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Lecture 16

Recap We have discussed the representation of signals as elements of a Hilbert space, and their approx-
imation and discretization with respect to different bases. Their approximation depends on the geometric
features of the underlying signal, for example, we saw that piecewise Lipschitz-α functions have sparse
wavelet representations. Furthermore, one can apply `1-regularization to exploit such sparse representations
when dealing with ill-posed inverse problems.

In this final part of this course, we will look more closely at inverse problems in image analysis. Rather
than considering sparsity, we will work directly with the geometric features of images as elements of some
function space.

1 The variational approach

1.1 The Bayesian approach to inverse problems

We have seen how one specific variational approach, namely `1 regularization, arises from the need to recover
sparse vectors. In this section, we describe the Bayesian viewpoint of variational methods.

Given g ∈ RN×N , there are two components to (linear) inverse problems:

1. A data model: g = Tu0 + n where u0 ∈ RN×N is the original image to be recovered, T is some linear
transform (e.g. a blurring operator, a subsampled Fourier transform, or the identity matrix), and n is
the noise. Typically, the entries in n are assumed to be Gaussian distributed with mean 0 and variance
σ2.

2. An a-priori probability density: P (u) = e−p(u). This represents the idea that we have of the original
image.

By Bayes’ rule, the posteriori probability of u knowing g is

P (u|g)P (g) = P (g|u)P (u),
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where P (g|u) = exp
(
− 1
σ2 ||g − Tu||22

)
. So,

P (u|g) =
exp

(
− 1
σ2 ||g − Tu||22 − p(u)

)
P (g)

,

and we want to find the maximum a posteriori (MAP) reconstruction:

u∗ ∈ argmax
u

P (u|g).

Equivalently,

u∗ ∈ argmin
u

p(u) +
1

σ2
||g − Tu||22.

1.2 Regularizers

We will study the minimizers to the energies derived in the Bayesian model in the continuous setting.
Given g ∈ L2(Ω) where Ω ⊂ R2 is a bounded domain (e.g. Ω = [0, 1]2) and a bounded linear operator
T : L2(Ω)→ L2(Ω), we will consider

min
u∈L2(Ω)

λF (u) +
1

2
||Tu− g||22.

1.3 What is a good choice for F?

Tychonov regularization Standard Tychonov regularization typically consider F (u) = 1
2

∫
Ω
u2 or F (u) =

1
2

∫
Ω
|∇u|2. The intuition behind the latter regularizer is that it encourages solutions with small gradient

which best fit the observation data g, so noise is removed. However, one can check that u is a minimizer if
and only if

T ∗Tu− T ∗g − λ∆u = 0,

with Neumann boundary condition ∇u ·η = 0 on ∂Ω where η is the outward unit normal to ∂Ω. This leads to
oversmooth reconstructions as ∆ has very strong isotropic smoothing properties. Moreover, as a consequence
of classical Sobolev embedding theorems, such functions cannot exhibit discontinuities across hypersurfaces.
In 2D, this corresponds to no discontinuities across lines. To offer a quick (formal) justification: if 0 < s <
t < 1, u : [0, 1]→ R ∈W 1,2(0, 1), then

u(t)− u(s) =

∫ t

s

u′(r)dr 6
√
t− s

√∫ t

s

|u′(r)|2 dr 6
√
t− s||u||W 1,2 .

So, u is Hölder-1/2 continuous. This is especially problematic because it is the key information about an
image is encoded in its edges!

Edge preserving regularizers There were 2 types of solutions (with T = Id) in the quest for edge
preserving regularizers in the late 80’s and early 90’s, both of which have been hugely influential.

1. Considering the problem in finite dimensions, D. Geman and S. Geman introduced an additional
variable l = (li+1/2,j , li,j+1/2)i,j . Each entry in l takes value either 0 or 1. For each i, j, li+1/2,j = 1
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indicates an edge between pixels (i, j) and (i+1, j) and li+1/2,j = 0 otherwise. In the Bayesian context,
the function p in the a-priori probability density of the true image is replaced with

p(u, l) = µ
∑
i,j

(li+1/2,j + li,j+1/2)

λ
∑
i,j

(
(1− li+1/2,j)(ui+1,j − ui,j)2 + (1− li,j+1/2)(ui,j+1 − ui,j)2

)
,

for λ, µ > 0. In the continuous setting, {l = 1} corresponds to a 1D curve K ⊂ Ω and this model
corresponds to the Mumford and Shah model:

min
u,K

∫
Ω\K
|∇u|2 dx+ µlength(K) + ||u− g||2L2

among 1D closed subsets K of Ω and u ∈ W 2,2(Ω \K). This model has generated a lot of interesting
mathematical tools over the past decades. However, one of the issues with this model is that it is
mathematically hard to analyse (note that we are minimizing over two very different objects u and K).
Morevoer, since it is nonconvex, except in special cases, there is no way of knowing if one is converging
to a minimum.

2. Rudin, Osher and Fatemi introduced the total variation functional for image processing:

F (u) =

∫
Ω

|∇u| .

This functional is well defined on W 1,1(Ω). Note that given u ∈W 1,1([a, b]), one can define a continuous
function ũ(x)− ũ(a) =

∫ x
a
u′(t)dt which coincides with u a.e.. So, functions in W 1,1([a, b]) cannot have

discontinuities, and given f ∈ W 1,1([a, b]2), since f(·, x) ∈ W 1,1([a, b]) for a.e. x, images cannot have
jumps across vertical/horizontal boundaries. However, the key point here is that F is well defined for a
more general class of functions which can have discontinuities. Furthermore, the resultant variational
problem is now convex, which allows for the application of some standard numerical solvers.
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1.4 An example

We shall see in this example that not only can
∫
|∇u| be extended to a larger class of functions where edges

are permitted, it is actually necessary to do so.

Consider

min
u∈W 1,1([0,1])

E(u), E(u) = λ

∫ 1

0

|u′(t)|dt+

∫ 1

0

|u(t)− g(t)|2 dt,

where g = χ(1/2,1]. We will show that this minimization problem does not have a solution in W 1,1.

• Maximum/minimum principles If u is a minimizer, then u 6 1 a.e.: Let v ∈ min{u, 1}. Then,

– v′ = u′ on {u < 1} and v′ = 0 on {u > 1}. Therefore,
∫
|v′| 6

∫
|u′|.

– Since g 6 1, ||v − g||2 6 ||u− g||2.

So, E(v) 6 E(u) and this inequality is strict if v 6= u. Similarly, u > 0 a.e..

• ‘Symmetry’ Note that g(t) = 1 − g(1 − t). Any minimizer must also have this property: Let ũ =

1−u(1−t). Then ||ũ−g||2 =
∫
|1− u(1− t)− g(t)|2 dt = ||u−g||2. Also, ||ũ′||1 = ||u′||1. So, E(ũ) = E(u).
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Also,

E
(

1− u(1− ·) + u

2

)
6

1

2
E(1− u(1− ·)) +

1

2
E(u) = E(u)

and by strict convexity of || · ||22, this inequality is strict if v = 1−u(1−·)+u
2 6= u. Therefore, v = u which

implies that u(t) = 1− u(1− t).

• Let m = minu = u(a) and let M = maxu = u(b). From the previous observation, M = 1−m. Then,
(assuming b > a, but the case a > b can be dealt with similarly)

||u′||1 >
∫ b

a

|u′(t)|dt >
∫ b

a

u′(t) = M −m = 1− 2m.

Also, since m 6 1−m, we must have m ∈ [0, 1/2].

To summarize, we have shown that u ∈ [m, 1−m] for some m ∈ [0, 1/2], u(1− t) = 1− u(t), and

E(u) > λ(M −m) +

∫ 1/2

0

m2 +

∫ 1

1/2

(1−M)2 = λ(1− 2m) +m2.

The RHS is minimal when m = λ if λ 6 1/2 and m = 1/2 if λ > 1/2. In the latter case, we see that u ≡ 1/2
achieves the minimum and is the unique minimizer.

Assume now that λ < 1/2. Then for any minimizer u, E(u) > λ(1 − λ). Let us construct a minimizing
sequence: For n > 2, define

un(t) =


λ t 6 1/2− 1/n,
1
2 + n(t− 1/2)(1/2− λ) |t− 1/2| 6 1/n,

1− λ t > 1/2 + 1/n.

Then,
∫ 1

0
|u′n| =

∫ 1

0
u′n = 1− 2λ. Also,

E(un) 6 λ(1− 2λ) +

(
1− 2

n

)2

λ2 +
2

n
→ λ(1− λ), n→∞.

Hence, infu E(u) = λ(1− λ).

If u is a minimizer, then

λ(1− λ) = λ

∫
|u′|︸ ︷︷ ︸

>1−2λ

+

∫
|u− g|2︸ ︷︷ ︸

>λ2/2+λ2/2=λ2

,

and we have that
∫
|u′| = 1 − 2λ and

∫
|u− g|2 = λ2. From this, we see that u is nondecreasing from λ

to 1 − λ. But this implies that |u− g| > λ a.e. and from ||u − g||2 = λ2, we have that |u− g| = λ a.e..
Therefore, u = λχ[0,1/2) + (1 − λ)χ[1/2,1]. This is the L1 limit of un but is not in W 1,1. Note also that
since

∫
|u′n| = 1 − 2λ for all n, it is natural to assume that

∫
|u′| makes sense. A natural extension of the

functional F is to define for u ∈ L1:

F (u) = inf

{
lim
n→∞

∫ 1

0

|u′n(t)|dt ; un → u in L1, lim
n→∞

∫ 1

0

|u′n| <∞
}
.

As we shall see, this definition is consistent with the definition of the more standard definition of total
variation.
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2 Mathematical preliminaries

We recall some definitions and results from functional analysis:
Definition 1 (Strong, weak, weak-* convergence). A sequence (xn) in a normed space (X, || · ||X) converges

• strongly to x ∈ X if limn→∞ ||xn − x||X = 0.

• weakly to x ∈ X if limn→∞〈xn, y〉X×Y = 〈x, y〉X×Y for all y ∈ Y = X∗, the dual space of X.

• A sequence (yn) ⊂ Y = X∗ converges weakly-* to y ∈ Y if for all x ∈ X, limn→∞〈x, yn〉X×Y =
〈x, y〉X×Y .

Remark 1. Any Hilbert space (H, || · ||) is lower semicontinuous wrt weak topology: i.e. if xn, x ∈ H are such
that xn ⇀ x, then lim infn→∞ ||xn|| > ||x||.
Definition 2. Let (X, || · ||X) be a normed space. A subset U ⊂ X is weak sequentially compact if every
sequence in U has a weakly converging subsequence with limit in U .
Theorem 1. A normed vector space X is reflexive if and only if every bounded ball in X is weak-sequentially
compact.
Remark 2. Any Hilbert space is reflexive (so that includes L2 and W 1,2). On the other hand, L1 and W 1,1

are not reflexive.
Definition 3. Let k ∈ [0,∞] and A ⊂ Rd. The k-dimensional Hausdorff measure of A is given by

Hk(A) = lim
ρ→0

[
ωk
2k

inf

{∑
i∈I
|diam(Ai)|k ; diam(Ai) 6 ρ,A ⊂

⋃
i∈I

Ai

}]

where diam(Ai) denotes the diameter of the set Ai and ωk = πk/2Γ(1 +k/2) where Γ is the gamma function.
Note that ωk is the Lebesgue measure of the unit ball in Rk for k ∈ N.

