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Compressed Sensing
Lecture 11

Background reading

These notes are based on Chapters 2,4,6,9 of Foucart, Simon, and Holger Rauhut. A mathematical intro-
duction to compressive sensing. Vol. 1. No. 3. Boston: Birkhäuser, 2013.

1 Introduction

Consider the following inverse problem:

Given A ∈ Cm×N and y ∈ Cm with N � m, find x ∈ CN such that Ax = y.

In general, this is impossible. However, signals we are typically interested in are not arbitrary, but often
‘sparse’ or approximately sparse with respect to some representation system (e.g. a wavelet basis).

We begin with a couple of definitions. Note that the second definition is simply the finite dimensional
analogue of the nonlinear approximation error discussed in the previous section.
Definition 1. For x ∈ CN , let Supp(x) = {j : xj 6= 0}. A vector x ∈ CN is s-sparse if at most s of its
entries are nonzero:

||x||0 := card(Supp(x)) 6 s.

Let Σs denote the set of all s-sparse vectors.
Definition 2. For p > 0, the `p-error of the best s-term approximation to x ∈ CN is

σs(x)p := inf {||x− z||p ; z ∈ Σs} .

2 Minimal number of measurements

What conditions should we impose on a measurement matrix A ∈ Cm×N so that we can recover every
s sparse vector from Ax?

Throughout, given a matrix A ∈ Cm×N and an index set S ⊂ [N ], let AS denote the matrix A with its
columns restricted to those indexed by S. Similarly, given a vector v ∈ CN , let vS denote the restriction of
the vector v to its coefficients indexed by S.
Theorem 1. Given A ∈ Cm×N , the following are equivalent:

(i) If Ax = Az and x, z ∈ Σs, then x = z.

(ii) The null space N (A) does not contain any 2s sparse vector other than 0, that is N (A) ∩ Σ2s = {0}.

(iii) For all S ⊂ [N ] with Card(S) 6 2s, AS is injective from CS to CN .

(iv) Every set of 2s columns of A is linearly independent.

1



Proof. It is clear that (iii) and (iv) are equivalent.

To see that (ii) is equivalent to (iii), note that (ii) is true if and only if for all v ∈ Σ2s, Av = ASvS = 0
implies that v = 0. This is true if and only if AS is injective for every subset S ⊂ [N ] of cardinality 2s.

To see that (ii) implies (i), let x, z ∈ Σs be such that Ax = Az. Then, A(x− z) = 0 and since x− z ∈ Σ2s,
we must have x = z if we assume (ii).

Finally, to see that (i) implies (ii), let v ∈ N (A) be such that v ∈ Σ2s. Then, we can write v = z + x for
some z, x ∈ Σs with Supp(x) ∩ Supp(z) = ∅. By (i), since Ax = −Az, we have that x = −z and since they
have disjoint support, it follows that x = −z = 0.

Remark 1. From the previous theorem, we see that if we have a measurement matrix A ∈ Cm×N for which
it is possible to reconstruct every s-sparse vector x from measurements Ax, then (iv) holds, so rank(A) > 2s.
However, since rank(A) 6 m, we must have that m > 2s.

If any one of the conditions in the previous lemma hold, then x ∈ Σs is the unique solution to

min
z∈CN

||z||0 subject to Az = Ax. (1)

Theorem 2. For any integer N > 2s, there exists a measurement matrix A ∈ Cm×N with m = 2s such that
every s-sparse vector x ∈ CN can be recovered from y = Ax ∈ Cm as a solution of (1).

Proof. Let us fix the following real numbers,

tN > · · · > t2 > t1 > 0.

Consider the following matrix A ∈ Cm×N with m = 2s:

A =


1 1 · · · 1
t1 t2 · · · tN
...

...
t2s−1
1 t2s−1

2 · · · t2s−1
N

 .

Given any index set S ⊂ [N ] of cardinality 2s with S = {j1 < j2 < · · · < j2s},

AS =


1 1 · · · 1
tj1 tj2 · · · tj2s
...

...
t2s−1
j1

t2s−1
j2

· · · t2s−1
j2s

 ∈ C2s×2s

is a Vandermonde matrix with det(AS) =
∏
k<l(tjl − tjk) > 0. Therefore, AS is invertible and by Theorem

1, the conclusion follows.

Bad news: In general, solving (1) is not feasible: since the minimizer has sparsity s, a naive approach
would be to solve APSu = y for all subsets S ⊂ {1, . . . , N} of size s, this is

(
N
s

)
linear systems. If N = 1000

and s = 10 and each linear system took 10−10 seconds, this approach would take over 300 years. In fact, for
general A and y, one can prove that (1) is NP-hard.

Convex relaxation Since ||z||pp → ||z||0 as p→ 0, it is natural to consider the approximation of (1) by

min
z∈CN

||z||p subject to Az = y. (2)

For p ∈ (0, 1), this is again NP -hard in general, for p > 1, even 1-sparse vectors cannot be recovered as
solutions of (2). However, we will see that sparse recovery can be guaranteed when p = 1.
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3 Basis Pursuit

In this section, we study the solutions to the following minimization problem (basis pursuit):

min
z∈CN

||z||1 subject to Az = y. (3)

What are the necessary and sufficient conditions on A ∈ Cm×N for which every s sparse vector x ∈ CN
can be recovered from y = Ax as the unique solution to (3)? When can we guarantee reconstructions
which are stable to sparsity defect or inexact measurements?

Definition 3. A matrix A ∈ Cm×N is said to satisfy the null space property (NSP) relative to S ⊂ [N ] if

||vS ||1 < ||vSc ||1, ∀v ∈ N (A) \ {0}.

It is said to satisfy the NSP of order s if this is true for all S ⊂ [N ] with Card(S) 6 s.
Theorem 3. Given A ∈ Cm×N , every x ∈ CN supported on S ⊂ [N ] is the unique solution to (3) with
y = Ax if and only if A satisfies the NSP relative to S.

Proof. For fixed S ⊂ [N ], assume that every vector x ∈ CN supported on S is the unique solution to (3).
Then, given any v ∈ N (A) \ {0}, vS is the unique solution to (3) with y = AvS . But, AvS = −AvSc and
vS 6= −vSc . This implies that ||vS ||1 < ||vSc ||1.

