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Abstract

The Beurling-Lasso is an off-the-grid optimization problem for
dealing with non-linear least squares problem, where one aims to re-
cover both mixture weights and the parameters of a nonlinear function.
Existing works have been limited to cases where the mixture weights
are scalars. In this work, we consider the case of vector-valued weights
and extend the Beurling-Lasso to incorporate a sparse-group variation
norm. This promotes both sparsity in the number of mixture weights,
and also sparsity within each mixture weights. Our main result estab-
lishes a numerically verifiable ‘certificate’ condition which guarantees
support stability.

1 Introduction

Many problems in science and engineering require fitting observa-
tions to non-linear models. This involves solving the following non-
linear inverse problem:

X =
k∑
j=1

ϕ(θj)C
>
j ∈ RL×v, where C > 0

where the observations matrix X has v columns representing data
population or the number of samples, and L rows representing the di-
mension of each data sample. The observations are formed by linearly
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combining the responses of a non-linear function ϕ(θj) for k parame-
ters θj in the parameter space T ⊂ Rd. The problem is to estimate
the underlying parameters θj , and the non-negative mixture weights
Cj ∈ Rp.

This problem has numerous applications in biomedical imaging,
such as magnetic resonance (MR) spectroscopic imaging [1], quanti-
fying multi-compartment tissue relaxation/decay times in MRI relax-
ometry [2], the modelling of magneto-encephalogram (MEG) [3], and
also in parameter identification in engineering applications [4–6].

In general, the number of components k in the summation is a-
priori unknown. Typical approaches would be to guess the number of
parameters k and to solve the nonlinear least squares problem [7]

min
θ,C
||X −

k∑
j=1

ϕ(θj)C
>
j ||2F , where C > 0 (1)

or to form a discrete dictionary DΘ = (ϕ(θ))θ∈Θ by finely discretizing
the space T as Θ, solving

min
C>0

1

2
||X −DΘC

>||2F + αR(C) (2)

where R is a sparsity enforcing regularizer and α > 0 is a regular-
ization parameter [8–10]. On one hand, (1) is a nonconvex problem,
and requires a-priori assumptions on the number of components, and
on the other hand, while (2) is a convex optimization problem, DΘ

is potentially a very large matrix (many columns) and hence, this is
computational expensive. Moreover, fine discretizatons typically lead
to high coherence in DΘ (the columns are almost identical), which,
even in the presence of the regularizer R, will lead to problems with
identifying sparse supports. We refer to [11] for an example where fine
discretizations with `1 regularization will always lead to the recovery
of a larger support and fails to identify the sparse support.

In this work, we consider an off-the-grid formulation where we seek
to recover the sparse vector-valued measure m∗

def.
=
∑k

j=1C
>
j δθj from

observations X = Φm∗ =
∑k

j=1 ϕ(θj)C
>
j ∈ RL×v, where Φ is a linear

operator defined by

Φ :M+(T ;R1×v)→ RL×v,m 7→
∫
ϕ(θ)dm(θ), where ϕ ∈ C(T ;RL).

Throughout, δθ denotes the Dirac mass centred at θ. This approach is
introduced in [12, 13], and has been studied in a series of articles.
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The idea is that by lifting the problem to the space of measures,
one can instead consider the following convex but infinite-dimensional
optimization problem (in the scalar-valued setting):

min
m∈M+(T ;R)

α||m||V +
1

2
||x− Φm||22 (3)

given data x = Φm∗ + w =
∫
ϕ(θ)dm∗(θ) + w ∈ RL, and α > 0 is a

regularisation parameter which balances the data fidelity `2 term and
the variation norm regularisation

||m||V = sup
{Ai}i∈Π(T )

∑
i

|m(Ai)|.

where Π(T ) is the set of all measurable partitions of T . The authors
of [12] named problem (3) the Beurling-Lasso, in acknowledgement to
the work [14] of mathematician, Andre Beurling, where the method
was first proposed in the context of Fourier measurements. Properties
of solutions to (3) have been extensively studied in the literature for
scalar-valued measures, see [12,13,15–18].

We stress that while (3) is related to the Lasso [8] since ||
∑

j cjδθj ||V =∑
j |cj |, it is a fundamentally different approach to (2) or (1). First,

there is no need to a-priori specify the number of components k.
Second, the problem is now convex and allows for deriving strong
theoretical results on its recovery properties. In particular, if m∗

is composed of k Diracs, then for sufficiently small noise levels ||w||
and regularization parameter λ, one can prove sparsistency, that is,
(3) recovers precisely k components [16]. Finally, the formulation (3)
lends itself to the development of new algorithms which respect the
infinite-dimensional nature of this problem, see for instance: [15,19] for
semi-definite programming approaches; [20,21] for conditional gradient
descent approaches; and [22, 23] for analysis of particle optimization
methods (where one simultaneously optimizes over a fixed number of
Dirac positions and mixture weights) as a means of solving (3).

In this work, we study a formulation of (3) in the case of vector-
valued measures. In the vector-valued setting, there is choice in the
underlying norm when defining the variation norm. For this, we in-
troduce the so-called sparse-group variation norm in Section 2. We
establish analogous support stability results under a nondegeneracy
condition: under sufficiently small noise level and regularisation pa-
rameters, one recovers exactly k spikes if the underlying measure defin-
ing observations X consist of k spikes. In the following subsection, we
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describe some practical examples in which the case of vector-valued
measures is of interest.

1.1 Examples

The case of complex-valued measures This setting encom-
passes the case of complex-valued measures, studied in [24], since
we have the equivalence between M(T ;C) and M(T ;R2). If mC =∑k

j=1 zjδθj where zj ∈ C and we are given measurements ΦmC, then
writing Cj = (Re(zj), Im(zj)), we can equivalently consider the recov-

ery of mR
def.
=
∑

j C
>
j δθj from ΦmR =

[
Re(ΦmC) Im(ΦmC)

]
.