The Hausdorff dimension of a set A is

inf
{
k > 0 ; Hk(A) = 0

}
.

Remark 3. For k ∈ [1, N ], given A ⊂ RN , a C1 k-dimensional manifold in RN , Hk(A) is the classical k-
dimensional area of A. For example, if A is a finite set of points, H0(A) is the number of points; if A is a
C1-curve, then H1(A) is the length of this curve. Moreover, HN (A) of a set A ⊂ RN is its Lebesgue measure.

We recall the Gauss-Green theorem:
Theorem 2. If E is an open set with C1 boundary, then for every ϕ ∈ C1

c (Rn),∫
E

∇ϕ(x) dx =

∫
∂E

ϕ νE dHn−1.

Equivalently, the divergence theorem also holds true:∫
E

div z(x) dx =

∫
∂E

z · νE dHn−1, ∀z ∈ C1
c (Rn;Rn).

Definition 4. Let X be a Banach space, let F : X → R. If

F ′(u; v) = lim
λ→0+

F (u+ λv)− F (u)

λ

exists, then it is called the directional derivative of F at u in direction v. If there exists u ∈ X ′ (the dual
space of X) such that F ′(u; v) = 〈u, v〉X′×X for all v ∈ X, then we say that F is Gâteaux differentiable at
u and write F ′(u) = u.
Lemma 1. If F is Gâteaux differentiable and infv∈X F (v) has a solution u, then F ′(u) = 0. Conversely, if
F is convex, then a solution u of F ′(u) = 0 is a solution of the minimization problem. We call the equation
F ′(u) = 0 the Euler Lagrange equation of F .
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Proof. Indeed, if F (u) = minx F (x) and F is Gâteaux differentiable, then F (u+tv)−F (u) > 0 for all v ∈ X.
So, 〈v, F ′(u)〉 > 0 for all v ∈ X. By considering −v, we have that 〈v, F ′(u)〉 = 0 for all v ∈ X, so F ′(u) = 0.

Conversely, if F is convex and F ′(u) = 0, then

F (u+ v)− F (u) > lim
t→0

F (u+ tv)− F (u)

t
= 0, ∀v ∈ X.

by monotonicity of difference quotients for convex functions. Therefore, letting v = w− u, F (w) > F (u) for
all w ∈ X which implies that u is a minimizer.

Lemma 2 (Monotonicity of difference quotients). Let X be a normed space and let F : X → R be a convex

functional. For u, v ∈ X and t > 0, let dF (t) = F (u+tv)−F (u)
t . Then, dF (t) 6 dF (s) whenever t < s.

Proof. Without loss of generality, assume that u = 0 and F (0) = 0 (this is possible by translating f
appropriately). Then, by convexity of F ,

F (tv) = F

(
t

s
sv + (1− t

s
)0

)
6
t

s
F (sv) + (1− t

s
)F (0) =

t

s
F (sv),

as required.

We recall also some definitions:

1. A Borel set is any set formed from open sets by countable union, intersection an relative complement.

2. A Sigma algebra is a collection of sets which are closed under union, intersection and relative comple-
ment.

3. A measure µ is said to be locally finite in Ω if given any x ∈ Ω, there exists a neighbourhood of x, Nx
such that µ(Nx) <∞.

4. A measure is µ is said to be inner regular on some Sigma algebra Σ, if given A ∈ Σ

µ(A) = sup {µ(K) ; K ⊂ A, K compact} .

5. A Radon measure is a measure on the Sigma algebra of Borel sets of a Hausdorff topological space X
which is locally finite and inner regular.

3 The TV functional

Definition 5. Given u ∈ L1(Ω), the total variation of u is

J(u) = sup
{
〈div z, u〉 ; z ∈ C∞c (Ω,RN ), ||z||∞ 6 1

}
.

Definition 6. The space BV (Ω) of functions of bounded variation is the set of functions u ∈ L1(Ω) such
that J(u) <∞ endowed with the norm ||u||BV = ||u||L1 + J(u).

This space is a Banach space. The following theorem shows that the space BV (Ω) is compact. In contrast,
note that no such compactness result exists for W 1,1(Ω) since one can in fact construct bounded sequences
in W 1,1(Ω) which converge to elements of BV (Ω).
Theorem 3 (Rellich’s compactness theorem). Let Ω ⊂ RN be a bounded domain with Lipschitz boundary,
and let (un)n∈N be a sequence of functions in BV (Ω) such that supn ||un||BV < ∞. Then there exists
u ∈ BV (Ω) and a subsequence (unk)k>1 such that unk → u in L1(Ω) as k →∞.
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Theorem 4. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary, let u ∈ BV (Ω). Then, there exists
a sequence (un) of functions in C∞(Ω) ∩W 1,1(Ω), such that

1. un → u in L1.

2. J(un) =
∫

Ω
|∇u| → J(u) =

∫
Ω
|Du|.

Theorem 5 (Poincaré inequality). Let Ω ⊂ RN . For u ∈ BV (Ω), let m(u) = 1
|Ω|
∫

Ω
u(x)dx. Then there

exists C > 0 such that
||u−m(u)||Lp 6 CJ(u), ∀u ∈ BV (Ω),

for all p ∈ [1, N/(N − 1)]. In particular, this holds with p = 2 when N = 2.
Lemma 3. (i) J is lower semicontinuous wrt weak convergence in Lp for p ∈ [1,∞).

(ii) J is convex.

(iii) J is one-homogeneous. i.e. tJ(u) = J(tu) for all t > 0.

Proof. Let

Lϕ : u 7→ −
∫

Ω

u(x) divϕ(x)dx.

If un ⇀ u in Lp(Ω), then Lϕun → Lϕu. Note however that

Lϕu = lim
n→∞

Lϕun 6 lim inf
n→∞

J(un).

Taking the supremum over all ϕ ∈ C∞c (Ω,RN ) with ||ϕ||∞ 6 1 yields

J(u) 6 lim inf
n→∞

J(un).

To see that J is convex, let u1, u2 ∈ Lp(Ω) and let t ∈ [0, 1]. Then,

Lϕ(tu1 + (1− t)u2) = tL(u1) + (1− t)L(u2) 6 tJ(u1) + (1− t)J(u2).

Taking the supremum over all ϕ ∈ C∞c (Ω,RN ) with ||ϕ||∞ 6 1 yields the required result.

Examples

• For u ∈W 1,1(Ω), |Du| (Ω) =
∫

Ω
|∇u|.

• For u = 1C with C ⊂ Ω a bounded set with smooth boundary, |Du| (Ω) = |Du| (C) = H1(∂C) is the
perimeter of C. Here, H1 is the 1 dimensional Hausdorff measure.
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4 Total variation regularization

Let Ω ⊂ R2 be a bounded Lipschitz domain. Given g ∈ L2(Ω), we want to compute

inf
u∈L2(Ω)∩BV (Ω)

F(u), F(u) := λJ(u) +
1

2
||Tu− g||2L2 , (1)

where T : L2(Ω) → L2(Ω) is a bounded linear operator. Examples of operators T include T = k?, T = Id,
T = χΩ\D and the subsampled Fourier operator T = PSF .
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4.1 Existence and uniqueness of solutions

We first consider the well-posedness of this problem.
Theorem 6. For g ∈ L2(Ω) and a bounded linear operator T : L2(Ω) → L2(Ω), there exists a minimizer
u ∈ BV (Ω) of (1). If T is injective, then the minimizer is unique.

Direct method of calculus of variations Let X be a Banach space and consider minu∈X F(u). To
show that there exists a minimizer, we carry out the following steps:

1. Show that F(u) is bounded from below, that is inf F(u) > −∞. Hence, there exists a minimizing
sequence un such that F(un) <∞ and

lim
n→∞

F(un) = inf
u∈L2(Ω)

F(u).

2. Check that (un) ⊂ Y ⊂ X with Y sequentially compact w.r.t. topology induced on X. Then, there
exists a subsequence unk and u∗ ∈ X such that limk→∞ unk = u∗.

3. Check that F is sequentially lower semicontinuous w.r.t. topology on X. Then,

inf
u∈X
F(u) 6 F(u∗) 6 lim inf F(unk) = inf

u∈X
F(u).

So, u∗ ∈ X is a minimizer of F .

Proof. Let us check each of the three steps in the direct method. The first step is trivial since F(u) > 0 for
all u ∈ L2(Ω). For the second step, note that given a minimizing sequence un ∈ L2(Ω), for fixed ε > 0 and
n sufficiently large, F(un) 6 F(0) + ε =: C. So,

λJ(un) 6 λJ(un) +
1

2
||Tun − g||2L2 6 C,

and (J(un))n∈N is a uniformly bounded sequence. For the purpose of extracting a convergent subsequence,

we first prove that
∣∣∫

Ω
un
∣∣ is uniformly bounded: Assume first that TχΩ 6= 0. For n > 1, let wn =

∫
un
|Ω| χΩ

and vn = un −wn. Then,
∫
vn = 0 and J(vn) = J(un). So, by the Poincaré inequality, ||vn||2 6 C ′. Observe

now that √
2C > ||Tun − g||2 > ||Twn||2 − ||Tvn − g||2,

and hence,
√

2C + ||T ||2||vn||2 + ||g||2 > ||Twn||2 =

∣∣∣∣∫ un

∣∣∣∣ ||TχΩ||2
|Ω|

.

Since ||TχΩ||2 6= 0, it follows that
∣∣∫ un∣∣ is uniformly bounded.

Now, by the Poincaré inequality, un is uniformly bounded in L2 and since the L2 ball is weak sequentially
compact, there exists a subsequence (unk)k∈N and u ∈ L2 such that unk ⇀ u in L2. Furthermore, since T is
a bounded linear operator on L2(Ω), we also have that Tunkj ⇀ Tu in L2. Finally, the third step follows
since || · ||L2 and J are lower semi-continuous wrt the weak topology.

Now, if TχΩ = 0, then vn = un − wn is also a minimizing sequence and by the Poincaré inequality, ||vn||L2

is uniformly bounded and we may exact find a weak limit u which is a minimizer.

To see that the minimizer u is unique in the case where T is injective, recall from Lemma 3 that J is a
convex functional. So, if u, u′ are two minimizer of F , then

F
(
u+ u′

2

)
=
λ

2
J(u) +

λ

2
J(u′) +

1

2

∫ ∣∣∣Tu+ Tu′

2
− g
∣∣∣2dx.

8



If u 6= u′, so Tu 6= Tu′, then by strict convexity of || · ||22,

F
(
u+ u′

2

)
<
λ

2
J(u) +

λ

2
J(u′) +

1

4

∫
|Tu− g|2 +

1

4

∫
|Tu′ − g|2 =

1

2
(F(u) + F(u′)) = inf F .