Conversely, suppose that A satisfies the NSP relative to S. Then, given x with Supp(x) ⊂ S and z ∈ CN
such that Ax = Az and z 6= x, we have that v := x− z ∈ N (A) \ {0}. So,

||x||1 = ||x− zS ||1 + ||zS ||1 = ||vS ||1 + ||zS ||1 < ||vSc ||1 + ||zS ||1 = ||zSc ||1 + ||zS ||1 = ||z||1.

Therefore, x is the unique minimizer to (3).

By applying the above theorem to all subsets of cardinality s, we have the following result.
Corollary 1. Given A ⊂ Cm×N , every s-sparse vector x ∈ CN is the unique solution to (3) with y = Ax if
and only if A satisfies the NSP of order s.

3.1 Stability to sparsity defect and inexact measurements

Suppose we want to recover x from a measurement vector y ∈ Cm such that

||Ax− y||2 6 η.

Then, we will solve instead
min
z∈CN

||z||1 subject to ||Az − y||2 6 η. (4)

In the case where x is not perfectly sparse and we are given inexact measurements, it is desirable to recover
x in a stable manner, such that the reconstruction error can be controlled by the amount of sparsity defect
σs(x)1, and the noise level η.
Definition 4. A ∈ Cm×N is said to satisfy the robust NSP relative to S ⊂ [N ], with ρ ∈ (0, 1) and τ > 0 if

||vS ||1 6 ρ||vSc ||1 + τ ||Av||2, ∀v ∈ CN .

It is said to satisfy the robust NSP of order s with ρ ∈ (0, 1) and τ > 0 if the above inequality holds for all
subsets S of cardinality at most s.
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Theorem 4. Suppose that A ∈ Cm×N satisfies the robust NSP of order s with ρ ∈ (0, 1) and τ > 0.Then,
for all x ∈ CN , given y = Ax+ e and ||e|| 6 η, any solution x̂ to (4) satisfies

||x− x̂||1 6
2(1 + ρ)

(1− ρ)
σs(x)1 +

4τ

1− ρ
η.

To prove this theorem, we will prove the following (stronger) result.
Theorem 5. A ∈ Cm×N satisfies the robust NSP with ρ ∈ (0, 1) and τ > 0 relative to S if and only if

||z − x||1 6
1 + ρ

1− ρ
(||z||1 − ||x||1 + 2||xSc ||1) +

2τ

1− ρ
||A(x− z)||2. (5)

Proof. Assume that A satisfies (5) for all x, z ∈ CN . Let v ∈ CN . Then, by writing x = −vS and z = vSc ,

||v||1 6
1 + ρ

1− ρ
(||vSc ||1 − ||vS ||1) +

2τ

1− ρ
||Av||2.

By rearranging the above equation, we have that

||vS ||1 6 ρ||vSc ||1 + τ ||Av||2.

Conversely, assume that A satisfies the robust NSP relative to S. Then, for x, z ∈ CN , let v := z − x. By
the robust NSP,

||vS ||1 6 ρ||vSc ||1 + τ ||Av||, (6)

and by Lemma 1,
||vSc ||1 6 ||z||1 − ||x||1 + ||vS ||1 + 2||xSc ||1. (7)

By plugging (6) into (7), we have that

||vSc ||1 6 ρ||vSc ||1 + τ ||Av||+ ||z||1 − ||x||1 + 2||xSc ||1

and rearranging yields

||vSc ||1 6
1

1− ρ
(τ ||Av||+ ||z||1 − ||x||1 + 2||xSc ||1) . (8)

So, by applying the robust NSP, we have that

||v||1 = ||vSc ||1 + ||vS ||1 6 (1 + ρ)||vSc ||1 + τ ||Av||2,

and a further application of (8) yields the desired result.

Lemma 1. Given S ⊂ [N ], and x, z ∈ CN ,

||(x− z)Sc ||1 6 ||z||1 − ||x||1 + ||(x− z)S ||1 + 2||xSc ||1.

Proof. Observe that

||x||1 = ||xSc ||1 + ||xS ||1 6 ||xSc ||1 + ||(x− z)S ||1 + ||zS ||1

and
||(x− z)Sc ||1 6 ||xSc ||1 + ||zSc ||1.

By summing the two inequalities,

||x||1 + ||(x− z)Sc ||1 6 2||xSc ||1 + ||z||1 + ||(x− z)S ||1.

Lecture 12
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Deriving `2 error bounds
Definition 5. For q > 1, A ∈ Cm×N is said to satisfy the `q-robust NSP of order s with ρ ∈ (0, 1) and
τ > 0 if for all S ⊂ [N ] with Card(S) 6 s,

||vS ||q 6
ρ

s1−1/q
||vSc ||1 + τ ||Av||2, ∀v ∈ CN .

Remark 2. For 1 6 p 6 q, observe that by Hölder’s inequality,

∑
j∈S
|vj |p 6

∑
j∈S
|vj |q

p/q

s(q−p)/q = ||vS ||pqs1−p/q.

Therefore, ||vS ||p 6 s1/p−1/q||vS ||q. So, if the `q-robust NSP holds, then

||vS ||p 6
ρ

s1−1/p
||vSc ||1 + s1/p−1/qτ ||Av||2, ∀v ∈ CN .

Theorem 6. Suppose that A ∈ Cm×N satisfies the `2 robust NSP of order s with ρ ∈ (0, 1) and τ > 0.
Then, for all x ∈ CN , any solution x̂ of (4) with y = Ax+ e and ||e||2 6 η approximates x with `p error:

||x− x̂||p 6
C

s1−1/p
σs(x)1 +Ds1/p−1/2η, p ∈ [1, 2].

Here, C and D are constants which depend only on ρ and τ .

This theorem follows from the stronger result Theorem 7, with q = 2 and z = x̂. However, before proving
that theorem, we first derive a lemma. In saying that a vector is ‘compressible’, we generally mean that
its s-term approximation error decays quickly in s. The following lemma essentially shows that elements
belonging to the nonconvex unit `p balls with p < 1 serve as good models for compressible vectors. Moreover,
this result hints that the error bound obtained in Theorem 6 is natural: if p ∈ [1, 2] and ||x||q 6 1 for q < 1,
then σs(x)p 6 s1/p−1/q. Now, assuming that η = 0 (no measurements error), the result of Theorem 6 says
that

||x− x̂||p 6 Cs1/p−1/q.