Multicompartment analysis in imaging One of the interests
in (2) arises in multicompartment analysis for imaging problems, such
as quantitative magnetic resonance imaging [25]: At each image voxel
i = 1, . . . , v, one has some time series data of L time points, xi ∈ RL,
with

xi =

k∑
s=1

ci,sϕ(θs).

Nuclear magnetic resonance (NMR) properties of the tissues at voxel
i are driven by mixtures of ϕ(θs), which represents the time dynamics
parameterized by these NMR properties. For example, ϕ could be an
exponentially decaying time signal (function) in MRI relaxometry [26]
or rather a complicated time response in MR Fingerprinting applica-
tions [27]. By aggregating this information, we are led to consider
precisely (2) with xi being the columns of X and Cs = (ci,s)

v
i=1.

Non-stationary modulation processes In [28,29], the authors
present a model for non-stationary modulation processes, which is rel-
evant to blind deconvolution or self-calibration problems. The obser-
vation model is of the form

y =
k∑
j=1

cjHjϕ(θj)

where ϕ(θj) ∈ RL is an atom from a dictionary (parameterized by
θ), and we seek to recover the parameters θj , the unknown modu-
lation matrices Hj ∈ RL×L, and the unknown coefficients cj ∈ R.
One might assume that the modulation matrices are represented from
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a low dimensional subspace so that Hj = diag (Bhj) where B =[
b1 . . . bv

]
∈ RL×v is a known basis and the unknown modulations

are simply the vectors hj ∈ Rv. The goal is therefore to recover the
parameters {θj}kj=1 and the modulations

Z =
[
Z1 Z2 · · · Zk

]
∈ Rv×k, where Zj

def.
= cjhj .

By writing m =
∑k

j=1 cjh
>
j δθj , the forward problem becomes

y = L (Φm) ,

where L : RL×v → RL is the linear operator L(X) =
∑v

`=1 diag(b`)X`
1.

2 The sparse-group Beurling-Lasso

Given a measure m taking values in a normed vector space V with
norm || · ||V , its variation is defined as

|m|V(V)
def.
= sup

{∑
i

||m(Ai)||V \ {Ai}i partitions V

}
.

Let β ∈ (0, 1]. By considering the variations by vector space Rv with
|| · ||1 and || · ||2, we define the β-sparse-group norm of m ∈ M(T ,Rv)
as follows

||m||β
def.
= (1− β)|m|1(T ) + β

√
v|m|2(T ) (4)

Given data X = RL×v, we consider solutions of the following minimi-
sation problem:

min
m∈M+(T ;Rp)

1

2
||Φm−X||2F + α||m||β (Pα(X))

Remark 1. We do not consider β = 0, since in this case, the prob-
lem becomes separable, and one can simply consider v optimisation
problems: for ` ∈ [v],

m` ∈ argmin
m∈M+(T ;R)

1

2
||Φm−X`||22 + α|m|1 (5)

and solutions to (Pα(X)) is simply the measure defined m(A) =
(m`(A))`∈[v]. Therefore, this is covered by previous studies on Beurling-
Lasso.

1For simplicity, we do not consider the composition with a linear operator L here,
although our results can be extended to this setting.
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Relationship to the sparse-group lasso If m =
∑

j C
>
j δθj is

a sparse measure, then

||m||β = (1− β)
∑
j

||Cj ||1 + β
√
v
∑
j

||Cj ||2.

This is precisely the sparse-group regularisation term introduced in
[10], with the `1 term promoting sparsity within each vector Cj , and
the `2 term promoting group sparsity. In this sense, (Pα(X)) can be
seen as a continuous extension of the sparse-group lasso.

2.1 Main result

Our main result is a support stability result on the solution of
(Pα(X)) under a nondegenerate precertificate assumption which is
numerically verifiable. We first describe this precertificate.

Given a sparse measure m =
∑

s δθsC
>
s , we define the vanishing

derivatives pre-certificate as follows: Define

QV
def.
= argmin

Q∈RT×v

{
||Q||F \ f

def.
=

(Φ∗Q− (1− β))√
vβ

∈ K
}

where K ⊂ C(T ;Rv) is

K def.
=

{
f \ ∀s ∈ [k], [f(θs)]Is =

[Cs]Is
||Cs||2

,∇||fIs ||22(θs) = 0d

}
. (6)

and Is
def.
= Supp(Cs) is the position of the non-zero elements of Cs.

Definition 1. Define ηV (θ)
def.
= ||fV (θ)||2, where fV (θ)

def.
= 1√

vβ
(Φ∗QV (θ)−

(1 − β))+. We call ηV a vanishing derivatives precertificate (with re-
spect to the sparse measure m =

∑
j Cjδθj ) and say it is nondegenerate

if

(i) (non-saturating) ηV (θ) < 1 for all θ 6∈ {θs}ks=1.

(ii) (curvature) ∇2ηV (θs) ≺ 0 for all s ∈ [k].

Note that the vanishing derivatives precertificate depends only on
{ϕ(θs), Jϕ(θs)}s∈[k] and the sign pattern { Cs

||Cs||2 }s∈[k]. As discussed in
Section 3.5.1, this precertificate can be computed by solving a linear
system and hence, the nondegeneracy condition is numerically verifi-
able. We refer to [25] for numerical validations of this certificate for
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the problem of multicomponent analysis in quantitative MRI. When
the precertificate is nondegenerate, it corresponds directly to a dual
solution of (Dα(X)) when α = 0 (See Proposition 1).

Our main result shows that under the assumption that ηV is non-
degenerate, we have support stability whenever the noise level is ε =
O(α) and the regularisation parameter is α = O(c2

min/cmax). In the
following, denote the Jacobian of ϕ at θ by Jϕ(θ) ∈ RT×d and let

cmin = mins ||C∗s || and cmax
def.
= maxs ||C∗s ||. We also write Θ = {θs}s.