This is a contradiction to the assumption that u and u′ are minimizers.

4.2 Optimality conditions

We begin with a generalization of the gradient for convex functionals.
Definition 7. Given a Banach space X with dual space X ′, the subgradient of a convex functional F : X →
(−∞,+∞] is a set-valued map which maps x ∈ X to

∂F (x) = {p ∈ X ′ ; F (y) > F (x) + 〈p, y − x〉,∀y ∈ X} .

Remark 4 (Relation to directional derivatives). Note that y ∈ ∂F (x) if and only if F ′(x, z) > 〈y, z〉X′×X for
all z ∈ X. Moreover, if F is Gateaux differentiable to x with F ′(x) = y, then ∂F (x) = {y}.
Remark 5. Note that u is a minimizer of infv F (v) if and only if 0 ∈ ∂F (u): Indeed, 0 ∈ ∂F (u) means that

F (v)− F (u) > 0 = 〈0, v − u〉, ∀v ∈ X.
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Recall that for each u ∈ L1(Ω), J(u) = supp∈K
∫

Ω
u(x)p(x)dx where

K =
{
−divϕ ; ϕ ∈ C∞c (Ω;RN ), ||ϕ||∞ 6 1

}
.

However, if u ∈ L2(Ω), then we in fact have:

J(u) = sup
p∈K

∫
Ω

u(x)p(x)dx,

where
K =

{
−divϕ ; ϕ ∈ L∞(Ω,RN ),− divϕ ∈ L2(Ω), ϕ · ηΩ = 0

}
.

In the definition of K, −divϕ ∈ L2(Ω) means that there exists γ ∈ L2(Ω) such that∫
Ω

γu =

∫
z · ∇u, ∀u ∈ C∞c (Ω).

One can show that
Lemma 4.

K =

{
p ∈ L2(Ω) ;

∫
Ω

p(x)u(x)dx 6 J(u), ∀u ∈ L2(Ω)

}
.

Lemma 5 (Characterization of subgradient). Consider J : L2(Ω)→ (−∞,+∞] and let u ∈ L2(Ω)∩BV (Ω).
Then ∂J(u) =

{
p ∈ K ;

∫
p(x)u(x)dx = J(u)

}
.

Another way of writing
∫
−div z u = J(u) is z ·Du = |Du|. From this, we see that z is the unit normal to

the level lines of u.
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Proof. Let p ∈ K be such that
∫
pu = J(u). Then, for all v ∈ L2(Ω),

J(v) >
∫
pv = J(u) +

∫
pv −

∫
pu.

This implies that p ∈ ∂J(u).

Conversely, if p ∈ ∂J(u), then for all t > 0 and v ∈ L2(Ω),

tJ(v) = J(tv) > J(u) +

∫
Ω

p(tv − u).

By dividing by t and letting t→∞, we have that

J(v) >
∫
pv =⇒ p ∈ K.

Moreover, by letting t→ 0, we have that ∫
pu > J(u)

and since p ∈ K, it follows that J(u) =
∫
pu.

Theorem 7 (Optimality condition). u ∈ L2(Ω) is a minimizer of F if and only if

T ∗(g − Tu)

λ
∈ ∂J(u).

Remark 6. Given the characterization of ∂J(u), the equation satisfied by the minimizer u of F can formally
be written as

T ∗(g − Tu)

λ
+ div

(
Du

|Du|

)
= 0.

This is called the Euler-Lagrange equation of F .

Proof. Suppose that u minimizes F . Then, for all v ∈ L2(Ω), we have that

λJ(v) > λJ(u) +
1

2

∫
Ω

(Tu− g)2 − (Tv − g)2dx

= λJ(u) +

∫
Ω

(Tu− Tv)

(
Tu+ Tv

2
− g
)

dx

= λJ(u) +

∫
Ω

(Tv − Tu)(g − Tu)dx− 1

2

∫
Ω

(Tu− Tv)2dx.

(2)

Let w ∈ L2(Ω) and let v = u+ t(w − u) in the above inequality. Then,

λ(J(u+ t(w − u))− J(u))− t
∫

Ω

(Tw − Tu)(g − Tu)dx

> − t
2

2

∫
Ω

(Tw − Tu)2dx.

Dividing by t and letting t→ 0, we have that

lim
t→0

λ(J(u+ t(w − u))− J(u))

t
−
∫

Ω

(Tw − Tu)(g − Tu)dx > 0.

Since J is convex, for all t > 0, by its difference quotient being non-increasing as t→ 0+, we have that

λ(J(u+ t(w − u))− J(u))

t
−
∫

Ω

(w − u)T ∗(g − Tu)dx > 0.

For t = 1, we have that T∗(g−Tu)
λ ∈ ∂J(u). Conversely, if this is true, then (2) holds and u is a minimizer of

F .
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4.3 Further remarks about “− div z”

There are several works which address the question of how we should interpret
∫

div z u for u ∈ BV ,
where div z ∈ L2(Ω) and z ∈ L∞(Ω,RN ). Anzellotti (Pairings between measures and bounded functions and
compensated compactness, 1983) showed that for u ∈ BV ∩L2, we can define a functional (z,Du) : C∞c (Ω)→
R such that

〈(z,Du), ϕ〉 = −
∫
uϕdiv z −

∫
uz · ∇ϕ, ∀ϕ ∈ C∞c (Ω).

Then, (z,Du) is a Radon measure in Ω such that:

• if u ∈W 1,1(Ω) ∩ L2(Ω), then (z,Du) = z · ∇u.

•
∣∣∫
B

(z,Du)
∣∣ 6 ∫

B
|(z,Du)| 6 ||z||L∞(A)

∫
B
|Du| for all Borel sets B and open sets A such that B ⊂ A.

• Given any bounded set A with Lipschitz boundary, we have the divergence formula:∫
A

u div z dx+

∫
A

(z,Du) =

∫
∂A

(z · ν∂A) u dHN−1, ∀u ∈ BV (Ω)

4.4 Stability

Let u0 ∈ L2(Ω) and g ∈ L2(Ω) be such that ||g− Tu0||L2 6 δ. We saw in Theorem 7 that if u is a minimizer
of (1), then there exists p such that T ∗p ∈ ∂J(u). Here, we show that the existence of such an element (in
which case, one says that the source condition is satisfied) can allow for the derivation of stability estimates
of the reconstructed image.

In the following, we assume that there exists p ∈ L2 such that

v = T ∗p ∈ ∂J(u0).

The first result, Theorem 8, shows that the Bregman distances J(u)− J(u0)− 〈v, u− u0〉 (which is always
positive) can be controlled in terms of δ, ||p|| and λ.

Furthermore, since v ∈ ∂J(u0), as mentioned in Remark 4, there exists z ∈ L∞(R2;R2) such that v = −div z
with ||z||∞ 6 1. We will in Theorem 9 that one can control the total variation of u in the region Ur where
for r ∈ (0, 1)

Ur
def.
= {x ∈ Ω ; |z(x)| < r} .

Theorem 8. Let u0 ∈ L2(Ω) and g ∈ L2(Ω) be such that ||g − Tu0||L2 6 δ. Suppse that u is a minimizer of
(1) and that there exists v = T ∗p ∈ ∂J(u0). Then,

J(u)− J(u0)− 〈v, u− u0〉 6
δ2

2λ
+
λ||p||2L2

2
+ δ||p||L2 .

Proof. Let d = J(u)− J(u0)− 〈v, u− u0〉. Since u is a minimizer of (1),

λJ(u) +
1

2
||Tu− g||2L2 6 λJ(u0) +

1

2
||Tu0 − g||2L2 6 λJ(u0) +

δ2

2
.

So,
1

2
||Tu− g||2L2 + λd+ λ〈v, u− u0〉 6

δ2

2

By recalling that v = T ∗p,

1

2
||Tu− g||2L2 + λd+ λ〈p, Tu− g〉+ λ〈p, g − Tu0〉 6

δ2

2

11



So,

1

2
||Tu− g + λp||2L2 + λd−

λ2||p||2L2

2
+ λ〈p, g − Tu0〉 6

δ2

2
,

and by rearranging the above inequality,

d 6
δ2

2λ
+
λ||p||2L2

2
+ δ||p||L2 .

Remark 7. Note that we did not use any specific properties of J in the proof other than convexity. In fact,
Theorem 8 can be stated more generally: it is sufficient to assume that for Banach space X and Hilbert
space H, T : X → H is a bounded linear operator and J : X → (−∞,+∞] is a convex functional such that

(1) J is l.s.c. in a topology on X.

(2) The sublevel sets {u; J(u) 6 ρ} are compact (wrt same topology as in (1)) and nonempty for all ρ > 0.

These conditions essentially ensure the existence of a minimizer via the direct method of calculus.

In particular, we can consider J(u) = 1
2 ||u||L2 , and

min
u∈L2(Ω)

λ

2
||u||2L2 +

1

2
||Tu− g||2L2 ,

In this case, ∂J(u0) = u0 and the minimizer u satisfies

1

2
||u− u0||2L2 =

1

2
||u||2L2 −

1

2
||u0||2L2 − 〈u0, u− u0〉 6

δ2

2λ
+
λ||u0||2L2

2
+ δ||u0||L2 = O(δ)

provided that λ ∼ δ.
Theorem 9. Consider the setting of Theorem 8 and v = −div z with ||z||∞ 6 1. Let

Ur
def.
= {x ∈ Ω ; |z(x)| < r} .

For each r ∈ (0, 1),

(1− r)
∫
Ur

|Du| 6 δ2

2λ
+
λ||p||2L2

2
+ δ||p||L2 .

Proof.

d := J(u)− J(u0)− 〈v, u− u0〉
= J(u)− J(u0) + 〈div z, u〉 − 〈div z, u0〉
= J(u) + 〈div z, u〉 since J(u0) = 〈−div z, u0〉

= J(u)−
∫

(z,Du)

= J(u)−
∫

Ω\Ur
(z,Du)−

∫
Ur

(z,Du)

> J(u)−
∫

Ω\Ur
|Du| − r

∫
Ur

|Du|

> (1− r)
∫
Ur

|Du| .

The conclusion now follows by applying the upper bound on d from Theorem 8.

12



Example Let us consider the case of denoising. Then, the proof of Theorem 8 actually yields∫
Ω

(u− u0)2 + |J(u)− J(u0)| 6 Cδ(||p||L2 + 1) (3)

provided λ = δ/||p||L2 . Let BR ⊂ R2 be the ball of radius R with origin 0 and let u0 = χBR . Then let
p = −div(z) where z is defined by

z(x) =
q
(∣∣∣ |x| −R∣∣∣)
|x|

(
x1

x2

)
, q(s) = max{1− s/ε, 0}.

(In polar coordinates (r, θ), we can write z(r, θ) = q(|r −R|)
(

cos(θ)
sin(θ)

)
). One can show that ||p|| = O(ε−1/2).

