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Random Gaussian matrices
Given x ∈ CN×N , let x̂ = UHaarẑ where

ẑ ∈ argmin
z∈CN×N

‖z‖1 subject to
∥∥∥AU−1

Haarz − y
∥∥∥

2
≤ η.

x x̂

Problem: No fast transforms for Gaussian/Bernoulli random matrices, and they
are expensive to store. E.g. To store a Gaussian matrix for sampling 512× 512
images at 5% subsampling would require 25GB.
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Fourier Sampling in Inverse Problems

Many imaging problems* are modelled by the Fourier transform

F f (ω) =

∫
Rd

f (x)e−2πiω·x dx ,

or the Radon transform Rf : Sd−1 × R→ C (where Sd−1 denotes the sphere)

Rf (θ, p) =

∫
〈x,θ〉=p

f (x) dm(x),

where dm denotes Lebesgue measure on the hyperplane {x : 〈x , θ〉 = p}.

I Fourier slice theorem ⇒ both problems can be viewed as the problem of
reconstructing f from pointwise samples of its Fourier transform.

g = F f , f ∈ L2(Rd ). (1)

* Magnetic Resonance Imaging (MRI), X-ray Computed Tomography, Electron
Microscopy, Radio interferometry, ...



Random Fourier sampling and the RIP
M. Rudelson and R. Vershynin (2008) proved that PΩUdf satisfies
δs (PΩUdf ) ≤ δ with high probability provided that Ω consists of m indices
chosen uniformly at random such that

m ≥ Cδ−2s ln4(N).

Ω (30%) x̂ (128× 128)

NB: ln4(N) is large in practice. In our case, we are interested in 128× 128
images, if s = 0.05N2 then s ln4(N2) ≈ 7.26× 106 > N2.



Uniform vs Nonuniform recovery

The results we have seen so far are uniform recovery guarantees: Under
certain conditions, with high probability, we can recover all s-sparse vectors.

There is another kind of statement, namely nonuniform recovery guarantees:
Let x be a fixed sparse vector. Then, under certain conditions, with high
probability, x can be recovered.

Theorem (Candés & Plan, 2011): Let U ∈ CN×N be an isometry. If α is
s-sparse, then solving

min
β∈CN

‖β‖1 subject to PΩUβ = PΩUα

recovers α with probability exceeding (1− ε) if Ω is chosen uniformly at
random such that it is of cardinality

m & s · log(N/ε) · µ(U) · N

where the coherence is µ(U) := maxj,k=1,...,N |Uj,k |2 ∈ [N−1, 1].
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An intriguing experiment (Candès, Romberg & Tao, 2006)
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x Ω (4.24%)

min
z∈CN×N

‖Dz‖1 subject to PΩUz = PΩUx

I Uz =
(

N−1
∑N

j1=1

∑N
j2=1 zj1,j2 e i2π(k1j1+k2j2)

)
k1,k2=−bN/2c,...,dN/2e−1

.

I Dz = D1z + iD2z where

D1z = (xk+1,j − zk,j )
N
k,j=1, D2z = (zk,j+1 − zk,j )

N
k,j=1

with zN+1,j := z1,j and zk,N+1 := zk,1.



Variable Density Sampling
5% sampling for 1024 × 1024 phantom

In the Fourier-wavelets case: µ(UdftU
−1
dwt) = 1.

Lustig, Donoho & Pauli ’07, Lustig et al. ’08: Sample more densely at low
Fourier frequencies and less at higher Fourier frequencies.

Ω Rec. Wavelet Rec. TV

Why does VDS work?

Test phantom constructed by Guerquin-Kern, Lejeune, Pruessmann, Unser, 2012



Sparsity and the Flip Test

In standard CS, the only signal structure considered is sparsity. In contrast, the
flip test will demonstrate that we must look beyond sparsity.

Consider the reconstruction of x from PΩUdf x by solving

min
z
‖z‖1 subject to PΩUdf U

−1
dw z = PΩUdf x .



Sparsity and the Flip Test

Let α be the wavelet coefficients of x . Let αflip = (αN , . . . , α1) and
xflip = U−1

dw α
flip.

α αflip

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

x105

Truncated (max = 151.58)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

x105

Truncated (max = 151.58)

For the same Ω, let

α̃ ∈ argmin
β
‖β‖1 subject to PΩUdf U

−1
dw β = PΩUdf x

flip

If sparsity was enough, then the wavelet coefficients α̃ should be αflip, we
should be able to recover x as U−1

dw α̃
flip.



Sparsity and the Flip Test

Ω Standard Rec. Flipped Rec.



Flip test for random Gaussian measurements

In the Fourier-wavelets case, we saw that Ω cannot depend on sparsity alone.

Actually, variable density sampling patterns exploit the fact that natural images
are asymptotically sparse in wavelets.

However, random Gaussian measurements are insensitive to sparsity structure:

Standard Rec. Flipped Rec.



Asymptotic Incoherence

If U = Udf U
−1
dw is the Fourier-wavelets matrix, then

µ(P⊥N U), µ(UP⊥N ) = O
(
N−1

)
.

Fourier to Haar Fourier to DB4

Implication: Sample more at low Fourier frequencies where the local coherence
is high and less at higher Fourier frequencies.



Recovery of Wavelet Coefficients from Partial Fourier Data

Theorem:

I {Nk}r
k=1 and {Mk}r

k=1 correspond to wavelet scales.

I The mother wavelet ψ has v vanishing moments.

I There exists α ≥ 1, C > 0 such that
∣∣∣ψ̂(ξ)

∣∣∣ ≤ C
(1+|ξ|)α for all ξ ∈ R.

One is guaranteed recovery of a wavelet sequence which is sk -sparse in the k th

wavelet scale by choosing Ω = Ω1 ∪ · · · ∪ Ωr where Ωk ⊂ {Nk−1 + 1, . . . ,Nk}
are mk samples chosen uniformly at random, with

mk

Nk − Nk−1
&

1

Nk−1
· L ·

(
ŝk +

k−2∑
l=1

sj · 2−α(k−l) +
r∑

l=k+2

sl · 2−v(l−k)

)

where ŝk = max {sk−1, sk , sk+1} and L = log(ε−1) · log
(
KN
√
s
)

Breaking the coherence barrier: A new theory for compressed sensing. Adcock,
Hansen, Poon & Roman (2013)



Resolution Dependence (5% samples, varying resolution)

Asymptotic sparsity and asymptotic incoherence are only witnessed when N is
large. Thus, V. D. sampling only reaps their benefits for large values of N and
the success of compressed sensing is resolution dependent.

256x256

Error:

19.86%

512x512

Error:

10.69%



Resolution Dependence (5% samples, varying resolution)

1024x1024

Error:

7.35%

2048x2048

Error:

4.87%

4096x4096

Error:

3.06%



Recovering Fine Details

At finer wavelet scales, the presence of sparsity and incoherence with Fourier
samples allows us to subsample. Thus, compressed sensing allows one to
enhance fine details without increasing the number of samples.

In the next example, consider the reconstruction of a 2048× 2048 test
phantom with details added at the finest wavelet scale.



Recovering Fine Details

Figure: 2048× 2048 linear reconstruction from the first 512× 512 Fourier
samples (6.25%)



Recovering Fine Details

Figure: 2048× 2048 reconstruction from a multilevel scheme using 512× 512
Fourier samples (6.25%)