Theorem 1. Let ε > 0 and X = Φm∗+W where W ∈ RT×v satisfies
||W ||F 6 ε and m∗ =

∑k
s=1C

∗
s δθ∗s . Assume that[

ϕ(θ∗1) · · · ϕ(θ∗k) Jϕ(θ∗1) · · · Jϕ(θ∗k)
]

is full rank, and the vanishing derivatives precertificate ηV is nonde-
generate with respect to m∗. Then, there exists constants ρ1, ρ2, ρ3 > 0
such that for all ε/α 6 ρ1 and α 6 ρ2c

2
min/cmax, (Pα(X)) recovers a

unique solution of the form
∑k

s=1Csδθs with

||C∗ − C||F + cmin||Θ∗ −Θ||F 6 ρ3α (7)

The constant ρi for i = 1, 2, 3 depend only on {ϕ(θ∗s), Jϕ(θ∗s)}s∈[k] and
the sign pattern {C∗s/||C∗s ||2}s∈[k]

2.2 Links to previous works

The work which is closest in nature to this work is [16], where
the notion of support stability and sparsistency was studied for de-
convolution problems in the case of scalar-valued measures under a
nondegeneracy condition (see also [24] for the case of complex-valued
measures and the general operator setting). This work can be seen
as an extension of their results to the vector-valued setting, where
we provide sparsistency results under the corresponding nondegener-
acy condition assumption. We also highlight that in [16], the support
stability result is non-quantitative (for sufficiently small noise, one
can guarantee support stability), while in this work, we describe how
α should scale with respect to the underlying ‘amplitudes’ cmin and
cmax. Our proof is largely inspired by a proof technique introduced
in [30].

In the case of vector-valued measures, there is a choice to be made
in the definition of the variation norm (i.e. the norm of the underlying

7



vector space). In this work, we investigate the sparse-group norm. In
the discrete setting, the sparse-group norm was introduced by [10]
for enforcing sparsity within groups, and properties of this norm was
studied in [31], where connections to the so-called epsilon-norm [32]
were made.

One could of course analyse precise conditions under which the
nondegeneracy condition holds, this has been done in the scalar valued
setting in [15], [16], and a general result in the multivariate setting was
investigated in [18, 24]. Compressed sensing results were also derived
in [17] in the univariate random Fourier setting and in [18], for a
wide class of operators which encompasses non-translational invariant
operators such as the Laplace transform. In general, one requires
sufficient separation of the underlying spikes, we expect that similar
results can also be attained on our vector-valued measures setting,
however, precise analysis of this is beyond the scope of this work.

3 Proof of Theorem 1

3.1 Notations

Given a matrix Q ∈ Rn×m, let Vecn,m(p) ∈ Rnm be its vectorized
version with columns stacked vertically, let Vec−1

n,m be the inverse op-

eration, so that Vec−1
n,m(Vecn,m(p)) = p. Given β > 0, we define the

soft-thresholding operator by Sβ : Rv → Rv is defined by

Sβ(ξ)i =


ξi − β ξi > β,

ξi + β ξi < −β,
0 |ξi| 6 β.

.

Given a matrix or a tensor, we write || · || without subscript to denote
the operator norm with respect to the vector norm || · ||2. Given an
index set I and a vector V , we denote by VI the restriction of V to
the index set I. Given a point x ∈ Rn and r > 0, we denote by
B(x, r)

def.
= {z \ ||x− z|| < r} the open ball of radius r around x. Given

x ∈ Rn, x+ is the positive part of x.

Outline of this section Section 3.2 describe the dual problem
of (Pα(X)) and Section 3.4 describes how dual solutions can be used
to study support stability. These are the analogous results to [16] in
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the case of vector-valued measures. The main novelty is in Section 3.6
where we prove Theorem 1.

3.2 Duality

To simplify notation, throughout this section and the next, we let
λ1

def.
= (1− β) and λ2

def.
=
√
vβ, so ||m||β = λ1|m|1 + λ2|m|2.

3.3 Variational formulation of the sparse-group
norm

We first mention a duality result, described in [32], between the
vector norm

J(x)
def.
= (1− ε)||x||1 + ε||x||2

defined for x ∈ Rn and ε ∈ (0, 1), and the so-called ε-norm, which is
defined for ξ ∈ Rn as ν = ||ξ||ε is the unique ν > 0 such that∑

i

(|ξi| − (1− ε)ν)2
+ − (εν)2 = 0.

It is shown in [31, Appendix E, Lemmas 1 and 2] (see also [32]) that 2{
x+ y \ x, y ∈ Rd, ||x||2 6 εν, ||y||∞ 6 (1− ε)ν

}
=
{
ξ ∈ Rd \ ||ξ||ε 6 ν

} (8)

and hence, since J is the support function of the set in (8), the
dual norm of J is the ε-norm. Moreover, we have the unique ε-
decomposition

ξ = Sε(ξ) + (ξ − Sε(ξ))
with ||Sε(ξ)||2 = (1− ε)||ξ||ε and ||ξ −Sε(ξ)||∞ = ε||ξ||ε, where we recall
that Sε is the soft-thresholding operator. Therefore, by considering
the dual norms of |m|1 and |m|2, the following holds

||m||β = sup
supθ ||f(θ)||∞6β

〈f, m〉+ sup
supθ ||g(θ)||26λ2

〈g, m〉

= sup {〈f + g, m〉 \ ∀θ, ||f(θ)||∞ 6 λ1, ||g(θ)||2 6 λ2} .
2which of course can be written as: for all λ1, λ2 > 0,

{x+ y \ ||x||2 6 λ1ν, ||y||∞ 6 λ2ν} =
{
ξ \ ||Sλ2(ξ)||22 6 (λ1ν)2

}
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From (8),{
x+ y ∈ Rd \ ||x||2 6 λ2, ||y||∞ 6 λ1

}
=
{
ξ ∈ Rd \ ||Sλ1(ξ)||22 6 λ2

}
and hence, we have the following variational formulation of the norm
|| · ||β:

||m||β = sup
f∈K0

〈f, m〉 (9)

where

K0 =

{
f ∈ C(T ;Rv) \ sup

θ∈T
||Sλ1(f(θ))||22 6 λ2

2

}
.