So, the error has the same decay in s as the s-term approximiation error in `p.
Lemma 2. For any p > q > 0, and any x ∈ CN , the inequality

σs(x)p 6
1

s1/q−1/p
||x||q.

Proof. Let x∗ be a rearrangement of (|xj |)Nj=1 in nonincreasing order. Then,

σs(x)pp =

N∑
j=s+1

(x∗j )
p 6 (x∗s)

p−q
N∑

j=s+1

(x∗j )
q 6

s−1
s∑
j=1

(x∗s)
q


p−q
q

||x||qq 6 s−
p−q
q ||x||p−qq ||x||qq.

Therefore, σ(x)p 6 s−1/q+1/p||x||q.

Theorem 7. Given 1 6 p 6 q, suppose that A ∈ Cm×N satisfies the `q robust NSP of order s with ρ ∈ (0, 1)
and τ > 0. Then, for all x, z ∈ CN ,

||x− z||p 6
C

s1−1/p
(||z||1 − ||x||1 + 2σs(x)1) +Ds1/p−1/q||A(x− z)||2,

where

C =
(1 + ρ)2

1− ρ
and D =

(3 + ρ)τ

1− ρ
.
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Proof. The `q robust NSP (along with Hölder’s inequality) implies that for all v ∈ CN and all S ⊂ [N ] with
Card(S) 6 s,

||vS ||1 6 s1−1/q||vS ||q 6 ρ||vSc ||1 + s1−1/qτ ||Av||2, (9)

and
||vS ||p 6 s1/p−1/q||vS ||q 6

ρ

s1−1/p
||vSc ||1 + s1/p−1/qτ ||Av||2. (10)

So, from (9), we may apply Theorem 5 to obtain

||z − x||1 6
1 + ρ

1− ρ
(||z||1 − ||x||1 + 2σs(x)1) +

2τs1−1/q

1− ρ
||A(x− z)||2. (11)

Now, by choosing S to be the largest s entries of z − x, by Lemma 2,

||z − x||p

∆-inequality︷︸︸︷
6 ||(x− z)Sc ||p + ||(x− z)S ||p 6

1

s1−1/p
||x− z||1 + ||(x− z)S ||p.

Therefore, by combining this inequality with (10), we have that

||z − x||p 6
1

s1−1/p
||x− z||1 +

ρ

s1−1/p
||vSc ||1 + s1/p−1/qτ ||Av||2 6

1 + ρ

s1−1/p
||x− z||1 + s1/p−1/qτ ||Av||2.

Substituting in (11) yields the desired result.

4 Restricted isometry property

In this section, we introduce the notion of the restricted isometry property (RIP) and show that it is a
sufficient condition for stable and robust recovery. It is often easier to work with the RIP than the null space
property.

4.1 Definition and basic properties

Definition 6. The sth restricted isometry constant δs = δs(A) of a matrix A ∈ Cm×N is the smallest δ > 0
such that

(1− δ)||x||22 6 ||Ax||22 6 (1 + δ)||x||22, ∀x ∈ Σs

Equivalently,
δs = max

S⊂[N ],CardS6s
||A∗SAS − IS ||2→2.

Note that δ1 6 δ2 6 · · · 6 δN .
Proposition 1. Let u, v ∈ CN and suppose that ||u||0 6 s and ||v||0 6 t. If Supp(u) ∩ Supp(v) = ∅, then

|〈Au, Av〉| 6 δs+t||u||2||v||2.

Proof. Let S := Supp(u) ∪ Supp(v). Let uS , vS ∈ CS be the restriction of u and v to S. Note that since u
and v have disjoint support, 〈uS , vS〉 = 〈u, v〉 = 0. Hence,

|〈Au, Av〉| = |〈ASuS , ASvS〉 − 〈uS , vS〉| = |〈(A∗SAS − I)uS , vS〉| 6 ||A∗SAS − I||2→2||uS ||2||vS ||2.

The result follows since ||A∗SAS − I||2→2 6 δs+t.
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In the following, we show that the RIP is necessary for stability to noisy measurements.
Definition 7. Let A ∈ Cm×N and let ∆ : Rm → RN denote a recovery algorithm. We say that (A,∆) is
C-stable of order s if for all x ∈ Σs and any e ∈ Cm,

||∆(Ax+ e)− x||2 6 C||e||2.

Theorem 8. If (A,∆) is C-stable of order s, then 1
C ||x||2 6 ||Ax||2 for all x ∈ Σ2s.

Proof. Let x, z ∈ Σs and define

ex =
A(z − x)

2
and ez =

A(x− z)
2

.

Observe that

Ax+ ex =
A(x+ z)

2
= Az + ez.

Let x̂ = ∆(Ax+ ex) = ∆(Az + ez). Then,

||x− z||2 = ||x− x̂+ x̂− z||2 6 ||x− x̂||2 + ||x̂− z||2

6 C||ex||2 + C||ez||2 = C

(
||A(z − x)||2

2
+
||A(x− z)||2

2

)
= C||A(x− z)||2.

Since this is true for all x, z ∈ Σs, the conclusion follows.

Minimal number of measurements
Theorem 9. Let A ∈ Rm×N such that it has RIP constant δ2s ∈ (0, 1/2]. Then,

m > Cs log

(
N

s

)
, C =

1

2 log(
√

24 + 1)
.

To prove this theorem, we first require a preliminary lemma. 1

Lemma 3. Let s and N satisfy s 6 N/2. Then, there exists a set X ⊂ Σs such that

(i) for any x ∈ X, we have ||x||2 6
√
s.

(ii) for any x, z ∈ X with x 6= z, we have ||x− z||2 >
√
s/2.

(iii) log |X| > s
2 log(Ns ).

This lemma gives a lower bound, in dimension N , on the number of balls of radius
√
s/2, centred at s-sparse

vectors that we can pack into the ball of radius
√
s. Since the RIP means that A roughly preserves the

distance between s-sparse vectors, we can make a similar statement about balls of dimension m. This allows
us to obtain a lower bound on m.

Proof of Theorem 9. Let X be as in Lemma 3. Given any x, z ∈ X, we have that x, z, x−z ∈ Σ2s. Therefore,
by applying (ii) of Lemma 3 and using the fact that δ2s ∈ (0, 1/2],

||Ax−Az||2 >
√

1− δ2s||x− z||2 >
√

1− δ2s
√
s

2
>

√
s

4
.