Then, by choosing U = {x ∈ Ω ; dist(x, ∂BR) > ε}, the minimizer u satisfies∫
U

|Du| 6 O
(
δ2

λ
+
λ

ε
+
δ

ε

)
= O

(
δ√
ε

)
provided that λ = δ

√
ε.

Combining with (3) yields ∫
Uc
|Du| > J(u)−

∫
U

|Du| > 2πR− C
(
δ +

δ√
ε

)
.

Therefore, most of the total variation of u is concentrated around ∂BR and the above theorem points to the
ability of TV regularization in dampening oscillations away from the true edge ∂BR.

Lecture 20

5 Numerical algorithms

We present some algorithms for solving (1) in the special case where T = Id.

In this section, we consider a discretization of our minimization problem.

Let Ω = (0, 1)2 and let

TVh(u) = h2
N∑

i,j=1

√
|ui+1,j − ui,j |2 + |ui,j+1 − ui,j |2

h

where in the sum, differences are replaced by 0 when one of the points is not on the grid {i, j = 1, . . . , N}.
Moreover, u = (ui,j) is the discrete image and h = 1/N is the discretization step.

One can show that TVh correctly discretizes the functional J :
Proposition 1. Let Ω = (0, 1)2 and let p ∈ [1,∞). Let G : Lp(Ω)→ R be a continuous functional such that
limc→∞G(c + u) = +∞ for any u ∈ Lp(Ω) (this coerciveness assumption simply ensures the existence of
minimizers, other more general conditions can also be considered). Let h = 1/N > 0 and let uh = (ui,j)

N
i,j=1,

identified with the function

uh(x) =

N∑
i,j=1

χ((i−1)h,ih)×((j−1)h,jh)(x)ui,j ,

be a solution of minuh TVh(uh) + Gh(uh) where Gh(uh) = G(uh). Then, there exists u ∈ Lp(Ω) and some
subsequence uhk → u strongly in L1 as k →∞ such that u is a minimizer in Lp(Ω) to J(u) +G(u).
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For simplicity, we now let h = 1, and define discrete gradient operators as follow: Let X = RN×N and let
Y = X ×X. ∇ : X → Y is defined by

(∇u)i,j =

(
(D+

x u)i,j

(D+
y u)i,j

)
, (D+

x u)i,j =

{
ui+1,j − ui,j i < N

0 i = N,
(D+

y u)i,j =

{
ui,j+1 − ui,j j < N

0 j = N.

We denote the adjoint of ∇ by ∇∗ = −div : Y → X. So, given p = (px, py) ∈ Y ,

(div p)i,j = (pxi,j − pxi−1,j) + (pyi,j − p
y
i,j−1)

where the first difference is replaced by pxi,j if i = 1 and by −pxi−1,j if i = N , and the second difference is
replaced by pyi,j if j = 1 and by −pyi,j−1 if j = N .

We now consider the minimization problem

min
u∈X

λ||∇u||2,1 +
1

2
||u− g||22, (4)

where ||p||2,1 =
∑
i,j

√
(pxi,j)

2 + (pyi,j)
2.

This problem can also be written in the general form

minF (Au) +G(u) (5)

where F : Y → R and G : X → R are convex, A : X → Y is a linear operator. Here, F = ||·||2,1, G = 1
2 ||·−g||

2
2

and A = ∇.

5.1 Gradient descent

If we want to minimize a proper, convex, lsc functional F which is differentiable and such that ∇F has
Lipschitz constant L: |∇F (x)−∇F (y)| 6 L||x− y|| for all x, y ∈ X, then one can apply the gradient descent
algorithm:

Choose a step size h > 0 and any u0 ∈ X, and let for any n > 0

un+1 = un − h∇F (un).

Provided that h is sufficiently small, the sequence un will converge to a minimizer:
Theorem 10. Let minF = F (u∗). Assume h ∈ (0, 2/L). Then F (uk) → F (u∗) as k → ∞. The best rate
of convergence is obtained for h = 1/L and is

F (uk)− F (u∗) 6
2L||u0 − u∗||2

k + 4
.

The objective function in (4) is not differentiable, however, it can be approximated by

Fε(u) = λ
∑
i,j

√
ε2 + |(∇u)i,j |2 +

1

2
||u− g||2, ε > 0,

and one can show convergence of minimizers of this functional to minimizer of (4). Now,

∇Fε(u) = −λ div

 ∇u√
ε2 + |∇u|2

+ u− g

14



and has Lipschitz constant O(ε−1). Therefore, the iterates of the gradient descent algorithm are

un+1 = un + hλdiv

 ∇un√
ε2 + |∇un|2

− h(un − g),

with h ∼ ε−1 and we are in fact approximating the PDE

∂tu = λ div

 ∇u√
ε2 + |∇u|2

− (u− g).

In practice, this algorithm is very slow as we are required to take an extremely small stepsize.

5.2 A dual formulation

This section derives a dual formulation of the problem (4).

5.2.1 Notions from convex analysis

Let us first recall some notions from convex analysis.
Definition 8. Let F : X → R. The Legendre-Fenchel conjugate F ∗ of F for any p ∈ X is

F ∗(p) = sup
x∈X
〈p, x〉 − F (x).

Note that F ∗ is convex and is lower semicontinuous (since it is the supremum of linear, continuous functions).
It is also proper if F is convex and proper.

An example Let G(x) = ||x− g||22. Then,

G∗(y) = sup
x
〈x, y〉 − 1

2
||x− g||2 = sup

x
〈x− g, y〉 − 1

2
||x− g||2 + 〈g, y〉 =

1

2
||y||2 − 〈g, y〉 =

1

2
||y + g||2 − ||g||

2

2
.

Indeed, the penultimate equality follows because

• 〈x− g, y〉 − 1
2 ||x− g||

2 6 1
2 ||y||

2 for all x, y, g. So, supx〈x− g, y〉 − 1
2 ||x− g||

2 6 1
2 ||y||

2.

• Setting x = y + g, we have that 〈x− g, y〉 − 1
2 ||x− g||

2 = 1
2 ||y||

2.
Theorem 11. • If F is proper, convex and lsc, then F ∗∗ = F .

• For any convex F , p ∈ ∂F (x) if and only if 〈p, x〉 − F (x) = F ∗(p). Furthermore, if we additionally
assume that F is proper and lsc, then since F ∗∗ = F , we have that x ∈ ∂F ∗(p).

• Let F be convex. Then, u minimizes F if and only if 0 ∈ ∂F (u).

• Let F,G be convex, if int(dom(G)) ∩ dom(F ) 6= ∅, then

∂(F +G) = ∂F + ∂G.

(dom(F ) is the set of points where F (x) <∞ and note also that in general, ∂(F +G) ⊃ ∂F + ∂G.)
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Proximal mappings If F is a convex proper lsc functional with bounded sublevel sets (i.e. {x : F (x) 6 λ}
is bounded for every λ ∈ R), then

min
y
δF (y) +

1

2
||y − x||2

always has a unique solution and this solution y satisfies

0 ∈ δ∂F (y) + y − x

We call (I + δ∂F )−1 : X → X the proximal mapping of δF . So,

y = (I + δ∂F )−1(x) = argminy δF (y) +
1

2
||x− y||2

is a well defined mapping.
Remark 8. • We have Moreau’s identity: x = (I+ δ∂F )−1(x) + δ(I+ δ−1∂F ∗)−1(x/δ). Therefore, if one

can easily compute the proximal mapping F ∗ if we are given that of F .

• By writing un+1 ∈ un − δ∂F (un+1), we have that un+1 = (I + δ∂F )−1(un) and can consider this as
an implicit gradient descent step.

Examples

• If K is a closed convex set and H(p) = 0 if p ∈ K and +∞ otherwise, then

(I + δ∂H)−1(x) = argminy∈K
1

2
||x− y||22

is the Euclidean projection of x onto the set K.

• Let f(x) = |x|. Then

(I + δ∂f)−1(x) = argminy δ |y|+
1

2
|x− y|2 =


x− δ if x > δ

0 if |x| < δ

x+ δ if x 6 −δ.

This is the soft shrinkage operator, and by separability of the `1 norm,

(I + δ∂|| · ||1)−1(x) = (x− δ sign(x))1{|x|>δ}.

5.2.2 Dual formulation

Let u be a minimizer of (4). Denote F (u) = ||∇u||2,1 Then, equivalently,

g − u
λ
∈ ∂F (u) ⇐⇒ u ∈ ∂F ∗

(
g − u
λ

)
.

Let v = g−u
λ . Then

0 ∈ v − g

λ
+

1

λ
∂F ∗(v),

which is exactly the equation which characterizes the minimizers of

min
v

1

2
||v − g

λ
||2 +

1

λ
F ∗(v).
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To compute F ∗, by definition

F (u) = ||∇u||2,1 = sup {〈ξ, ∇u〉 ; ||ξi,j || 6 1, ∀i, j}
= sup {−〈div ξ, u〉 ; ||ξi,j || 6 1, ∀i, j} = sup

p∈X
〈p, u〉 −H(p)

where K = {−div ξ ; ||ξi,j || 6 1},

H(p) =

{
0 p ∈ K
∞ p 6∈ K.

So, F = H∗. Since K is a closed and convex set, H is convex, proper, lowersemicontinuous, and we have
that F ∗ = H∗∗ = H. Therefore u minimizers (4) if and only if v = (g − u)/λ minimizes minv∈K

1
2 ||v −

g
λ ||

2.
Therefore, by computing a minimizer ξ of

min
||ξi,j ||61

1

2
|| div ξ +

g

λ
||2, (6)

we recover u = g + λ div(ξ) as the solution to (4).

Lecture 21

The projected gradient descent algorithm We cannot apply the gradient descent algorithm to solve
this dual problem – although the objective is differentiable with derivative∇ (div p+ g/λ) which has Lipschitz
constant L 6 8, it is minimized over a convex set. Instead, we consider the projected gradient descent
algorithm of Beck and Teboulle: Consider

min
x∈X

F (x) +G(x)

where F is C1,1 such that ∇F has Lipschitz constant L and (I + h∂G)−1 is simple to compute. The idea is
to compute one step of the gradient descent of F in an explicitly, then one step of the gradient descent of G
implicitly. The resulting algorithm is:

Choose h > 0 and choose u0 ∈ X. For n > 0, let

un+1 = (I + h∂G)−1(un − h∇F (un)). (7)

Intuition behind algorithm Since ∇F is L-Lipschitz, by the fundamental theorem of calculus,

F (y) = F (x) +

∫ 1

0

〈∇F (x+ t(y − x)), y − x〉dt

= F (x) + 〈∇F (x), y − x〉+

∫ 1

0

〈∇F (x+ t(y − x))−∇F (x), y − x〉dt

6 F (x) + 〈∇F (x), y − x〉+
L

2
||y − x||2.

So, the parabola defined by

y 7→ QL(y, x) = F (x) + 〈∇F (x), y − x〉+
L

2
||y − x||2

approximates F from above. Let x = xn and replace the minimization of F at step n with

min
y
QL(y, xn).
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Then, the minimizer y satisfies 0 = L(y − xn) +∇F (xn), i.e. y = xn − 1
L∇F (xn).