Proposition 1 (Dual problem). For α > 0, the dual problem to
(Pα(X)) is

sup
Q∈K
〈X, Q〉F − α||Q||2F (Dα(X))

where K ⊆ RT×v is defined as

K def.
=

{
Q \

v∑
i=1

([Φ∗Q(θ)]i − λ1)2
+ 6 λ2

2

}

The primal and dual problems are related by m solves (Pα(X)) if and
only if Q = X−Φm

α solves (Dα(X)). Moreover, Φ∗Q ∈ ∂||m||β.
In the case of α = 0, the dual of the limit problem

min
m
||m||β s.t. Φm = X (P0(X))

is (Dα(X)) with α = 0. Moreover, if Q solves (Dα(X)) and m solves
(P0(X)), then Φ∗Q ∈ ∂||m||β

Proof. In (9), we can restrict the set K0 to positive functions K+
def.
=

K0 ∩ C(T ;Rv+) since m is a positive measure. Therefore, the convex
conjugate of ||m||β is ιK+ , the indicator function on the set K+.

The result now follows by applying the Fenchel-Rockafellar duality
theorem [33, Thm 4.2].

3.4 Support stability

Given a dual solution Qα to (Dα(X)), the function

fα(θ)
def.
=

1

λ2
[(Φ∗Qα)(θ)− λ1]+
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characterizes the support of any primal solution mα of (Pα(X)) in the
following sense:

Lemma 1. Any solution mα to (Pα(X)) satisfies

Supp(mα) ⊆ {θ ∈ T \ ||fα(θ)|| = 1} .

If mα =
∑

sC
>
s δ(θ − θs) is a discrete measure, then for each s,

Supp(Cs) ⊆ {j ∈ [v] \ [Φ∗Qα(θs)]j > λ1} and fα(θs) = Cs/||Cs||2.

Proof. We know Φ∗Qα ∈ ∂|m|β = λ1∂|m|1 + λ2|m|2. From (9), if ξ
satisfies

∑
i(ξ−λ1)2

+ 6 λ2
2 then ||Sλ1(ξ)||2 6 λ2 and ||ξ−Sλ1(ξ)||∞ 6 λ1.

So Sλ1(Φ∗Qα) ∈ λ2∂|m|2 which gives the first inclusion. For the
second,

Φ∗Qα − Sλ1(Φ∗Qα) ∈ λ1∂|m|1
which means that given s ∈ [k] and Is = Supp(Cs),

(Φ∗Qα(θs)−max{(Φ∗Qα)(θs)− λ1, 0})Is = λ1 sign(Cs)Is

where given a vector V ∈ Rn, sign(V )i = Vi/|Vi| for i ∈ [n], where
division is in a pointwise sense. If Φ∗Qα(θs)j < λ1 for j ∈ Is, then
this equation implies that Φ∗Qα(θs)j = λ1 sign(Cs)j which is a con-
tradiction. Therefore, Is ⊂ {j \ Φ∗Qα(θs)j > λ1}.

Note that (Dα(X)) has a unique solution, since it can be seen as
the projection of X/α onto the closed convex set K. Moreover, the
previous lemma shows that its solution characterises the support of
any primal solution mα of (Pα(X)). Therefore, to understand the
structure of solutions to (Pα(X)) with X = Φm +W with ||W ||F 6 ε,
it suffices to study the solution of the dual problem (Dα(X)), which
we denote by Qα,ε. Following [16], we can show that Qα,ε has a limit
as ε/α and α converge to 0: Define

Q0 ∈ argmin
{
||Q||F \ η

def.
= Φ∗Q ∈ K, 〈η, m〉 = ||m||β

}
. (10)

Lemma 2. If (Dα(X)) has a solution with α = 0, then we have
||Qα,0 −Q0||F → 0 as α→ 0, and

||Qα,ε −Qα,0||F 6 ε/α.

Proof. The proof is omitted as it is verbatim the proof of Proposition
1 in [16]
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The minimal norm element Q0 is a solution to the dual problem
(Dα(X)) with α = 0 and X = Φm. Moreover, from Lemma 1, for a
discrete measure m =

∑
sC
>
s δθs , we in fact have

Q0 ∈ argmin

{
||Q||F \ sup

θ∈T
||fQ(θ)||2 6 1 fQ(θs) =

Cs
||Cs||2

}
. (11)

where we denote fQ
def.
= 1

λ2
(Φ∗Q− λ1)+ inside the constraint.

Definition 2. Define fQ0 = 1
λ2

(Φ∗Q0 − λ1)+ and η0(θ)
def.
= ||f0(θ)||22.

We call η0 is nondegenerate minimal norm certificate with respect to
the sparse measure m =

∑k
s=1Csδθs if η0 satisfies satisfies

(i) (non-saturation) η0(θ) < 1 for all θ 6∈ {θi}
(ii) (curvature) ∇2η0(θs) ≺ 0 for all s ∈ [k].

Note that by definition, η0(θs) = 1 for all s ∈ [k], so this condition
says that η0 saturates at its maximum value 1 only on {θs}s∈[k], and
(ii) is a curvature condition on η0 at these saturation points.

Proposition 2 (Non-quantitiative result on stability). If η0 is nonde-
generate, then provided that ε/α and α are sufficiently small, the solu-
tion to (Pα(X)) is of the form mα,ε =

∑k
j=1 Ĉjδθ̂j where Supp(Ĉj) ⊆

Supp(Cj).