Since ||x||2 6
√
s and δ2s ∈ (0, 1/2],

||Ax||2 6
√

1 + δ2s||x||2 6

√
3s

2
. (12)

1We will use this lemma without proof, the interested reader can refer to Lemma A.1 in Compressed sensing: theory and
applications. Cambridge University Press, Y. Eldar and G. Kutyniok, eds. (2012).
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Let Bx and Bz be balls of radius

√
s/4

2 , centred at Ax and Az respectively, then they are disjoint.

By (12), Bx ∪Bz ⊂ Br where r 6
√

3s/2 +
√
s/16. Now,

Vol

[
B

(√
3s

2
+

√
s

16

)]
> |X|Vol

[
B

(√
s

16

)]

⇐⇒

(√
3s

2
+

√
s

16

)m
> |X|

(√
s

16

)m
⇐⇒ (

√
24 + 1)m > |X|

⇐⇒ m >
log |X|

log(
√

24 + 1)
.

Finally, the conclusion follows by applying (iii) of Lemma 3.

Lecture 13

4.2 Analysis of basis pursuit with the RIP

Theorem 10 (RIP implies sparse recovery). Suppose that the 2s restricted isometry constant of A ∈ Cm×N
satisfies δ2s < 1/3. Then, every s-sparse vector x ∈ CN is the unique solution of

min
z∈CN

||z||1 subject to Ax = Az.

To prove this theorem, we first require a technical lemma.
Lemma 4. Given q, p > 0, if u ∈ Cs and v ∈ Ct are such that

max
i∈[s]
|ui| 6 min

j∈[t]
|vj | ,

then ||u||q 6 s1/q

t1/p
||v||p. In the case p = 1, q = 2 and t = s, we have ||u||2 6 s−1/2||v||1.

Proof. The result follows by combining the following two inequalities:

• s−1/q||u||q =
(
s−1

∑s
i=1 |ui|

q)1/q 6 maxi∈[s] |ui| .

• t−1/p||v||p =
(
t−1

∑t
i=1 |vi|

p
)1/p

> mini∈[t] |vi| .

Proof of Theorem 10. By Corollary 1, it is enough to show A satisfies the NSP of order s

||vS ||1 <
1

2
||v||1, ∀v ∈ N (A) \ {0}, S ⊂ [N ], Card(S) = s.

Since ||vS ||1 6
√
s||vS ||2 by the Cauchy-Schwarz inequality, it is enough to show that

||vS ||2 6
ρ

2
√
s
||v||1, ∀v ∈ N (A) \ {0}, S ⊂ [N ], Card(S) = s,

where ρ := 2δ2s(1− δ2s)−1 < 1.
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For v ∈ N (A), it is enough to consider the case where S = S0 is the index set corresponding to the largest
s entries of v. Partition Sc0 = S1 ∪ S2 ∪ · · · into sets of cardinality at most s by

S1 = index set of largest s entries in Sc0,

S2 = index set of largest s entries in Sc0 \ S1,

and so on. Then, for v ∈ N (A), AvS0
= A(−vS1

− vS2
− · · · ). By the RIP,

||vS0
||22 6

1

1− δ2s
||AvS0

||22 =
1

1− δ2s
〈AvS0

, A(−vS1
− vS2

− · · · )〉

=
1

1− δ2s

∑
k>1

〈AvS0 , A(−vSk
)〉

by Proposition 1 6
δ2s

1− δ2s

∑
k>1

||vS0 ||2||vSk
||2.

Therefore,

||vS0
||2 6

δ2s
1− δ2s

∑
k>1

||vSk
||2 =

ρ

2

∑
k>1

||vSk
||2.

By Lemma 4,

||vSk
||2 6

1√
s
||vSk−1

||1.

So,

||vS0
||2 6

ρ

2
√
s

∑
k>1

||vSk
||1 6

ρ

2
√
s
||v||1.

Theorem 11 (RIP implies stability and robustness). Suppose that the 2s restricted isometry constant of
A ∈ Cm×N satisfies

δ2s <
4√
41
≈ 0.6246, (13)

then for all x ∈ CN and y ∈ Cm with ||Ax− y||2 6 η, any solution x̂ to (4) satisfies

||x− x̂||1 6 Cσs(x)1 +D
√
sη

||x− x̂||2 6
C√
s
σs(x)1 +Dη,

where C,D > 0 are constants which depend only on δ2s.

By Theorem 6, Theorem 11 is a direct consequence of the following result.
Theorem 12. If the 2s restricted isometry constant A ∈ Cm×N satisfies (13), then the matrix A satisfies
the `2 robust NSP of order s with constants ρ ∈ (0, 1) and τ > 0 which depend only on δ2s.

We first prove a technical lemma, which can be viewed as a counter part to the Cauchy-Schwarz inequality
||a||1 6

√
s||a||2.

Lemma 5 (Square root lifting). For a1 > a2 > · · · > as > 0,√√√√ s∑
j=1

a2
j 6

∑s
j=1 aj√
s

+

√
s

4
(a1 − as).
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Proof. Proving this lemma is equivalent to showing that given any a ∈ Rs,

a1 > a2 > · · · > as > 0 and

√
s

4
a1 +

∑s
j=1 aj√
s

6 1

implies that ||a||2 +
√
s

4 as 6 1. Let f(a) = ||a||2 +
√
s

4 as and let

C =

{
a ∈ Rs ; a1 > a2 > · · · > as > 0 and

√
s

4
a1 +

∑s
j=1 aj√
s

6 1

}
.

Then, we simply need to show that supa∈C f(a) 6 1. Observe that C is a convex set and f is a convex
function. So, the supremum is achieved on one of the vertices of C. Moreover, the vertices are exactly the
intersection points of the hyperplanes obtained by setting s of the s+ 1 inequality constraints to equalities.
We are thus left to consider the following three cases:

• a1 = · · · = as = 0. Then, f(a) = 0.

• a1 = · · · = ak > ak+1 = · · · = as = 0 with k < s and
√
s

4 a1+
∑s

j=1 aj√
s

= 1. In this case, a1 =
√
s/(k+s/4)

and f(a) =
√
sk/(k + s/4) 6 1.