If we now let

QL(y, x) = F (x) + 〈∇F (x), y − x〉+
L

2
||y − x||2 +G(y), (8)

then
F (y) +G(y) 6 QL(y, x), ∀x, y ∈ X.

In particular, computing the minimizer of miny QL(y, xn) is equivalent to finding y such that

0 ∈ ∇F (xn) + L(y − xn) + ∂G(y) (9)

which is one step of the proximal gradient descent algorithm with h = 1/L.

Convergence
Lemma 6. Let x ∈ X, h > 0 and let QL be defined as in (8). Let y = argminQ1/h(·, x) be such that

F (y) +G(y) 6 Q1/h(y, x).

Then for any z ∈ X,

F (z) +G(z)− (F (y) +G(y)) >
1

2h

(
||y − z||2 − ||x− z||2

)
.

Proof. By assumption

F (z) +G(z)− (F (y) +G(y)) > F (z) +G(z)−Q1/h(y, x). (10)

Also,
F (z) > F (x) + 〈∇F (x), z − x〉 (11)

while
G(z) > G(y) + 〈p, z − y〉, (12)

where

p =
x− y − h∇F (x)

h
∈ ∂G(y).

Note that such p exists since y is a minimizer of Q1/h(·, x) (c.f. (9)). Adding up (11) and (12) yields

F (z) +G(z) > F (x) +G(y) + 〈∇F (x), z − x〉+ 〈p, z − y〉.

We deduce from (10) that

F (z) +G(z)− (F (y) +G(y)) > F (x) +G(y) + 〈∇F (x), z − x〉+ 〈p, z − y〉 −Q1/h(y, x)

= F (x) +G(y) + 〈∇F (x), z − x〉+ 〈p, z − y〉 − F (x)−G(y)− 〈∇F (x), y − x〉 − 1

2h
||y − x||2

= 〈∇F (x) + p, z − y〉 − 1

2h
||y − x||2 =

1

h
〈x− y, z − y〉 − 1

2h
||y − x||2 =

1

2h

(
||y − z||2 − ||x− z||2

)
.

Theorem 12. Let (un) satisfy (7) and let h = 1/L where L is the Lipschitz constant of ∇F . Let u∗ be a
minimizer. Then,

F (uk) +G(uk)− (F (u∗) +G(u∗)) 6
L||u0 − u∗||2

2k

for any k > 1.
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Proof. Using Lemma 6 with z = u∗, x = un and h = 1/L,

2

L

(
F (u∗) +G(u∗)− F (un+1)−G(un+1)

)
> ||un+1 − u∗||2 − ||un − u∗||2.

Summing this from n = 0, . . . , k − 1 yields:

2

L

(
k(F (u∗) +G(u∗))−

k∑
n=1

(F (un) +G(un))

)
> ||uk − u∗||2 − ||u0 − u∗||2. (13)

By applying Lemma 6 with z = x = un and h = 1/L:

2

L

(
F (un) +G(un)− F (un+1)−G(un+1)

)
> ||un+1 − un||2.

Multiplying this by n and summing from n = 0, . . . , k − 1 yields

2

L

k−1∑
n=1

F (un) +G(un)− 2

L
(k − 1)(F (uk) +G(uk)) >

k−1∑
n=0

n||un+1 − un||2.

Adding this inequality to (13) yields

2

L

(
k(F (u∗) +G(u∗))− k(F (uk) +G(uk))

)
> −||u0 − u∗||2.

Total variation denoising To apply the projected gradient descent algorithm to solve (6), we let

F (p) =
1

2
|| div p+ g||2, and G(p) =

{
0 ||pi,j || 6 1∀i, j
∞ otherwise.

Note that
∇F (p) = −∇(div p+ g),

has Lipschitz constant at most 8. Letting PC be the projection onto

C
def.
= {p ; ||pi,j || 6 1} .

The projected gradient descent algorithm is performed by projecting back onto the set C after taking a step
of the gradient descent of F , giving the following iterations:

pn+1 = PC(pn + h∇(div pn + g)) =
pn + h∇(div pn + g)

max{1, ||pn + h∇(div pn + g)||}
,

with step size h 6 1/8 (division and norm operation in the denominator is interpreted pointwise).

5.3 The primal dual algorithm

We present the primal dual alorithm of Chambolle and Pock.

The minimization problem (5) can be rewritten as

min
x∈X

max
y∈Y
〈y, Ax〉 − F ∗(y) +G(x). (14)
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The idea of the primal dual algorithm is to alternate descent in x and ascent in y.

Under mild conditions (F : Rm → (−∞,∞], and G : RN → (−∞,∞] are proper convex functions such that
either dom(F ) = Rm or dom(G) = RN and there exists x ∈ RN such that Ax ∈ dom(F ),) one can swap the
max and the min in the saddle point problem (14):

min
x∈X

F (Ax) +G(x) = min
x∈X

max
y∈Y
〈y, Ax〉 − F ∗(y) +G(x) = max

y∈Y
−max
x∈X
−〈y, Ax〉+ F ∗(y)−G(x)

= max
y∈Y
−G∗(−A∗y)− F ∗(y).

The primal dual gap is defined as

G(x, y) = F (Ax) +G(x) +G∗(−A∗y) + F ∗(y) > 0

and vanishes if and only if (x̂, ŷ) solve the saddle point problem (14). In particular, for all x, y ∈ X,

〈y, Ax̂〉 − F ∗(y) +G(x̂) 6 〈ŷ, Ax̂〉 − F ∗(ŷ) +G(x̂) 6 〈ŷ, Ax〉 − F ∗(ŷ) +G(x).

This suggest simultaneously performing approximate gradient descent in x and gradient ascent in y: choose
starting points x0 and y0, and step sizes τ, σ > 0. Define

yn+1 = (I + σ∂F ∗)−1(yn + σAxn)

xn+1 = (I + τ∂G)−1(xn − τA∗yn+1).

This iteration procedure was originally proposed by Zhu and Chan (2008), albeit with no proof of convergence.

A variant of this by Chambolle and Pock (2010) (and is what we shall refer to as the primal dual algorithm)
is

Choose starting points x0 = x0 and y0, and step sizes τ, σ > 0. Define

yn+1 = (I + σ∂F ∗)−1(yn + σAxn)

xn+1 = (I + τ∂G)−1(xn − τA∗yn+1)

xn+1 = 2xn+1 − xn

and the iterates xn and yn converge to the solutions of the saddle point problem (14) provided that the
step sizes τ and σ satisfy: τσ||A||2 < 1.

Total variation denoising In the case of total variation denoising, we let F = || · ||2,1, G = 1
2 || · −g||

2 and
A = ∇. We have that

• (I + τ∂G)−1(u) = u+τg
1+τ .

• F ∗ = ιK where K = {p ; ||pi,j || 6 1,∀i, j} and ιK(x) = 0 if x ∈ K and +∞ otherwise. Therefore,
(I + σ∂F ∗)−1 is the Euclidean projection onto K and x = (I + σ∂F ∗)−1(y) for y ∈ Y is such that

xi,j =
yi,j

max{1, ||yi,j ||}
.

Theorem 13. Let F (p) =
∑
i,j

√
(pxi,j)

2 + (pyi,j)
2. Then, (I + τ∂F )−1(u) = ((pxi,j , p

y
i,j))i,j where for t ∈

{x, y} and ui,j = (uxi,j , u
y
i,j),

pti,j =

(
uti,j − τ

uti,j
||ui,j ||

)
1||ui,j ||>τ
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This in particular implies that the proximal mapping for the `1 norm on complex vectors is

(I + τ∂|| · ||1)−1(x) = (x− τ sign(x))1|x|>τ

Proof. (i) is straightforward. For (ii), it suffices to consider

v ∈ argminv∈R2

1

2
||
(
u1

u2

)
−
(
v1

v2

)
||2 + τ

√
v2

1 + v2
2 .

Suppose v is such that |v| > 0. Then, f(v) =
√
v2

1 + v2
2 is differentiable at v and v satisfies

τ
v1

||v||
= u1 − v1, τ

v2

||v||
= u2 − v2. (15)

By multiplying the first equality by v1 and the second by v2, we see that v1u2 = u1v2. Therefore, v is parallel
to u. Substituting this back into (15), we have that

v1 = u1 − τ
u1

||u||
, v2 = u2 − τ

u2

||u||
.

If |u| < τ , then this implies that the sign of v1 and u1 are opposite to each other which contradicts (15).
Therefore, v = 0 whenever |u| < τ .

6 Further remarks on TV denoising

6.1 Explicit solutions

Explicit solutions to the ROF model were studied in “A characterization of convex calibrable sets in RN”
by Alter, Casselles and Chambolle (2003). In particular, they defined the set of calibrable sets:
Definition 9. C ⊂ R2 is a calibrable set if there exists α > 0 such that αχC ∈ ∂J(χC).
Definition 10. Let C ⊂ RN . The perimeter of the set C is defined to be Per(χC) := J(χC).

Note that if C is a calibrable set, then necessarily, α = Per(C)/ |C| in Definition 9. Indeed, since we must
have α |C| =

∫
αχC = J(χC) = Per(C). We let hC := Per(C)/ |C|.

Note that if C is a calibrable set, then χC − βχC ∈ λ∂J(χC), for β = 1 − λhC , which implies that βχC is
the solution to the ROF model with g = χC . Hence its edges are preserved.
Proposition 2. Let C ⊂ R2 be a connected bounded set of finite perimeter (i.e. Per(C) := J(χC) <
∞).Then, C is calibrable if and only if the following conditions hold:

1. C is a convex set;

2. ∂C is of class C1,1;

3. supp∈∂C κ∂C(p) 6 P (C)/ |C|, where κ∂C denotes the mean curvature of ∂C.

Example of a calibrable set The above propositions says that calibrable sets are essentially convex sets
with sufficiently bounded curvature. Examples include the disc, or squares with sufficiently rounded corners.
In the following, we will explicitly show that the disc is a calibrable set.

To show that C is a calibrable set, it suffices to find z ∈ L∞(Ω;R2) such that div z(x) = hC for all x ∈ C,
and div z(x) = 0, for all x 6∈ C.
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For example, if C = B(0;R), let

z(x) =

{
x
R x ∈ B(0;R)
Rx
|x|2 otherwise.

Then, div z = 2
RχC . So, the solution to ROF with g = χC is (1− 2λ/R)+χC .

Lecture 22

6.2 Gradient flow

By letting u0 = g and defining the sequence, for

un+1 = argminu∈L2(Ω) τJ(u) +
1

2
||u− un||2L2 , n = 0, . . . , bT/τc − 1,

i.e.
un+1 − un

τ
∈ ∂J(un).