Proof. From (Dα(X)), we see that the dual solution to (Dα(X)) can
be written as the projection of X/α onto the set K, denote this by
PL. So, from

||Qα,ε −Qα,0|| 6 ||PK(X/α)− PK((X +W )/α)|| 6 ||W ||F /α,

we have that vα,ε
def.
= Φ∗Qα,ε → v0

def.
= Φ∗Q0 in the uniform norm

as α and ε/α converge to 0. So, if η0 is non-degenerate, then given
any r > 0, provided that ||W ||F /α and α are sufficiently small, letting

η(θ)
def.
= 1

λ2
2
||(vα,ε(θ) − λ1)+||2, we have η(θ) < 1 for all θ 6∈ ∪jB(θj , r),

and for all θ ∈ B(θj , r), ∇2η(θ) ≺ 0. So, there are at most k points for
which η(θ) = 1. So, by Lemma 1, given data X = Φm+W , we recover
at most k components with mα,ε =

∑k
j=1 Ĉjδθ̂j . Finally, uniform

convergence of vα,ε to v0 also ensures that Supp(Ĉj) ⊆ Supp(Cj) for
α and ε/α sufficiently small.
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3.5 Precertificates

To establish support stability, it suffices to show that η0 is non-
degenerate. However, in general, η0 does not have a closed form ex-
pression and can be hard to compute and analyse. It is now standard
practice in these situations to consider a precertificate ηV [16], a can-
didate certificate which could be computed by solving a linear system.

Notice that since η0(θ) 6 1 for all θ and η0(θs) = 1 for all s ∈ [k], it
is necessary that ∇η0(θs) = 0. Replacing the constraint of ||f(θ)||2 6 1
for all θ ∈ T with ∇||f(θs)Is ||22 = 0 for all s ∈ [k] leads to the definition
of ηV in Definition 1 (Is denotes the support of Cs). Notice that if
ηV (θ) 6 1 for all θ ∈ T , then it follows that QV = Q0 is the minimal
norm solution from (11). Clearly, if ηV is nondegenerate, then ηV = η0

is also nondegenerate.

3.5.1 The precertificate as a least squares solution

The attractiveness of QV stems from the fact that it is defined
via

∑
s |Is|+ kd linear equations, and hence, QV can be computed by

solving a linear system.

Observe that the constraints [f(θs)]Is =
[Cs]Is
||Cs||2 for all s ∈ [k] in (6)

can be written as

PIVec
(
D>ΘQ

)
= PI[Idv ⊗D>Θ]Vec(Q) = u0

where
u0 = (λ1 + λ2[Cs]Is/||Cs||2)ks=1 ∈ R

∑
s |Is|,

DΘ is the matrix with columns ϕ(θs), and PI : Rkv → R
∑
s |Is| is the

subsampling operator given by which selects the nonzero entries of
{Is}s∈[k], so that given a matrix Z ∈ Rk×v with sth row Zs ∈ Rv for
s ∈ [k], PIVec(Z) = ([Zs]Is)s∈[k].

The constraints ∇||f(θs)Is ||22 = 0 for all s ∈ [k] can be written as

0d = λ2

∑
i∈Is

fi(θs)∇fi(θs) =
1

||Cs||2

v∑
i=1

(Cs)i∇[Φ∗Q](θs)

= Jϕ(θs)
>Q

Cs
||Cs||2

=
1

||Cs||2
[C>s ⊗ Jϕ(θs)

>]VecT,v(P )

We can therefore define the Tv × (
∑k

s=1 |Is|+ kd) matrix

Γ =

[
(Idv ⊗DΘ)P∗I ,

C1

||C1||2
⊗ Jϕ(θ1), · · · , , Ck

||Ck||2
⊗ Jϕ(θk)

]
(12)
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and write

QΘ = Vec−1
T,v

(
(Γ∗)†

(
u0

0kd

))
.

Note that Γ depends on Θ and {Cs/||Cs||2}s. To make this dependence
clear, we will sometimes write ΓΘ in place of Γ.

3.6 A quantitative result on support stability

To prove Theorem 1, we rely on the implicit function theorem.
The classical implicit function theorem is as follows:

Proposition 3 (Implicit function theorem). Let u0 ∈ Rm, v0 ∈ Rn.
Let F : Rm × Rn → Rn be such that F (u0, v0) = 0 and ∂uF (u0, v0) is
invertible. Then, there exists a neighbourhood V of v0 and a neighbour-
hood U of u0, and a continuously differentiable function G : V → U
such that

F (u, v) = 0 ⇐⇒ u = G(v).

Moreover, for all v ∈ V , the Jacobian of G is

JG(v) = (∂uF (G(v), v))−1 ∂vF (G(v), v).

Typical quantitative versions of the implicit function theorem re-
quire showing invertibility of ∂uF (u, v) and obtaining norm bounds
on the partial derivatives of F in some neighbourhood of U of u0 and
V of v0. A quantitative version is proved in [30, Section 4.3], which
requires to look at ∂uF (u, v) only when F (u, v) = 0. We present their
arguments below and restate their result in greater generality.

Proposition 4. Let n,m, k ∈ N with k < m, and ra, rθ, R > 0. Let
v0 ∈ Rn, u0 = (a0, θ0) ∈ Rk ×Rm−k and let U0 = Bra(a0)×Brθ(θ0) ⊂
Rk × Rm−k be an open neighbourhood of u0. Let F : Rm × Rn → Rn
be such that F (u0, v0) = 0 and for all u ∈ U0 and v ∈ B(v0, R),
F (u, v) = 0 implies that the following two conditions hold:

(i) ∂uF (u, v) is invertible

(ii) J
def.
= ∂uF (u, v)−1∂vF (u, v) satisfies ||PaJ || 6 Ma and ||PθJ || 6

Mθ, for some Ma,Mθ > 0.