• a1 = · · · = as > 0 and
√
s

4 a1 +
∑

j aj√
s

= 1. In this case, a1 = 4/(5
√
s) and f(a) = 4

5 + 1
5 = 1.

Proof of Theorem 12. We need to find ρ ∈ (0, 1) and τ > 0 such that for all v ∈ CN , S ⊂ [N ] with
Card(S) = s,

||vS ||2 6
ρ√
s
||vSc ||1 + τ ||Av||2.

Given v ∈ CN , it is enough to consider the index set S := S0 of the s largest absolute entries of v. As before,
partition Sc0 = S1 ∪ S2 ∪ · · · , so that

S1 = index set of largest s entries in Sc0,

S2 = index set of largest s entries in Sc0 \ S1,

and so on. Since vS0
is s-sparse, we can write

||AvS0 ||22 = (1 + t)||vS0
||22

for some t such that |t| 6 δs. We aim to show that

|〈AvS0 , AvSk
〉| 6

√
δ2
2s − t2||vS0 ||2||vSk

||2. (14)

Let

u :=
vS0

||vS0
||2

and w :=
eiθvSk

||vSk
||2

where θ is such that |〈Au, Aw〉| = <〈Au, Aw〉. Then, for α, β > 0,

2 |〈Au, Aw〉| = 1

α+ β

[
||A(αu+ w)||22 − ||A(βu− w)||22 − (α2 − β2)||Au||22

]
6

1

α+ β

[
(1 + δ2s)||αu+ w||22 − (1− δ2s)||βu− w||22 − (α2 − β2)(1 + t)||u||22

]
since 〈u, w〉 = 0 =

1

α+ β

[
(1 + δ2s)(α

2 + 1)− (1− δ2s)(β2 + 1)− (α2 − β2)(1 + t)
]

=
1

α+ β

[
(δ2s − t)α2 + (t+ δ2s)β

2 + 2δ2s.
]

10



By substituting in the values

α =
δ2s + t√
δ2
2s − t2

and β =
δ2s − t√
δ2
2s − t2

,

we have that

2 |〈Au, Aw〉| 6
√
δ2
2s − t2
2δ2s

[δ2s + t+ (δ2s − t) + 2δ2s.] = 2
√
δ2
2s − t2,

and thereby proving (14).

Therefore,

||AvS0 ||22 =

〈
AvS0 , A

v −∑
k>1

vSk

〉

= 〈AvS0 , Av〉 −
∑
k>1

〈AvS0 , AvSk
〉

6 ||AvS0
||2||Av||2 +

∑
k>1

√
δ2
2s − t2||vS0

||2||vSk
||2

= ||vS0
||2

√1 + t||Av||2 +
∑
k>1

√
δ2
2s − t2||vSk

||2

 .

For k > 1, let v−k and v+
k denote respectively the smallest and largest absolute entries of v on Sk. By Lemma

5, ∑
k>1

||vSk
||2 6

∑
k>1

||vSk
||1√
s

+

√
s

4
(v+
k − v

−
k ) 6

∑
k>1

||vSk
||1√
s

+

√
s

4
v+

1

6
1√
s
||vSc

0
||1 +

1

4
||vS0
||2.

Therefore,

(1 + t)||vS0 ||22 = ||AvS0 ||22 6 ||vS0 ||2

(
√

1 + t||Av||2 +

√
δ2
2s − t2√
s

||vSc
0
||1 +

√
δ2
2s − t2
4

||vS0 ||2

)

=⇒ ||vS0
||2 6

(
1√

1 + t
||Av||2 +

√
δ2
2s − t2

(1 + t)
√
s
||vSc

0
||1 +

√
δ2
2s − t2

4(1 + t)
||vS0
||2

)
.

Since √
δ2
2s − t2

1 + t
6

δ2s√
1− δ2

2s

and
1√

1 + t
6

1√
1− δ2s

,

we have the robust NSP as required:

||vS0
||2 6

(
1− δ2

2s

4
√

1− δ2s

)−1
(

1√
1− δ2s

||Av||2 +
δ2s√

s(1− δ2s)
||vSc

0
||1

)

=

√
1 + δ2s√

1− δ2
2s − δ2s/4

||Av||2 +
δ2s√

1− δ2
2s − δ2s/4

||vSc
0
||1√
s
.

Therefore, the `2-robust null space property hold if

δ2s√
1− δ2

2s − δ2s/4
< 1 ⇐⇒ δ2 <

16

41
.
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Lecture 14

5 Sparse recovery with random matrices

In this section, we will show that random matrices satisfy the RIP.

5.1 Basics from probability theory

We recall some notions from probability theory: Let (Ω,Σ,P) be a probability space, where Σ is a σ-algebra
on Ω (that is, a collection of subsets of Ω that includes ∅, is closed under complement, and is closed under
countable unions and intersections), and P is a probability measure on (Ω,Σ).

• for all B ∈ Σ,

P(B) =

∫
B

dP(ω) =

∫
Ω

1BdP(ω) ∈ [0, 1],

• We have the union bound : for all sequences (Bl)l ⊂ Σ,

P(

N⋃
l=1

Bl) 6
N∑
l=1

P(Bl).

• A random variable (r.v.) is a real valued measurable function on (Ω,Σ), where we say that X is
measurable if

X−1(A) = {ω ∈ Ω ; X(ω) ∈ A} ∈ Σ

for all Borel measurable subsets A ⊂ R.

• The distribution function F = FX of a random variable X is

F (t) = P(X 6 t), t ∈ R.

• A random variable X has probability density function ϕX : R→ R+ if

P(X ∈ [a, b]) =

∫ b

a

ϕX(t)dt, ∀a < b ∈ R.

• The expectation of a random variable X is E[X] =
∫

Ω
X(ω)dP(ω).

• Given g : R→ R, E[g(X)] =
∫∞
−∞ g(t)ϕX(t)dt.

Definition 8 (Common random variables). • A Rademacher variable (sometimes also called symmetric
Bernoulli variable) is a random variable that takes the values +1 and −1 with equal probability.

• A normally distributed random variable (a.k.a. Gaussian random variable) with mean E[X] = µ and
variance E[(X − µ)2] = σ2, has probability density function

ψ(t) =
1√

2πσ2
exp

(
− (t− µ)2

2σ2

)
.

A Gaussian random variable with mean 0 and variance 1 is called a standard Gaussian random variable.

