacts and the reconstruc-
tion quality evidently depends on the underlying sampling scheme, GS performs equally well for all
three sampling schemes producing a numerical error of order 10−4 by using only 64 reconstruction
functions.
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Figure 2: Function (7.1) is reconstructed from its Fourier samples taken from the interval [−64, 64] according
to three different sampling schemes: equispaced (with spacing ε = 1, in total 128 points), jittered (with spacing
ε = 0.77 and jitter 0.1, in total 168 points) and log (with density δ = 0.97, in total 653 points). In the upper
panels, reconstruction is done via GS with 64 DB4 wavelets, while in the lower panels via truncated Fourier
series (TFS) in the uniform case, and in the nonuniform cases via gridding with density compensation factors
(3.6). The L2 error is written below each reconstruction.

Example 2. Next, we reconstruct a two-dimensional function shown in Figure 3, which is again
continuous but nonperiodic. We use an equispaced sampling scheme in Figure 4, and a radial sampling
scheme that satisfies density condition (3.7) in Figure 5. By this example, we demonstrate robustness
of GS when white Gaussian noise is added to the Fourier samples. We also demonstrate how one
obtains improved reconstructions with increasing wavelet order.

Example 3. We report numerical error of reconstructions from Example 4 in Table 1. We see how
error improves as the wavelet order increases. As evident, the main advantage of the GS approach
is the possibility of changing the reconstruction space and using higher order wavelets for better
performance.

Example 4. In Figure 6, we demonstrate reconstruction of a discontinuous function via GS with
DB4, and compare it to the direct approach, when using uniform samples.

Example 5. Figure 7 illustrates the advantage of combining generalized sampling with `1 mini-
mization from (2.7), as opposed to simply employing standard finite dimensional compressed sensing
techniques where one assumes compressibility with respect to some wavelet bases and one solves

x ∈ arg min
z∈CN

‖z‖`1 subject to
∥∥PΩUdfU

−1
dw z − y

∥∥
`1
≤ δ, (7.2)

19



Figure 3: f(x, y) = sin(5πx) cos(3πy)χ[0,1]2(x, y)

TFS GS with Haar GS with DB2 GS with DB3

S
N

R
=

0
S

N
R

=
30

Figure 4: Top-left corner close-ups of the reconstructed function of f in Figure 3 using uniform samples.

‖f − f̃‖ SNR TFS/Gr GS with Haar GS with DB2 GS with DB3

Uniform
0 7.71× 10−2 4.13× 10−2 3.71× 10−3 8.11× 10−4

30 7.88× 10−2 4.23× 10−2 9.14× 10−3 8.74× 10−3

Radial
0 1.98× 10−2 4.13× 10−2 3.74× 10−3 7.95× 10−4

30 2.93× 10−2 4.28× 10−2 1.07× 10−2 1.08× 10−2

Table 1: The L2 error for the reconstruction of function f(x, y) = sin(5πx) cos(3πy)χ[0,1]2(x, y) via truncated
Fourier series (TFS) or gridding (Gr), and via GS with 64×64 Haar, DB2 or DB3 boundary-corrected wavelets
from noiseless (SNR=0) and noisy (SNR=30) pointwise Fourier measurements taken on a uniform or radial
sampling scheme from the region [−64, 64]2. See Figures 3,4 and 5.
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Gr GS with Haar GS with DB2 GS with DB3
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30

Figure 5: Top-left corner close-ups of the reconstructed function of f in Figure 3 using radial samples.

Original TFS GS with DB4

Figure 6: A discontinuous function is reconstructed by truncated Fourier series and by GS using 256 × 256
DB4 boundary-corrected wavelets from 512×512 pointwise Fourier measurements taken from on an equispaced
grid.
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for given (noisy) Fourier samples y. The reconstruction is then taken to be U−1
dw x. Here, Udf is the

discrete Fourier transform, Udw is the discrete wavelet transform and PΩ is a projection matrix setting
entries which are not indexed by Ω to zero. However, as explained in [5], any solution to this will be
limited by the error of the truncated Fourier representation of f , whereas the error of the solution to
(2.7) can be controlled by the decay of the underlying wavelet coefficients.

In this example, we consider the recovery of the smooth function

f(x) = cos(3x) sin(5y) exp(−x− y)X[0,1]2

given access to samples of the form F = {f̂(k1, k2) : k1, k2 = −512, . . . , 512}. Suppose that we observe
only 4.25% the samples in F , namely, those restricted to the star-shaped domain Ω shown on the top
right of Figure 7. Note that the reconstructions obtained by solving (2.7), with K = 256 and (7.2)
are both given the same input samples, but there is a substantial difference in reconstruction quality
due to the samples mismatch introduced by the use of the finite dimensional matrices in (7.2). Note
also that, when subsampling from the first M samples of the lowest frequencies, the computational
complexity of computing (7.2) is O (M log(M)) since the computational complexity of applying Udf is
O (M log(M)), and the computational complexity of applying Udw is O (M). Thus, the computational
complexity of computing (2.7) is no worse than the finite dimensional approach of (7.2).

A Computation of the Fourier transform of boundary scaling
functions

For the precomputational step in our algorithms, we need to compute the Fourier transform of bound-
ary scaling functions. It is well known that the Fourier transform of scaling functions can be approx-
imated using the low pass filter of the wavelet system. The key ideas on how to do this are recalled
in this section. First observe that the internal scaling functions satisfy the following equation:

φ(x) =
√

2
∑
n

hnφ(2x− n)

which gives rise to the equation

φ̂(ξ) =

∞∏
j=1

m0(2−jξ)

where m0(ξ) = 1√
2

∑
n hne

−2πinξ. This provides a recursive way of approximating φ̂, since φ̂(ξ) ≈
1√
2π

∏N
j=1m0(2−jξ) for large N . The same principle can be applied to compute the Fourier transform

of the boundary scaling functions, for completeness, we will write out the computations in the case of
the left boundary functions.