Then, the conclusions of Proposition 3 hold with

V ⊃ B(v0,min (ra/Ma, rθ/Mθ, R))

and ||PaJG(v)|| 6 Ma, ||PθJG(v)|| 6 Mθ. Here, we denote PaJ =
(Ji)

k
i=1 and PθJ = (Ji)

m
i=k+1.
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Proof. Define V ∗
def.
=
⋃
V ∈V V where V is the collection of all open sets

such that

(I) v0 ∈ V
(II) V is star-shaped with respect to v0,

(III) V ⊂ B(v0, R)

(IV) there exists a C1 function G : V → Rm such that G(v0) = u0

and for all v ∈ V , F (G(v), v) = 0.

(V) G(v) ⊂ U0.

Note that V is non-empty since we can apply the implicit function
theorem to F at u0, v0 to obtain a set V and function G which satisfies
(I) to (V). The collection V is stable by union and we can define G∗

on V ∗ by

G∗(v) = G(v), if v ∈ V, V ∈ V, G is the corresponding function.

We simply need to show that V ∗ ⊃ B(v0,min{ra/Ma, rθ/Mθ, R}).
Let v ∈ V be of norm 1, and define

r
def.
= sup {r > 0 \ v0 + rv ∈ V ∗} .

Then, r ∈ (0, R] by (III). Assume that r < R. Let vr
def.
= v0 + rv ∈

V ∗ and we can define G∗(vr) = limr′→rG
∗(v0 + r′v). Since G∗(v0 +

r′v) ∈ U0 for all r′ < r, we have ur
def.
= G∗(vr) ∈ U0. We claim

that ur ∈ ∂U0 is on the boundary. Suppose ur ∈ U0. Then, by
assumption, F (G∗(vr), vr) = 0 and ∂uF (G∗(vr), vr) is invertible, we
can therefore apply the IFT to construct neighbourhoods U ′ around
G∗(vr), V

′ around vr to define a C1 function G : V ′ → Rm such
that G(vr) = G∗(vr) and for all v ∈ V ′, F (G(v), v) = 0. We can
therefore extend the set V ∗ to Vr so that Vr contains V ′, but this
would mean that V ∗ ( Vr. This is a contradiction to the maximality
of V ∗. So, ur ∈ ∂U0. In particular, either Pa(ur) ∈ ∂B(a0, ra) or
Pθ(ur) ∈ ∂B(θ0, rθ).

Note that for all t ∈ [0, 1), by (II), v0 + trv ∈ V ∗ ⊂ B(v0, R),
so G∗(v0 + trv) ∈ U0. Moreover, the Jacobian of G∗ at v0 + trv is
∂uF (u, v)−1∂vF (u, v). So, by assumption (ii), ||PaJG∗(v0 +trv)|| 6Ma

and ||PθJG∗(v0 + trv)|| 6 Mθ. Therefore, either Pa(ur) ∈ ∂B(a0, ra)
and

ra 6 ||Pa(G∗(vr)− u0)|| =
∥∥∥∥∫ 1

0
PaJG∗(v0 + trv)(rv)dt

∥∥∥∥ 6Mar
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or Pθ(ur) ∈ ∂B(θ0, rθ) and

rθ 6 ||Pθ(G∗(vr)− u0)|| =
∥∥∥∥∫ 1

0
PθJG∗(v0 + trv)(rv)dt

∥∥∥∥ 6Mθr

Therefore, r > min
(
ra
Ma
, rθMθ

, R
)

.

Proof of Theorem 1. The goal is to define, given noise W and regu-
larisation parameter α, a C1 function G : (W,α) 7→ (C,Θ) such that
(C,Θ) corresponds to a solution of (Pα(X)) with data

X = Φm∗ +W = DΘ∗(C
∗)> +W.

We first use the implicit function theorem to define such a G, then
show that it does indeed define a solution to (Pα(X)).

To this end, let N =
∑

s |Is| and define a function

F : RN+ × T k × RT×v × R+ → RN+kd

so that given C = {Cs}s∈[k] with Cs ∈ R|Is|, Θ ∈ T k, W ∈ RT×v and
α ∈ R+,

F (C,Θ,W, α) =

[
(gs(C,Θ,W, α))ks=1

(hs(C,Θ,W, α))ks=1

]
where gs(C,Θ,W, α) ∈ R|Is| and hs(C,Θ,W, α) ∈ Rd are given by

gs(C,Θ,W, α)> =
(
ϕ(θs)

>[DΘC̄
> −DΘ∗(C

∗)> −W ]
)
Is

+α

(
λ1 + λ2

C>s
||Cs||

)
and

hs(C,Θ,W, α) = Jϕ(θs)
>
(
DΘC̄

> −DΘ∗(C
∗)> −W

) C̄s
||Cs||2

.

Here, C̄ ∈ Rv×k is the matrix with sth column satisfying (C̄s)Is = Cs
and (C̄s)Ics = 0. Observe that if (C,Θ) correspond to a solution of
(Pα(X)) with data X = DΘ∗(C

∗)>+W , then F (C,Θ,W, α) = 0, since
(gs)s = 0 correspond to the condition that the dual certificate should
take values Cs/||Cs|| on the support θs, and (hs)s = 0 correspond to
the condition that the gradient of the dual certificate is 0. Note in
particular that F (C∗,Θ∗, 0, 0) = 0.
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The partial derivatives of g
def.
= (gs) and h

def.
= (hs) are as follows:

Define
Z

def.
= DΘC̄

> −DΘ∗(C
∗)> −W, (13)

then

∂cg = PI
(

Idv ⊗ Φ>ΘDΘ

)
P∗I + αλ2 diag

(
1

||Cs||
Id|Is| −

CsC
>
s

||Cs||3

)
s∈[k]

∂θg = diag([Z(:,Is)]
>Jϕ(θs))s∈[k] +

(
Cjϕ(θs)