12



• A random variable is called subgaussian if there exists β, κ > 0 such that

P(|X| > t) 6 β exp(−κt2), ∀t > 0.

It is called subexponential if there exists constants β, κ > 0 such that

P(|X| > t) 6 β exp(−κt), ∀t > 0.

Remark 3. One can show that if X is a standard Gaussian random variable, then

P(|X| > u) 6 exp

(
−u

2

2

)
and E(exp(θX)) = exp

(
θ2

2

)
.

So, X is subgaussian with κ = 1/2 and β = 1. Note also that Rademacher random variables and in fact,
any bounded random variables are also subgaussian.

Some useful results on subgaussian random variables
Proposition 2 (Equivalent characterization). Let X be a random variable.

(a) If X is subgaussian with β, κ > 0 and EX = 0, then there exists a constant c (dependent only on β
and κ) such that

E[exp(θX)] 6 exp(cθ2), ∀θ ∈ R. (15)

(b) Conversely, if (15) holds, then EX = 0 and X is subgaussian with β = 2 and κ = 1/(4c).
Theorem 13 (Sum of subgaussian r.v.’s). Let {Xj}Mj=1 be a sequence of independent mean zero subgaussian

random variables, with parameter c in (15). For a ∈ RM , the random variable Z =
∑M
l=1 alXl is subgaussian.

In particular,
E[exp(θZ)] 6 exp

(
c||a||22θ2

)
, ∀θ ∈ R.

and

P (|Z| > t) 6 2 exp

(
− t2

4c||a||22

)
, ∀t > 0.

Proposition 3 (Bernstein inequality for subexponential random variables). Let {Xl}Ml=1 be independent
mean zero subexponential random variables. i.e. P(|Xl| > t) 6 βe−κt with β, κ > 0 for all t > 0. Then,

P(

∣∣∣∣∣
M∑
l=0

Xl

∣∣∣∣∣ > t) 6 2 exp

(
− (κt)2/2

2βM + κt

)
, ∀t > 0.

5.2 Random matrices and the RIP

Definition 9. Let A ∈ Rm×N .

(a) If the entries of A are independent Rademacher variables then A is called a Bernoulli random matrix.

(b) If the entries of A are independent standard Gaussian random variables, then A is called a Gaussian
random matrix.

(c) If the entries of A are independent mean zero subgaussian random variable with variance 1, then A is
called a subgaussian random matrix.

Note that Gaussian random matrices and Bernoulli random matrices are also subgaussian random matrices.
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Theorem 14. Let A ∈ Rm×N be a subgaussian random matrix. Then there exists C > 0 (dependent only
on subgaussian parameters β, κ) such that the s-restricted isometry constant of m−1/2A satisfies δs 6 δ with
probability at least 1− ε, provided that

m > Cδ−2
(
s ln(eN/s) + ln(2ε−1)

)
.

Setting ε = 2 exp
(
−δ2m/(2C)

)
yields

m > 2Cδ−2s ln(eN/s).

Note that the scaling factor of m−1/2 makes sense because E||m−1/2Ax||22 = ||x||22.
Definition 10. Let Y ∈ RN be a random vector.

(a) If E[|〈Y, x〉|2] = ||x||2 for all x ∈ RN , then Y is called isotropic.

(b) If for all x ∈ RN with ||x||2 = 1, the random variable 〈Y, x〉 is subgaussian with subgaussian parameter
c (independent of x) so that

E[exp(θ〈Y, x〉)] 6 exp(cθ2), θ ∈ R,

then Y is called a subgaussian random vector.

As a consequence of the following lemma, it is sufficient to consider matrices A ∈ Rm×N of the form

A =

Y
T
1
...
Y Tm


with rows specified by independent subgaussian and isotropic vectors Y1, . . . , Ym.
Lemma 6. Let Y be a vector with independent mean zero and subgaussian entries with variance 1 and
subgaussian parameter c. Then, Y is an isotropic and subgaussian random vector with subgaussian parameter
c.

Proof. Let Y = (yj)
M
j=1. Then, for x = (xj)

M
j=1,

E[〈Y, x〉2] = E(

N∑
j=1

xjyj)
2 =

N∑
j=1

N∑
l=1

xjxlE(yjyl).

Note that E(yjyl) = E(yj)E(yl) = 0 for j 6= l by independence of the entries of Y and E(y2
j ) = 1. Therefore,

condition (a) of Definition 10 is satisfied.

Condition (b) follows because by Theorem 13, a linear combination of independent mean zero subgaussian
random variables is also subgaussian with the same subgaussian parameter.

For the remainder of this section, we shall prove the following theorem:
Theorem 15. Let A ∈ Rm×N be a random matrix with independent, isotropic and subgaussian rows with
the same subgaussian parameter c. If

m > Cδ−2(s ln(eN/s) + ln(2ε−1)),

then the restricted isometry constant of m−1/2A satisfies δs 6 δ with probability at least 1− ε.
Lemma 7. Let A ∈ Rm×N be a random matrix with independent, isotropic and subgaussian rows with the
same subgaussian parameters β, κ. Then for all x ∈ RN , and all t ∈ (0, 1),

P(
∣∣m−1||Ax||22 − ||x||22

∣∣ > t||x||22) 6 2 exp(−c̃t2m)

where c̃ depends only on β, κ.
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Proof. Let x ∈ RN . W.l.o.g. assume that ||x||2 = 1. Denote the rows of A by Y1, . . . , Ym ∈ RN and consider
the random variables

Zl = |〈Yl, x〉|2 − ||x||22, l ∈ [m].

Since Yl is isotropic, we have that E(Zl) = 0. Furthermore, Zl is subexponential since 〈Yl, x〉 is subgaussian:

P(|Zl| > r) 6 P(|〈Yl, x〉|2 > r − ||x||22) = P(|〈Yl, x〉|2 > r − 1) 6

{
1 r < 1,

β exp(−κ(r − 1)) r > 1.

So,
P(|Zl| > r) 6 β̃ exp(−κ̃r), ∀r > 0

where κ̃ = κ and β̃ = max{βeκ, eκ}. Observe that

m−1||Ax||22 − ||x||22 =
1

m

m∑
l=1

(
|〈Yl, x〉|2 − ||x||22

)
=

1

m

m∑
l=1

Zl.