One can show that as τ → 0, the piecewise constant function uτ (t, x) = un+1 for t ∈ (nτ, (n+ 1)τ) converges
in L2((0, T )× Ω) to the function u ∈ C((0, T );L2(Ω)) ∩ L∞((0, T );BV (Ω)) which solves

∂tu = div
(
Du
|Du|

)
(0, T )× Ω

Du
|Du| · ν∂Ω = 0 (0, T )× ∂Ω

u(0, ·) = g Ω.

This PDE is referred to as the total variation flow and can be seen as an alternative to the gradient flow
derived from the gradient descent of the ROF energy.

7 PDE methods

We saw in the previous section that variational methods are often associated with a PDE. Another approach
is to directly work with the PDE, without working with any energy. This can lead to different restoration
processes which are not necessarily associated with any energy.

7.1 The heat equation

The heat equation is one of the oldest and most investigated equations used in image processing.{
∂u
∂t (t, x) = ∆u(t, x) (x, t) ∈ R2 × [0,∞)

u(0, x) = u0(x) x ∈ R2.
(16)

Gaussian linear filtering The explicit solution of (16) is

u(t, x) =

∫
R2

G√2t(x− y)u0(y)dy = (G√2t ? u0)(x),

where

Gσ(x)
def.
=

1

2πσ2
exp

(
−|x|

2

2σ2

)

22



is a 2D Gaussian kernel. Moreover, by denoting the Fourier transform by Ff(ω) =
∫
R2 f(x)e−iω·xdx,

F(Gσ)(ω) = exp

(
− |ω|

2

2/σ2

)
.

So,

F
(
G√2t ? u0

)
(ω) = F(G√2t)(ω)F(u0)(ω) = exp

(
−t |ω|2

)
F(u0)(ω).

Gaussian filtering corresponds to dampening out the high Fourier frequencies and hence reduces oscillations
in space. The problem with this is that the smoothing is isotropic, meaning that it is the same in all
directions. Ideally, we don’t want to smooth across edges.

7.2 Nonlinear Diffusion – Perona Malik

Let us consider the following equation, initially proposed by Perona and Malik (1990) as a solution to the
problems caused by isotropic diffusion:

∂u
∂t = div(c(|∇u|2)∇u) in Ω× (0, T )
∂u
∂N = 0 ∂Ω× (0, T )

u(0, x) = g in Ω,

(17)

where c : [0,∞)→ (0,∞). Note that c ≡ 1 corresponds to the heat equation.

The idea of Perona and Malik is that one can change the rate of diffusion depending on spatial location.
One would like to encourage smoothing within regions in preference to smoothing across edges. Ideally, one
can set c = 1 in regions and c = 0 at edge points.

Edge enhancement Here, we describe how c can be chosen to not only diffuse, i.e. smooth out unwanted
oscillations, but also enhance edges. Let us first consider the 1D case on Ω = R:{

∂u
∂t (t, x) = [c(u2

x(t, x))ux(t, x)]x

u(0, x) = g.
(18)

By letting b(s) = 2sc′(s) + c(s), the above equation becomes{
∂u
∂t (t, x) = b(u2

x(t, x))uxx(t, x)

u(0, x) = g.
(19)

To enhance edges, we would like ux to increase over time at edge points, this leads us to consider ∂t(ux):
From (19),

∂

∂t
(ux) =

(
∂u

∂t

)
x

= uxxxb(u
2
x) + 2u2

xxb
′(u2

x).

If x is an edge at time t, then uxx(t, x) ≈ 0 and uxxx(t, x)� 0 (see Figure 1). So,

sign

(
∂u

∂t

)
x

= sign(−b(u2
x)(t, x)).

Therefore, if b(u2
x) > 0, then (18) is a forward parabolic equation and the edge is blurred; and if b(u2

x) < 0,
then (18) is a backward parabolic equation and the edge is enhanced.
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Figure 1: From top to bottom: the mollified edge u, ux, uxx and uxxx.

Let us return to the 2D Perona Malik model, recall the formulation in (23). Then, the intuition in 1D
suggests that to sharpen edges, we need to impose that

b(s) = 2sc′(s) + c(s) < 0, ∀s > K, (20)

were K is some threshold. If we want to smooth homogeneous regions, then we can impose that c(0) =
b(0) = 1, which implies that (23) behaves like the heat equation for small gradients. One typical choice for
c is

c(s) =
1

1 + s/K
.

What can we say about the existence of solutions to (17) under condition (20)? Hardly anything.

To understand this, consider the backward heat equation:{
∂u
∂t (t, x) = −uxx(t, x) on(0, T )× R
u(0, x) = g on R.

(21)

Let τ = T − t, so if u solves this backward heat equation, then v(τ, x) = u(T − τ, x) solves{
∂v
∂τ (τ, x) = vxx(τ, x) on(0, T )× R
v(T, x) = g on R.
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This is the heat equation with backward datum v(T, ·) = g. According to regularization properties of the
heat equation, g must be infinitely differentiable. If not, then (21) cannot have a classical or weak solution.

One way of tackling this ill-posedness is to introduce regularization to ensure the existence of solutions. The
idea of Catté el al (1992) is to substitute the gradient in c(|∇u|2) by a smoothed version Gσ ? ∇u. Since
Gσ ?∇u = ∇Gσ ? u, the proposed regularized scheme is:

∂u
∂t = div(c(|∇Gσ ? u|2)∇u) in Ω× (0, T )
∂u
∂N = 0 ∂Ω× (0, T )

u(0, x) = g in Ω,

(22)

Theorem 14. Let c : R+ → R+ is smooth, decreasing with c(0) = 1, lims→∞ c(s) = 0. If g ∈ L2(Ω), then
there exists a unique function u(t, x) ∈ C([0, T ];L2(R)) ∩ L2((0, T );W 1,2(Ω)) satisfying (22) in a distribu-
tional sense. Moreover, ||u||L∞((0,T ),L2(Ω)) 6 ||g||L2 and u ∈ C∞((0, T )× Ω).

Other than well-posedness, this scheme has one other advantage: If the initial data is very noisy such that
there are large oscillations in the gradient, the standard Perona-Malik scheme cannot distinguish between
’true edges’ and ’false edges’. On the other hand, the smoothing kernel Gσ ensures that the diffusion is less
sensitive to noise.

Despite the lack of a rigorous mathematical theory concerning the original Perona-Malik equation, it has
been sucessfully used in numerical similations. This is perhaps the case the the discrete problem does not
reflect the ill-posedness of the continuous problem, although this point still needs further investigation.

Directional smoothing By formally developping the divergence operator, we see that

div(c(|∇u|2)∇u) =

2(u2
xuxx + u2

yuyy + 2uxuyuxy)c′(|∇u|2) + c(|∇u|2)(uxx + uyy).

For each x where |∇u(x)| 6= 0, define the vectors

N(x) =
∇u
|∇u|

and T (x) is such that 〈T (x), N(x)〉 = 0 and |T (x)| = 1. Note that N(x) and T (x) are respectively the
unit normal and unit tangent vectors to ∂{u > u(x)} at x. Denote the Hessian of u by ∇2u and by
uTT = 〈T, ∇2uT 〉 and uNN = 〈N, ∇2uN〉 are respectively the second derivatives of u in the T -direction and
N - direction. Then,

uNN =
1

|∇u|2
(u2
xuxx + 2uxuyuxy + u2

yuyy),

and

uTT = ∆u− uNN .

Therefore, writing b(s) = c(s) + 2sc′(s), we have that

∂u

∂t
(t, x) = c(|∇u|2)uTT + b(|∇u|2)uNN . (23)

So, different choices of c will lead to different rate of diffusion along the T and N directions. Since N is
normal to the edges, it would be preferable to diffuse more in the tangential direction T . So, we impose

lim
s→∞

b(s)

c(s)
= 0 =⇒ lim

s→∞

sc′(s)

c(s)
= −1

2
.

Assuming that c(s) = sβ for some β, this limit suggests that one should take c(s) ≈ s−1/2 as s → ∞. One
choice is c(s) = (s+ 1)−1/2. Note that c(s) = s−1/2 actually recovers the gradient flow of the total variation
functional.

25



7.3 Anisotropic diffusion

Rather than simply considering the magnitude of the gradient, Weickert developped an anisotropic diffusion
model which takes into account local variations of the gradient orientation.

A natural idea is to say that the preferred smoothing direction is the one that minimizes gray-value fluctua-
tions. For θ ∈ [0, 2π), let d(θ) = (cos(θ), sin(θ)). Now, F (θ) = 〈d(θ), ∇u(x)〉2 is maximal when d is parallel to
∇u (i.e. parallel to the normal direction at x), and minimal if d is orthogonal to ∇u. Maximizing/minimizing
F (θ) is equivalent to maximizing/minimizing the quadratic form dT∇u∇uT d where

∇u∇uT =

(
u2
x uxuy

uxuy u2
y

)
.

This is a positive semidefinite matrix with eigenvalues λ1 = |∇u|2 and λ2 = 0. There exists orthonormal
eigenvectors v1 parallel to ∇u and v2 orthogonal to ∇u⊥ since

∇u∇uT∇u = |∇u|2∇u, ∇u∇uT
(
uy
−ux

)
= 0.

It is tempting to define at x an orientation descriptor as a function of ∇u∇uT . The problem is that this
does not take into account information in a neighborhood of x, making the descriptor sensitive to spurious
variations in the image. To overcome this, Weickert introduced the use of smoothing kernels at different
scales.

1. To avoid false detections due to noise, u is first convolved with a Gaussian kernel, uσ = (Gσ ? u)(x)
with σ > 0.

2. Local orientation is averaged by convolving∇uσ∇uTσ by Gρ, this yields the symmetric, positive semidef-
inite matrix (so called structure tensor)

Jρ(∇uσ) = Gρ ?∇uσ∇uTσ .

3. The matrix Jρ(∇uσ) = (jij)
2
i,j=1 has orthonormal eigenvectors v1, v2 with v1 parallel to(

2j12

j22 − j11 +
√

(j22 − j11)2 − 4j2
12

)
.

The corresponding eigenvalues are

µ1 =
1

2

(
j22 + j11 +

√
(j22 − j11)2 − 4j2

12

)
and

µ2 =
1

2

(
j22 + j11 −

√
(j22 − j11)2 − 4j2

12

)
.

Note that Jρ(∇uσ) = µ1v1v
T
1 + µ2v2v

T
2 . Then, µ1 and µ2 describe the average constrast of the

smoothed image function within a neighborhood of size O(ρ) in each eigendirection. v1 indicates the
direction of maximal gray-value fluctuations, v2 indicates the preferred local direction of smoothing.
The eigenvalues µ1 and µ2 also convey the shape information in the form

µ1(x) ≈ µ2(x) image has isotropic structure at x

µ1(x) >> µ2(x) ≈ 0 image has line-like structure at x

µ1(x) > µ2(x) >> 0 image edge forms a corner at x.
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The nonlinear diffusion process is now governed by a parabolic equation which can be viewed as an extension
of (23): 

∂u
∂t = div(D(Jρ(∇uσ))∇u) Ω× (0, T )

u(0, x) = g(x) Ω

〈D(Jρ(∇uσ))∇u, N〉 = 0 ∂Ω× (0, T ),

(24)

where S2 is the set of symmetric matrices, and D ∈ C∞(S2, S2) is called the diffusion tensor which is chosen
depending on the imaging task at hand. Roughly speaking, the eigenvectors of D should reflect the local
image structure. Hence, a good choice is to choose them to be the orthonormal basis of eigenvectors of Jρ.
The choice of the eigenvalues depend on the desired goal.