>Jϕ(θj)
)
s,j∈[k]

∂αg =

(
λ1 + λ2

Cs
||Cs||

)
s∈[k]

∂wg = PI(Idv ⊗ Φ>Θ)

Let Hϕ(θ)> ∈ Rd×d×T so that is (i, j, n) entries with i, j ∈ [d] for

the Hessian of ϕn(θs). So, given a vector z
def.
= (zn)Tn=1, Hϕ(θ)>z =∑T

n=1 zn∇2ϕj(θ) ∈ Rd×d. Then,

∂ch = diag

(
Jϕ(θs)

>Z(:,Is)

(
1

||Cs||2
Id|Is| −

CsC
>
s

||Cs||3

))
s∈[k]

+

(
[

1

||Cs||2
C>s ⊗ Jϕ(θ)>][Idv ⊗DΘ]

)
s∈[k]

∂Θh = diag

(
Hϕ(θs)

>Z
C̄s
||Cs||2

)
s

+

(
1

||Cj ||2
Jϕ(θj)

>Jϕ(θs)C̄
>
j C̄s

)
j,s∈[k]

∂αh = 0kd

∂wh = −
(

1

||Cs||2
C>s ⊗ Jϕ(θs)

>
)
s∈[k]

We therefore have

∂(C,Θ)F =
(

Γ>ΘΓΘ + Y
)( IdN 0N×kd

0kd×N diag (||Cs||2)ks=1 ⊗ Idd

)
where

Y
def.
=

 αλ2 diag
(

1
||Cs|| Id|Is| −

CsC>s
||Cs||3

)
diag

(
1
||Cs||2 Jϕ(θs)

>Z(:,Is)

)>
s∈[k]

diag
(
Jϕ(θs)

>Z(:,Is)
1
||Cs||2

(
Id|Is| −

CsC>s
||Cs||22

))
s∈[k]

diag
(
Hϕ(θs)

>Z Cs
||Cs||22

)
s

 ,

and

∂(α,W )F =

[((
λ1 + λ2

Cs
||Cs||2

)
s

0kd

)
, Γ>Θ

]
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Application of implicit function theorem to obtain a can-
didate solution.

To apply the quantitative implicit function theorem, we first bound
||ΓΘ|| and ||Y ||: Define

Ss
def.
= Cs/||Cs||2 and S∗s

def.
= C∗s/||C∗s ||2

and write S = {Ss}ks=1 and S∗ = {S∗s}ks=1.

i) Bound on ||∂α,WF ||:
Note that by Taylor’s theorem, ||DΘ−DΘ∗ || 6 ||Θ−Θ∗||F maxθ ||Jϕ(Θ)||
and

||Ss ⊗ Jϕ(θs)− S∗s ⊗ Jϕ(θ∗s)|| 6 || (Ss − S∗s )⊗ Jϕ(θs)||+ ||S∗s ⊗ (Jϕ(θ∗s)− Jϕ(θs))||
6 ||Ss − S∗s ||2 max

θ
||Jϕ(θ)||+ ||θs − θ∗s ||||S∗s ||2 max

θ
||Hϕ(θ)||.

Therefore

||ΓΘ − ΓΘ∗ ||2 6 ||DΘ −DΘ∗ ||2 +
∑
s

||Ss ⊗ Jϕ(θs)− S∗s ⊗ Jϕ(θ∗s)||2

6 ||Θ−Θ∗||2F max
θ
||Jϕ(Θ)||2 + ||S − S∗||2F max

θ
||Jϕ(θ)||2

+ ||Θ−Θ∗||2 max
θ
||Hϕ(θ)||2

6 A2
1

(
||S − S∗||2F + ||Θ−Θ∗||2F

)
where

A2
1

def.
= max

θ
||Hϕ(θ)||2 + max

θ
||Jϕ(Θ)||2.

We can apply the bounds in i) to deduce that

||∂α,wF || . ||ΓΘ∗ ||+A1 (||S − S∗||F + ||Θ−Θ∗||F ) = O(1) (14)

ii) Bounds for ∂(C,Θ)F when F (C,Θ,W, α) = 0. We first bound
||Y ||:

||Y || . max
s
{ 1

||Cs||2
} ·max

s
{αλ2, ||Jϕ(θs)

>Z||, ||Hϕ(θs)
>ZSs||}

Let U
def.
=

(
(λ1 + λ2Cs/||Cs||2)

0kd

)
. Then, since F (C,Θ,W, α) = 0,

Γ>ΘZ + αU = 0.
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By applying ΓΘ(Γ>ΘΓΘ)−1 to both sides, we obtain

0 = Z − P⊥R(ΓΘ)Z + α(Γ>Θ)†U

= Z + P⊥R(ΓΘ)ΓΘ∗

(
C∗

0kd

)
+ P⊥R(ΓΘ)W + α(Γ>Θ)†U

Therefore,

||Z|| 6 ||P⊥R(ΓΘ)DΘ∗

(
C∗

0kd

)
||+ ||W ||+ α||(Γ>Θ)†U ||

Note that

P⊥R(ΓΘ)DΘ∗C
∗ = P⊥R(ΓΘ)

∑
s

ϕ (θ∗s) (C∗s )>

= P⊥R(ΓΘ)

∑
s

(
ϕ (θs) (C∗s )> + (θs − θ∗s)Jϕ (θs) (C∗s )>

)
+O(cmax||Θ−Θ∗||2F )

= P⊥R(ΓΘ)

∑
s

(
ϕ (θs) (C∗s )> + (θs − θ∗s)Jϕ (θs)C

>
s

)
+O(||C∗ − C||F ||Θ−Θ∗||F ) +O(||Θ−Θ∗||2F cmax)

= O(||Θ−Θ∗||2F cmax + ||C∗ − C||F ||Θ−Θ∗||F )

Moreover, (Γ>Θ)†U = Q∗ +O(||Θ−Θ∗||F ) +O(||S − S∗||F ) where

Q∗
def.
= (Γ>Θ∗)

†
(
λ1 + λ2C

∗
s/||C∗s ||2

0kd

)
.