Since Yl are independent, Zl are also independent. So, by the Bernstein inequality for subexponential random
variables, for all t ∈ (0, 1),

P

(∣∣∣ 1

m

m∑
l=1

Zl

∣∣∣ > t

)
= P

(∣∣∣ m∑
l=1

Zl

∣∣∣ > tm

)
6 2 exp

(
− κ̃2m2t2/2

2β̃m+ κ̃mt

)
6 2 exp

(
− κ̃2

4β̃ + 2κ̃
mt2

)
,

where the last inequality follows because t ∈ (0, 1).

Lemma 8 (Upper bound on covering). Let N ∈ N and ρ ∈ (0, 1/2). For any S ⊂ [N ], there exists a finite
subset U of

BS =
{
x ∈ RN ; Supp(x) ⊂ S, ||x||2 6 1

}
such that

Card(U) 6

(
1 +

2

ρ

)s
and min

u∈U
||z − u||2 6 ρ, ∀z ∈ BS .

Proof. Given a subset Y of {x ∈ Rs : ||x||2 6 1}, let N (Y, r) be the smallest integer such that there exists
{xj}Nj=1 ⊂ Y is an r-covering for Y : i.e.

Y ⊂
N⋃
j=1

B(xj , r).

Define the packing number P(Y, r) to be the largest integer for which there exists a r-packing for Y : i.e.
there exists {xj}Pj=1 ⊂ Y for which |xj − xk| > r for all j 6= k.

First note that N (Y, r) 6 P(Y, r). Indeed, any maximal packing {xj}Pj=1 of Y is also a r-covering of Y

because if there exists x not covered by
⋃P
j=1B(xj , r), then |x− xj | > r for all j and hence, {x1, . . . , xP , x}

is an r-packing of Y which contradicts our assumption that {xj}Pj=1 is maximal.

Let P = P(Y, ρ) and let {xj}Pj=1 be the maximal packing. Then, we have P nonintersecting balls of radius
ρ/2 inside B(0, 1 + ρ/2). By comparing volumes, we have that

Vol

 P⋃
j=1

B(xj , ρ/2)

 = P ·Vol(B(xj , ρ/2)) 6 Vol(B(0, 1 + ρ/2)).

Since Vol(B(0, t)) = tsVol(B(0, 1)),

P 6

(
1 +

2

ρ

)s
.
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Therefore, N (Y, ρ) 6
(

1 + 2
ρ

)s
. This concludes the proof since BS can be identified with the unit ball of

dimension s.

Lecture 15
Theorem 16. Let A ∈ Rm×N be a random matrix such that for all t ∈ (0, 1),

P(
∣∣||Ax||22 − ||x||22∣∣ > t||x||22) 6 2 exp(−c̃t2m). (16)

For S ⊂ [N ] with Card(S) = s and δ, ε ∈ (0, 1) if

m > Cδ−2(7s+ 2 ln(2ε−1)),

where C = 2/(3c̃), then with probability at least 1− ε,

||A∗SAS − I||2 < δ.

Proof. Let U be as in Lemma 8. Let t ∈ (0, 1), whose exact value will be determined later. Then,

P
(∣∣∣||Au||22 − ||u||22∣∣∣ > t||u||22 for some u ∈ U

)
6
∑
u∈U

P
(∣∣∣||Au||22 − ||u||22∣∣∣ > t||u||22

)
6 2 Card(U) exp

(
−c̃t2m

)
6 2

(
1 +

2

ρ

)s
exp

(
−c̃t2m

)
.

So, we have just shown that with probability at least

1− 2

(
1 +

2

ρ

)s
exp

(
−c̃t2m

)
,

the matrix A satisfies: ∣∣∣||Au||22 − ||u||22∣∣∣ < t||u||22, ∀u ∈ U. (17)

Let B = A∗SAS − I, then (17) is equivalent to

|〈Bu, u〉| < t||u||22 < t, ∀u ∈ U.

Now, let x ∈ BS := {z ; Supp(z) ⊆ S, ||z||2 6 1}. Then, there exists u ∈ U such that

||u− x||2 ≤ ρ <
1

2
.

So,

|〈Bx, x〉| = |〈Bu, u〉+ 〈B(x+ u), x− u〉|
6 |〈Bu, u〉|+ |〈B(x+ u), x− u〉|
< t+ ||B||2→2||x+ u||2||x− u||2
6 t+ 2||B||2→2ρ.

Taking the maximum over all x ∈ BS , it follows that

||B||2→2 < t+ 2ρ||B||2→2 =⇒ ||B||2→2 <
t

1− 2ρ
.
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By choosing t = (1− 2ρ)δ, we have that ||B||2→2 < δ. Therefore,

P(||A∗SAS − I||2→2 > δ) 6 2

(
1 +

2

ρ

)s
exp

(
−c̃(1− 2ρ)2δ2m

)
.

It follows that ||A∗SAS − I||2→2 6 δ with probability at least 1− ε provided that

m >
1

c̃(1− 2ρ)2
δ−2

(
ln(2 + 2/ρ)s+ ln(2ε−1)

)
.

The conclusion follows by choosing ρ = 2/(e7/2 − 1) ≈ 0.0623 and this implies that

1

(1− 2ρ)2
6

4

3
and

ln(1 + 2/ρ)

(1− 2ρ)2
6

14

3
.

Theorem 17. Suppose that A is a random matrix such that (16) holds. If, for δ, ε ∈ (0, 1),

m > Cδ−2
(
s(9 + 2 ln(N/s)) + 2 ln(2ε−1)

)
,

where C = 2/(3c̃), then with probability at least 1−ε, the restricted isometry constant δs of A satisfies δs < δ.

Proof. Recall that
δs = sup

S⊂[N ],Card(S)6s
||A∗SAS − I||2→2.

From the proof of Theorem 16,

P(||A∗SAS − I||2→2 > δ) 6 2

(
1 +

2

ρ

)s
exp

(
−c̃(1− 2ρ)2δ2m

)
.

So,

P(δs > δ) 6
∑

S⊂[N ],Card(S)=s

P(||A∗SAS − I||2→2 > δ) 6 2

(
N

s

)(
1 +

2

ρ

)s
exp

(
−c̃(1− 2ρ)2δ2m

)
6 2

(
eN

s

)s(
1 +

2

ρ

)s
exp

(
−c̃(1− 2ρ)2δ2m

)
.

where we have applied Stirling’s estimate that for all n > k > 0,
(
n
k

)
6 (en/k)k. Making the choice

ρ = 2/(e7/2 − 1) yields the required result.