Recall from [15] that the left boundary scaling functions satisfy the following equations for each
k = 0, . . . , a− 1

φ0
k(x) =

√
2

(
a−1∑
l=0

H0
k,lφ

0
l (2x) +

a+2k∑
m=a

h0
k,mφ(2x−m)

)
,

where
{
H0
k,l

}
and

{
h0
k,m

}
are the filter coefficients associated with the left boundary scaling functions

(these filters are available from http://www.pacm.princeton.edu/~ingrid/publications/54.txt).
So,

φ̂0
k(ξ) =

1√
2

(
a−1∑
l=0

H0
k,lφ̂

0
l

(
ξ

2

)
+ φ̂

(
ξ

2

) a+2k∑
m=a

h0
k,me

−2πimξ/2

)

22

http://www.pacm.princeton.edu/~ingrid/publications/54.txt


Original Sampling mask

GS with `1 CS with DFT and DWT

Figure 7: The reconstruction of a smooth function (top left) from 4.25% of its first 512× 512 Fourier coeffi-
cients using a standard compressed sensing (CS) approach with DFT and DWT, and using the `1 generalized
sampling (GS) approach. The samples taken for both reconstructions are those supported on the start shape
sampling mask (top right). The bottom row shows a zoom-in of the top left reconstruction. The error from
the standard CS approach is 1.6× 10−2, while the error from the GS approach is 4.7× 10−3.
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Let

U=


H0

0,0 H0
0,1 . . . H0

0,a−1

H0
1,0 H0

1,1 . . . H0
1,a−1

...
...

H0
a−1,0 H0

a−1,1 . . . H0
a−1,a−1

 , V =


h0

0,a 0 0 . . . . . . 0
h0

1,a h0
1,a+1 h0

1,a+2 0 . . . 0
...

...
h0
a−1,a h0

a−1,a+1 . . . . . . . . . h0
a−1,3a−2


and

v1(ξ) =


φ̂0

1(ξ)

φ̂0
2(ξ)
...

φ̂0
a−1(ξ)

 , v2(ξ) = φ̂(x)


e−2πaξ

e−2π(a+1)ξ

...
e2πi(3a−2)ξ


It follows that for each j ∈ N

v1(ξ) =
1√
2j
U j
(
v1

(
ξ

2j

))
+

j−1∑
l=0

1√
2l
U lV

(
v2

(
ξ

2l+1

))
.

We remark also that since φ̂(0) = 1, v2(0) is the vector whose entries are all ones and the values v1(0)
can be obtained by solving

v1(0) = U(v1(0)) + V (v2(0)). (A.1)

Note that φ̂0
j is smooth and so, for each ξ ∈ R, v1(ξ/2j)→ v1(0) as j →∞. So,∥∥∥∥∥v1(ξ)−

(
U j (v1 (0)) +

j−1∑
l=0

U lV

(
v2

(
ξ

2l+1

)))∥∥∥∥∥→ 0

as j →∞ and for j sufficiently large, we may approximate v1(ξ) by

v1(ξ) ≈ U j (v1 (0)) +

j−1∑
l=0

U lV

(
v2

(
ξ

2l+1

))
. (A.2)

Thus, for a given ξ ∈ R, to approximate v1(ξ), we first solve (A.1) to obtain v1(0), and then we
compute (A.2) for j sufficiently large.

A similar approximation can be derived for the Fourier transforms of the scaling functions on the
right boundary.
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[10] A. Aldroubi and K. Gröchenig. Nonuniform sampling and reconstruction in shift-invariant spaces.
SIAM Rev., 43:585–620, 2001.

[11] J. J. Benedetto. Irregular sampling and frames. In Wavelets, volume 2 of Wavelet Anal. Appl.,
pages 445–507. Academic Press, Boston, MA, 1992.

[12] N. Bleistein, J. Cohen, and J. Stockwell. Mathematics of Multidimensional Seismic Imaging,
Migration, and Inversion. Interdisciplinary Applied Mathematics. Springer New York, 2000.

[13] B. Borden and M. Cheney. Synthetic-aperture imaging from high-Doppler-resolution measure-
ments. Inverse Problems, 21(1):1–11, 2005.

[14] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2):489–509, 2006.

[15] A. Cohen, I. Daubechies, and P. Vial. Wavelets on the interval and fast wavelet transforms. Appl.
Comput. Harm. Anal., 1(1):54–81, 1993.

[16] I. Daubechies. Ten Lectures on Wavelets. Cbms-Nsf Regional Conference Series in Applied
Mathematics. Society for Industrial and Applied Mathematics, 1992.

[17] B. M. A. Delattre, R. M. Heidemann, L. A. Crowe, J.-P. Vallée, and J.-N. Hyacinthe. Spiral
demystified. Magn. Reson. Imaging, 28(6):862–881, 2010.

[18] D. L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289–1306, 2006.

[19] Y. C. Eldar. Sampling without input constraints: Consistent reconstruction in arbitrary spaces.
In A. I. Zayed and J. J. Benedetto, editors, Sampling, Wavelets and Tomography, pages 33–60.
Boston, MA: Birkhäuser, 2004.
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