Coherence-enhancing anisotropic diffusion Recall that (µ1 − µ2)2 provides an indication of line-like
structure at x. Thus, if one wants to enhance flow-like structures and close interrupted lines, one should
smooth along the direction v2 with a diffusivity which increases wrt the coherence (µ1−µ2)2. So, one possible
choice D(Jρ) = λ1v1v

T
1 + λ2v2v

T
2 where the eigenvalues are

λ1 = α,

λ2 =

{
α µ1 = µ2

α+ (1− α) exp
(

−1
(µ1−µ2)2

)
µ1 6= µ2.

where the small positive parameter α ∈ (0, 1) keeps the diffusion tensor uniformly positive definite.

8 Inpainting

An important task in image processing is the process of filling in missing parts of damaged images based
on the information obtained from surrounding areas. It is essentially a type of interpolation and is called
inpainting.

Let g represent some given image defined on an image domain Ω. Loosely speaking, the problem is to
reconstruct the original image u in the (damaged) domain D ⊂ Ω, called the inpainting domain.

Total variation inpainting was proposed by Chan and Shen where the inpainted image u is recovered as a
minimizer of

J(u) +
λ

2
||χΩ\D(u− g)||2L2 .

Note that this variational problem acts on the whole image domain Ω, instead of posing the problem on
the missing domain D only. This has the advantage of simultaneous noise removal in the whole image and
makes the approach independent of the number and shape of the holes in the image.

In the noise free case, that is if we assume that gΩ\D is completely intact, we can also formulate the following
variational approach: assume that g ∈ BV (Ω) and see the inpainted image u that solves

min
{
J(u) ; uΩ\D = gΩ\D

}
. (25)

Theorem 15. For an original image g ∈ BV (Ω) and an inpainting domain D with Lipschitz boundary, the
minimization problem (25) has a minimizer u∗ ∈ BV (Ω).

Proof. We can rewrite (25) as
min
v
J(v) + ι{u∈L2(Ω): uΩ\D=gΩ\D}(v),
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Figure 2: What colour should the gray region be?

where ιS(u) =

{
0 u ∈ S
+∞ otherwise.

Then, we can apply the direct method of calculus of variations, noting

that the indicator function is lsc and using the compactness properties of L2.

Remark 9. Note that there is no uniqueness. However, rather than considering this an artefact of the
inpainting model, one can consider this a reflection of uncertainty in human perception (see Figure 8).

8.1 The need to consider higher order methods

As we shall see shortly, minimizing the total variation of a function is equivalent to minimizing the length
of its level lines. Thus, the total variation inpainting model will produce reconstructions for which the level
lines from the boundary of the inpainting region will simply be connected by straight lines. This can often
lead to visually unnatural reconstruction. In this section, we present a higher order method to alleviate this
problem.

To begin with, we present an alternative characterization of the total variation of a function:
Definition 11. Let E ⊂ Ω be a measurable set in R2. This set is called a set of finite perimeter if its
characteristic function χE ∈ BV (Ω). We write Per(E; Ω) := |DχE |(Ω), for the perimeter of E in Ω.

With the notion of sets of finite perimeter we have the following theorem.
Theorem 16 (Coarea formula). Let u ∈ BV (Ω) and for s ∈ R, the set Fs = {u > s} is the s-level set of u.
Then,

|Du| (Ω) =

∫ ∞
−∞

Per(Fs; Ω)ds

Proof. We simply outline the key steps of this proof. The first step is to establish this formula for u ∈ C∞.
This can done rigorously by approximating smooth functions by piecewise affine functions – see Theorem
1.23 of ‘Minimal surfaces and Functions of Bounded Variation’ (Giusti, 1984). However, we shall simply
present a simple argument where the boundaries of the level sets are differentiable.

Step 1: Assume u is continuously differentiable and that ∂Fλ is a differentiable curve γ(λ, s) which is
parametrized by its arc-length s. Let T (γ) be the vector tangent to this curve and note that ∇u(γ) is
orthogonal to T (γ) and parallel to N(γ), the unit normal to the curve.

Let ds and dn be the Lebesgue measures in the direction of T and N . Then,

|∇u(γ)| = ∇u(γ) ·N(γ) =
dλ

dn
. (26)

So,

J(u) =

∫
Ω

|∇u| =
∫ ∫

∂Fλ

|∇u(γ(λ, s))|dsdn.

Using (26), we have that

J(u) =

∫ ∫
∂Fλ

dsdλ =

∫
Per(Fλ)dλ.
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Step 2: Approximate u ∈ BV (Ω) by smooth functions un such that ||un − u||L1 → 0 and J(un) → J(u).
Then,

J(u) = lim
n→∞

J(un) = lim
n→∞

∫ ∞
−∞

Per({un > s})ds >
∫ ∞
−∞

lim
n→∞

Per({un > s})ds >
∫ ∞
−∞

Per({u > s})ds.

Here, the first inequality follows by Fatou’s lemma, and the second inequality follows by lower semicontinuity
of the total variation functional (note that by letting Fs = {u > s} and Fns = {un > s}, we have that∫

|un − u| =
∫
R
|Fn,s∆Fs|ds, Fn,s∆Fs = (Fn,s \ Fs) ∪ (Fs \ Fn,s).

Therefore, un → u in L1 implies that up to a subsequence, χ{unk>s} → χ{u>s} in L1 for a.e. s ∈ R).

Step 3: Deriving the upper bound.

Let u ∈ BV (Ω) and let ϕ ∈ C∞c (Ω;R2) be such that ||ϕ||L∞ 6 1.

If u > 0 a.e., then u(x) =
∫ u(x)

0
ds =

∫∞
0
χu>s(x)ds. So, by Fubini,∫

Ω

u(x) divϕ(x)dx =

∫ ∞
0

∫
Ω

χu>s(x) divϕ(x)dxds. (27)

On the other hand, if u 6 0 a.e., then u(x) = −
∫ 0

u(x)
ds =

∫ 0

−∞−χu<s(x)ds =
∫ 0

−∞(χu>s(x) − 1)ds. Note

that
∫

Ω
divϕ(x) =

∫
∂Ω
ϕ · ν∂Ω = 0 since ϕ ∈ C∞c (Ω). Therefore, by this observation and by Fubini,∫

Ω

u(x) divϕ(x)dx =

∫ 0

−∞

∫
Ω

χu>s(x) divϕ(x)dxds. (28)

So, given u, we can split u into its positive and negative parts u+ = uχu>0, u− = uχu<0, and combining
(27) and (28), we have that ∫

Ω

u(x) divϕ(x)dx =

∫ ∞
−∞

∫
Ω

χu>s divϕ(x)dxds.

Since
∫

Ω
χu>s divϕ(x)dx 6 Per({u > s}), it follows that∫

Ω

udivϕ 6
∫
R

Per({u > s})ds.

Taking the supremum over all ϕ ∈ C∞c (Ω;R2) with ||ϕ||L∞ 6 1 yields the required upper bound.

8.2 Interlude: curvature

Let x(p) = (x1(p), x2(p)) be a continuously differentiable curve in R2 with p ∈ [0, 1]. Then

• T (p) = x′(p) = (x′1(p), x′2(p)) is the tangent vector at x(p),

• N(p) = (−x′2(p), x′1(p)) is the normal vector at x(p),

• s(p) =
∫ p

0

√
(x′1(r)2 + x′2(r)2dr is the arc length.
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If we parametrize the curve x by the arc length s instead, then,

T (s) =
dx

ds
(s)

is such that |T (s)| = 1, since dp
ds = |x′(p)|−1

and dx
ds = x′(p)dp

ds (this yields a standardized parametrization).
The curvature tensor is

dT

ds
(s) =

d2x

ds2
(s)

and is parallel to N(s)/ |N(s)|, i.e.
dT

ds
(s) = κ(s)

N(s)

|N(s)|
where κ(s) is the curvature.

Note that for any parametrization p,

κ(p) =
x′1(p)x′′2(p)− x′2(p)x′′1(p)

|x′(p)|3
.

Curves as isolevels of a function Let k ∈ R, u : R2 → R and let

x(s) = {(x1(s), x2(s)) ; u(x(s)) = k}

be parametrized by its arc-length. By differentiating u(x(s)) = k with respect to s,

〈x′(s), ∇u(x(s))〉 = 0. (29)

So, x′(s) is parallel to (−ux2
(x(s)), ux1

(x(s))) and there exists λ such that

x′1(s) = −λux2 , x′2(s) = λux1 .

Differentiating (29), we get

(x′1(s))2ux1x1
+ (x′2(s))2ux2x2

+ 2x′1(s)x′2(s)ux1x2
+ x′′1(s)ux1

+ x′′2(s)ux2
= 0,

and

(λux2
)2ux1x1

+ (λux1
)2ux2x2

− 2λ2ux1
ux2

ux1x2
+

1

λ
(x′′1(s)x′2(s)− x′′2(s)x′1(s)) = 0

Since |x′(s)| = 1, we get that λ2 = |∇u|−2
, and one can rearrange to observe that

κ = div

(
∇u
|∇u|

)
.

8.3 The Euler’s Elastica inpainting model

In the TV inpainting model, if g is smooth and Γs = {g = s} intersects ∂D at p1 and p2, then due to the
coarea formula, we are essentially searching for

min
γs∈A

H1(γs ∩D)

over curves γs for which γs(p1) = Γs(p1) and γs(p2) = Γs(p2). This encourages straight line interpolations
between Γs(p1) and Γs(p2) and potentially leading to sharp corners. An alternative approach to alleviate
these problems would be to consider the curvature of the level lines.
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In 1998, Masnous and Morel introduced Euler’s elastica energy (which originates from Euler in 1744) for the
interpolation of level lines: To connect Γs(p1) with Γs(p2) with p1, p1 ∈ ∂D, find a curve which minimizes

min
γs∈A

∫
γs

(α+ βκ2)dt,

where κ is the curvature of γs, α, β are positive weighting parameters and

A = {γs ; γs(pi) = Γs(pi), i = 1, 2} .

For all grey values s ∈ [0, 1], one aims at minimizing

E(F) =

∫ 1

0

∫
γs

(α+ βκ2)dtds,

over F = {γs ; s ∈ [0, 1], with appropriate boundary conditions}. The problem with this formulation is
that the curves may intersect (and hence would not define a function), it is also difficult numerically to deal
directly with this formulation.