Therefore,

||Z|| = O
(
||Θ−Θ∗||2F cmax + ||C∗ − C||F ||Θ−Θ∗||F + α+ ||W ||

)
.

So,

||Y || = O
(
c−1

min ·
(
cmax||Θ−Θ∗||2F + ||C∗ − C||F ||Θ−Θ∗||F + α+ λ2α+ ||W ||

))
To show that ∂(C,Θ)F is invertible, note that given square ma-
trices A,E where A is invertible, (A+E) is also invertible with
||(A+E)−1|| 6 2||A−1|| provided that ||E|| 6 1

2||A−1|| . We therefore

require that

α+||W ||+||C−C∗||F = O(cmin) and ||Θ−Θ∗||F = O(cmin/cmax)
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We can therefore apply Proposition 4 with u0 = (C∗,Θ∗), v0 =
(0,0k×d), ra = cmin, rθ = cmin/cmax, R = O(cmin

2/cmax).

U0 = B(C∗, ra)× B(Θ∗, rθ)

We can therefore define

G : B(v0, R0)→ RN+kd, where R0 = O(c2
min/cmax·||(Γ>Θ∗ΓΘ∗)

−1||−1)

so that G(α,W ) = (C,Θ) if and only if F (C,Θ, α,W ) = 0, and

||C − C∗||F = O(α) and ||Θ−Θ∗||F = O(α/cmin)

Verifying the candidate solution. Finally, it remains to check
thatG(α,W ) = (C,Θ) does indeed correspond to a solution: it suffices
to check that

Q
def.
=
−1

α
Z =

−1

α
(DΘC̄ −DΘ∗C

∗ −W )

satisfies the primal dual relationships (see Proposition 1). In particu-
lar, we need to check that Φ∗Q satisfies

sup
θ∈T
|| 1

λ2
(Φ∗Q(θ)− λ1)+||2 6 1.

Note that F (C,Θ, α,W ) = 0 can be rewritten as

Γ>ΘZ = −

(
α(λ1 + λ2

Cs
||Cs||)s∈[k]

0kd

)
.

By applying ΓΘ(Γ>ΘΓΘ)−1 to this equation and recalling that

PR(ΓΘ)
def.
= ΓΘ(Γ>ΘΓΘ)−1Γ>Θ

is the orthogonal projection onto the range of ΓΘ, we obtain

− 1

α
Z = (Γ>Θ)†u0 −

1

α
P⊥R(ΓΘ)(DΘ∗C

∗ +W )

It therefore follows that Q = QV − 1
αP
⊥
R(ΓΘ)(DΘ∗C

∗ + W ). We need

to show that g(θ)
def.
= || 1

λ2
[(Φ∗Q)(θ)− λ1]+||22 satisfies

i) g(θ) < 1 for all θ 6∈ Θ

ii) ∇2g(θs) ≺ 0 for all s ∈ [k].
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iii) g(θs) = 1 for all s ∈ [k].

Note that since |(Φ∗Q)(θ)− (Φ∗QV )(θ)| 6 maxθ ||ϕ(θ)||2||Q−QV ||F =
||Q−QV ||F and

|∇2(Φ∗Q)(θ)−∇2(Φ∗QV )(θ)| 6 max
θ
||Hϕ(θ)||||Q−QV ||F ,

provided that ||Q − QV ||F is sufficiently small, we have ηi(θ) > λ1

whenever (Φ∗QV )i(θ) > λ1 and g satisfies i) , ii), iii) since ηV is
nondegenerate.

It is enough to show that ||QV −Q||F 6 ρ for a sufficiently small con-
stant ρ (which depends only on ηV , and in particular, mini∈Is [Φ

∗QV (θ∗s)]i−
λ1, ||∇2ηV (θ∗s)|| and 1− ηV (θ) for θ 6∈ ∪sB(θ∗s , r) where r is such that
minθ∈B(θs,r) ||∇2ηV (θ)|| > 1

2 ||∇ηV (θs)|| ). Note that

P⊥R(ΓΘ)DΘ∗C
∗ = P⊥R(ΓΘ)

∑
s

ϕ (θ∗s) (C∗s )>

= P⊥R(ΓΘ)

∑
s

(
ϕ (θs) (C∗s )> + (θs − (θ0)s)Jϕ (θs) (C∗s )>

)
+O(cmax||Θ−Θ∗||2F )

= P⊥R(ΓΘ)

∑
s

(
ϕ (θs) (C∗s )> + (θs − (θ0)s)Jϕ (θs)C

>
s

)
+O(||C∗ − C||F ||Θ−Θ∗||F ) +O(cmax||Θ−Θ∗||2F )

= O(cmax||Θ−Θ∗||2F + ||C∗ − C||F ||Θ−Θ∗||F ).

So,

α−1P⊥R(ΓΘ)DΘ∗C
∗ = O(α−1||Θ−Θ∗||2F cmax + α−1||C∗ − C||F ||Θ−Θ∗||F )

= O(||Θ−Θ∗||F cmax/cmin + ||Θ−Θ∗||F ) = O(1).

So, Q = QV + O(||W ||F /α) + O(1), and so, C,Θ define a solution
provided that ||W ||F /α = O(1).

4 Conclusion

In this work, we considered the nonlinear least squares problem
where the mixture weights are vectors. We introduce the sparse-group
Beurling-Lasso, which is an off-the-grid convex optimization problem,
and our regularisation promotes the recovery of both sparse measures
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and sparsity within each mixture weight. Our theoretical analysis es-
tablish support stability under the existence of a nondegenerate pre-
certificate.
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