Recovery of vectors which are sparse with respect to some ONB
Corollary 2. Let U ∈ RN×N be a fixed orthogonal matrix. Suppose that A ∈ Rm×N is a random matrix
which is drawn in accordance to a probablity distribution for which

P
(∣∣∣||Ax||22 − ||x||22∣∣∣ > t||x||22

)
6 2 exp(−c̃t2m),

for all t ∈ (0, 1), x ∈ RN . Then, given δ, ε ∈ (0, 1), the restricted isometry constant of AU satisfies δs < δ
with probability at least 1− ε provided that

m >
2

3c̃
δ−2

(
s(9 + 2 ln(

N

s
)) + 2 ln(2ε−1)

)
.
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Proof. Let x ∈ RN and x′ = Ux. Then

P(
∣∣∣||AUx||22 − ||x||22∣∣∣ > t||x||22) = P(

∣∣∣||Ax′||22 − ||x′||22∣∣∣ > t||x′||22) 6 2 exp(−c̃t2m),

The conclusion follows from Theorem 17.

5.3 Relationship to Johnson-Lindenstrauss embeddings

The Johnson-Lindenstrauss lemma (Lemma 9) is not about sparsity, but closely related to the concentration
inequality for subgaussian matrices that we proved in Lemma 7.

Given a point set {x1, . . . , xM} ⊂ RN , it is expensive to process these points when N is large. It is therefore
of interest to project them onto a low dimensional space while preserving geometric properties such as mutual
distances.
Lemma 9. Let x1, . . . , xM ∈ RN and let η > 0. If m > Cη−2 ln(M), then there exists B ∈ Rm×N such that

(1− η)||xj − xl||22 6 ||B(xj − xl)||22 6 (1 + η)||xj − xl||22

for all j, l ∈ [M ] with j 6= l. The constant C > 0 is universal.

Proof. Consider E = {xj − xl ; 1 6 j < l 6M}. Then, |E| 6M(M − 1)/2. It is enough to show that there
exists B such that

(1− η)||x||2 6 ||Bx||2 6 (1 + η)||x||2, ∀x ∈ E. (18)

Let B = 1√
m
A ∈ Rm×N be a subgaussian random matrix. Then, for any fixed x ∈ E, by Lemma 7,

P(
∣∣||Bx||2 − ||x||2∣∣ > η||x||2) 6 2 exp(−c̃mη2).

Therefore, by applying the union bound, (18) holds with probability at least

1−M2 exp(−c̃mη2) > 1− ε,

provided that
m > c̃−1η−2 ln(M2/ε).

Now, the existence of a map B is established as soon as ε < 1. Letting ε → 1, the claim of this lemma is
true with C = c̃−1.

The following theorem shows that matrices with small restricted isometry constants give rise to Johnson-
Lindenstrauss embeddings:
Theorem 18. Let E ⊂ RN be a finite point set such that |E| = M . For η, ε ∈ (0, 1), let A ∈ Rm×N
with restricted isometry constant satisfying δ2s 6 η/4 for some s > 16 ln(4M/ε). Let γ = (γ1, . . . , γN ) be
a Rademacher sequence and let Dγ be the diagonal matrix with γ as its diagonal. Then, with probability at
least 1− ε,

(1− η)||x||22 6 ||ADγx||22 6 (1 + η)||x||22, ∀x ∈ E. (19)

Remark 4. We shall not prove this result, but simply make some comments:

1. The theorem is false without the sign randomization of the columns of A: there is not assumption on
the set E, and in particular, by choosing E ⊂ N (A), we see that (19) is false without the matrix Dγ .
The randomization of column signs essentially ensure that the probability that E ∩ N (ADγ) 6= ∅ is
very small.
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2. There is an indirect lower bound on the embedding dimension m. Since we require that δ2s 6 η/4, one
would expect that m > Cη−2s lnα(N) for some α > 1. Since s > 16 ln(4M/ε), it follows that

m > Cη−2s lnα(N) ln(4M/ε),

so there is an extra factor of lnα(N) compared with the original Johnson-Lindenstrauss lemma.

6 Nonuniform recovery guarantees

The kind of recovery conditions (NSP, RIP) presented so far lead to universal recovery guarantees “Under
certain conditions, we can recover all s-sparse vectors”. However, one could consider the conditions for
nonuniform recovery guarantees: “For a fixed s-sparse vector x, under certain conditions, we can recover x”.
Theorem 19. Let A ∈ Cm×N and let x ∈ CN with Supp(x) = S. Suppose that either of the following
conditions are satisfied:

(a) |〈vS , sign(x)S〉| < ||vSc ||1 for all v ∈ N (A) \ {0}.

(b) AS is injective and there exists ρ = A∗h such that

ρS = sign(x)S , |ρj | < 1, ∀j ∈ Sc.

Then, x is the unique solution to
min ||z||1 subject to Ax = Az.

Proof. Suppose that (a) holds. Let Ax = Az with z 6= x. Let v = x− z ∈ N (A) \ {0}. Then,

||z||1 = ||zS ||1 + ||zSc ||1 = ||(x− v)S ||1 + ||vSc ||1
> |〈(x− v)S , sign(x)S〉|+ |〈v, sign(x)S〉| > |〈x, sign(x)S〉| = ||x||1.

Therefore, x is the unique solution to basis pursuit.

Suppose that (b) holds. We aim to show that (a) holds: note that AvS = −AvSc for all v ∈ N (A) \ {0}.
Then,

|〈v, sign(x)S〉| = |〈vS , A∗h〉| = |〈AvS , h〉| = |〈AvSc , h〉| 6 ||(A∗h)Sc ||∞||vSc ||1 < ||vSc ||1

where the last inequality follows because vSc 6= 0. This is true since vSc = 0, implies that ASvS = 0 which
is a contradiction to AS being injective.

Remark 5. In fact, we also have that (a) implies (b). In general, the converse to Theorem 19 is false.
However, in the case of real matrices and real vectors, one can show that uniqueness to basis pursuit for a
vector x implies that (a) holds. See the exercise sheet for details.
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