Functionalized formulation In 2002, Chan, Kang and Shen (Euler’s Elastica and curvature-based in-
painting, SIAM J. Appl. Math.) introduced a functionalized formlation of the Euler’s elastica model for
inpainting: Suppose for now that u is smooth so that its curvature is well defined. Let γs = {u = s}. Recall
that κ = div (∇u/ |∇u|). Furthermore, if dn is the change in the normal direction (where u has maximal
ascent) and s denotes the intensity of u, then

ds

dn
= |∇u| , i.e. ds = |∇u|dn.

Plugging in these observations yields,∫ 1

0

∫
γs

(α+ βκ2)dtds =

∫ 1

0

∫
γs

(
α+ β

(
div

(
∇u
|∇u|

))2
)
|∇u|dtdn

=

∫
D

(
α+ β

(
div

(
∇u
|∇u|

))2
)
|∇u|dx.

The inpainting model is now: Minimize

J2(u) =

∫
D

(
α+ β

(
div

(
Du

|Du|

))2
)
|Du|dx

with conditions

uχΩ\D = gχΩ\D,

∫
∂D
|Du| = 0, |κ(p)| <∞ a.e. ∂D.

Remark 10. Note that we implicitly assume that the input data g ∈ BV (Ω) is such that
∫
∂D |Dg| = 0. The

trace of BV functions is well defined and letting g+ and g− denote the exterior and interior trace of g along
∂D, ∫

∂D
|Dg| =

∫
∂D

∣∣g+ − g−
∣∣dH1

which means that g+ = g− a.e. (w.r.t. to H1) along ∂D. In other words, we assume that g does not jump
across the boundary of D, i.e. there is no essential overlap between the boundary of the missing domain
D and image edges. Note that this is a natural restriction, since this is the assumption that entire image
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features are not missing: imagine an image of a face with clearly outlined lips. If the inpainting domain is
created by cutting along the outer edges of the upper and lower lips, then an inpainting scheme will, in the
absence of additional information, inpaint this region in accordance to the surrounding pixel values. Thus
creating a face without a mouth.

Thus the second constraint is natural since a low-level inpainting scheme is not expect to create new objects,
but to complete objects based on information outside the inpainting domain.

Curvature for BV functions? Suppose that u ∈ BV (D), then |Du| is a Radon measure on D. Let
Supp(|Du|) denote the support of this measure. Then, for any p ∈ Supp(|Du|)), on any of its small neigh-
bourhoods Np,

|Du| (Np) =

∫
Np

|Du| > 0.

Let ρ be a fixed radially symmetric non-negative mollifier with compact support and unit total integral. Let

ρσ =
1

σ2
ρ
(x
σ

)
, and uσ = ρσ ? u.

Recall the fact that that f ∈ C∞c and g ∈ L1
loc implies that f ? g ∈ C∞. So:

Definition 12. We define the weak absolute curvature κ̃(p) of u at p by

κ̃(p) = lim sup
σ→0

∣∣∣div

(
∇uσ
|∇uσ|

)
(p)
∣∣∣,

where for those σ for which |∇uσ| = 0, we define div
(
∇uσ
|∇uσ|

)
=∞. Finally, outside Supp(|Du|), since u is

constant a.e., we assign 0 to κ̃(p).

The generalized Euler’s elastics inpainting model of Chan, Kang and Shen is therefore: Minimize over
u ∈ BV (Ω)

J2(u) =

∫
D

(
α+ βκ̃2

)
|Du|dx (30)

with conditions

uχΩ\D = gχΩ\D,

∫
∂D
|Du| = 0, |κ̃(p)| <∞ a.e. ∂D.

In the presence of noise, one may solve:

Jλ2 (u) =

∫
Ω

(
α+ βκ̃2

)
|Du|dx+

λ

2
||χΩ\D(u− g)||2L2 . (31)

8.3.1 Euler Lagrange equation

Note that the Euler Elastica energy is nonconvex (unless β = 0). Moreover, due to the presence of the
curvature (which has no linear structure, e.g. one cannot say much about κu+v given κu and κv), the direct
method is difficult to emply and it is not clear how to prove establish existence of minimizers to the Euler
Elastica variational problem. In such situations, one common approach is to formally derive the Euler-
Lagrange equation. The resulting PDE formulation often allows us to handle geometry more explicitly than
the variation formulation.

We now provide a formal derivation of the optimality conditions associated with the generalized Euler’s
elastica inpainting model.

In the following, we assume that we are dealing with sufficiently smooth functions, say in W 2,1 and the
curvature is well-defined.
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Theorem 17. Let ϕ ∈ C1(R, (0,∞)) be a given function and

R(u) =

∫
Ω

ϕ(κ) |∇u|

for u ∈W 2,1(Ω). Then, its first variation over C∞c (Ω) is given by

∇uR = −div V

where

V = ϕ(κ) ·N − T

|∇u|
∂(ϕ′(κ) |∇u|)

∂T
.

Here, N = ∇u/ |∇u| is the unit normal vector, T is the unit tangent vector (〈T, N〉 = 0). By first variation,
we mean that ∫

Ω

∇uR · v =

(
d

dτ
R(u+ τv)

)∣∣∣∣
τ=0

, ∀v ∈ C∞c .

Proof. We first compute

d

dτ
R(u+ τv) =

∫
Ω

ϕ(κu+τv)
∇(u+ τv)

|∇(u+ τv)|
· ∇v + |∇(u+ τv)|ϕ′(κu+τv)

d

dτ
κu+τv. (32)

To deal with the second term, recall that κu+τv = div (∇(u+ τv)/ |∇(u+ τv)|). So,

d

dτ
κu+τv = div

(
d

dτ

∇(u+ τv)

|∇(u+ τv)|

)
= div

(
∇v

|∇(u+ τv)|
− ∇(u+ τv)(∇(u+ τv) · ∇v)

|∇(u+ τv)|3

)

= div

(
1

|∇(u+ τv)|

[
Id− ∇(u+ τv)

|∇(u+ τv)|
⊗ ∇(u+ τv)

|∇(u+ τv)|

]
∇v
)

Plugging this computation back into (32), we obtain

d

dτ
R(u+ τv)

∣∣∣∣
τ=0

=

∫
Ω

ϕ(κu)N · ∇v + |∇u|ϕ′(κu) div

(
1

|∇u|
[Id−N ⊗N ]∇v

)
, (33)

where we have written N = ∇u/ |∇u|. By integration by parts, the second term on the right can be simplified
to

−
∫

Ω

∇ (|∇u|ϕ′(κu)) ·
(

1

|∇u|
[Id−N ⊗N ]∇v

)
= −

∫
Ω

∇v ·
(

1

|∇u|
[Id−N ⊗N ]∇ (|∇u|ϕ′(κu))

)
=

∫
Ω

v · div

(
1

|∇u|
[Id−N ⊗N ]∇ (|∇u|ϕ′(κu))

)
.

For the second equality above, we have used the fact that [Id−N⊗N ] is symmetric. Moreover, by integration
by parts, the first term of (33) can be simplified as

−
∫

Ω

v div (ϕ(κu)N) .

So, (33) can be rewritten as

d

dτ
R(u+ τv)

∣∣∣∣
τ=0

= −
∫

Ω

v div

(
ϕ(κu)N − 1

|∇u|
[Id−N ⊗N ]∇ (|∇u|ϕ′(κu))

)
,
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Note that (N ⊗ N)(w) = 〈N, w〉N is the orthogonal projection of w into the normal direction, and that
I = N ⊗N + T ⊗ T . It thus follows that

∇uR = −div

(
ϕ(κu)N − T

|∇u|
〈∇ (|∇u|ϕ′(κu)) , T 〉

)
= − div

(
ϕ(κu)N − T

|∇u|
∂ (|∇u|ϕ′(κu))

∂T

)
.

Corollary 1. For the elastica painting model (31), the first variation is

∇uJλ2 (u) = − div V + λ(u− g)χΩ\D

where

V = (α+ βκ2)N − 2β

|∇u|
∂(κ |∇u|)

∂T
T,

and the associated steepest descent PDE is

∂u

∂t
= div V − λ(u− g)χΩ\D,

on Ω.

8.4 An interpretation in terms of transport and diffusion

Chan, Kang and Shen offered an interpretation of their derived Euler elastica PDE in terms of transportation
along isophotes and diffusion across isophotes.

We first recall two PDE-based inpainting schemes proposed prior to the functionalized Euler Elastica for-
mulation of Chan, Kang and Shen.

Curvature Driven Diffusion (CDD) In order to circumvent the inability of total variation inpainting
to continue level lines across large disconnected regions, Chan and Shen introduced the CDD inpainting
model:

∂u

∂t
= div

(
c(|κ|)
|∇u|

∇u
)
,

where c : [0,∞) → [0,∞) is a continuous and increasing function satisfying c(0) = 0 and c(±∞) = +∞.
If c ≡ 1, then this is simply the total variation flow. Note also the resemblence of this to the Perona
Malik model. The function c essentially controls the amount of diffusion in the normal direction. By the
prescribed properties of c, diffusion will be stronger where a level curve of u has larger curvature, and the
amount of diffusion goes to 0 as the level curves stretch out. This discourages the formation of corner which
is characteristic of TV inpainted images.

Bertalmio’s Transport Inpainting In contrast to the diffusion models that we have seen so far, the
PDE inpainting model of Bertalmio is based on the ‘transportation of smoothness’ along level curves:

∂u

∂t
= ∇⊥u · ∇L(u)

where ∇⊥u = (−uy, ux) = |∇u|T where T is the unit tangent vector to the level curve of u, and L(u) is any
smoothness measure of the u. In the original work of Beltamio, L(u) = ∆u. As the evolution approaches its
equilibrium state,

T · ∇L(u) = 0, i.e.
∂L(u)

∂T
= 0,

this means that along level lines, the smoothness measure is constant. Thus, given boundary data, boundary
smoothness is transported along level lines into the missing domain.
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Back to the Euler’s Elastical model... We saw that CDD diffuses across level lines, whereas the
Beltamio model transports along level lines. The Euler’s elastica model can be seen as an interpolation of
these two approaches. We saw that the PDE associated with Euler’s elastica model is written as

∂u

∂t
= div V

where V consists of two components: the normal part

VN = ϕ(κ) ·N,

and the tangent part

VT = − 1

|∇u|
∂(ϕ′(κ) |∇u|)

∂T
T.

Now, the normal part VN corresponds to the CDD scheme with

g(κ) = ϕ(κ).

Moreover, the tangent part VT can be written as

VT = −

(
1

|∇u|2
∂(ϕ′(κ) |∇u|)

∂T

)
∇⊥u.

and since div(∇⊥u) = 0,

div(VT ) = ∇

(
−1

|∇u|2
∂(ϕ′(κ) |∇u|)

∂T

)
· ∇⊥u.

This therefore corresponds to Bertalmio’s scheme with smoothness measure

L(u) =
−1

|∇u|2
∂(ϕ′(κ) |∇u|)

∂T
.

In the case of ϕ(s) = |s|, we get

L(u) =
±1

|∇u|
[∇2u](N,T ),

where A(N,T ) = 〈AN, T 〉. This resembles Bertalmio’s choice of the Laplacian as

∆u = [∇2u](N,N) + [∇2u](T, T ).
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