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Discrete representations

Task

Given a function f(t) defined for t ∈ R, (say, f ∈ L2(R)), how can we
transmit/store/analyse this function from finitely many values?

To give some examples:

1 f is a voice signal and we want to transmit it over a telephone line.

2 f is the cross-section of a body whose image we want to reconstruct using finitely many
samples.

3 f is an image that we want to store using finitely many values.

Suppose we have an orthonormal basis {gn : n ∈ Z} in L2(R), then we know that

f =
∑
n∈Z

cngn, cn = 〈f, gn〉.

Then, the coefficients {cn}n∈Z provides a discrete representation of f . In practice, we will
choose some finite set Λ ⊂ Z and process only the coefficients {cn}n∈Λ. One would hope that

f ≈
∑
n∈Λ

cngn.

3 / 40



Discrete representations

Task

Given a function f(t) defined for t ∈ R, (say, f ∈ L2(R)), how can we
transmit/store/analyse this function from finitely many values?

To give some examples:

1 f is a voice signal and we want to transmit it over a telephone line.

2 f is the cross-section of a body whose image we want to reconstruct using finitely many
samples.

3 f is an image that we want to store using finitely many values.

Suppose we have an orthonormal basis {gn : n ∈ Z} in L2(R), then we know that

f =
∑
n∈Z

cngn, cn = 〈f, gn〉.

Then, the coefficients {cn}n∈Z provides a discrete representation of f . In practice, we will
choose some finite set Λ ⊂ Z and process only the coefficients {cn}n∈Λ. One would hope that

f ≈
∑
n∈Λ

cngn.

3 / 40



Discrete representations

Task

Given a function f(t) defined for t ∈ R, (say, f ∈ L2(R)), how can we
transmit/store/analyse this function from finitely many values?

To give some examples:

1 f is a voice signal and we want to transmit it over a telephone line.

2 f is the cross-section of a body whose image we want to reconstruct using finitely many
samples.

3 f is an image that we want to store using finitely many values.

Suppose we have an orthonormal basis {gn : n ∈ Z} in L2(R), then we know that

f =
∑
n∈Z

cngn, cn = 〈f, gn〉.

Then, the coefficients {cn}n∈Z provides a discrete representation of f . In practice, we will
choose some finite set Λ ⊂ Z and process only the coefficients {cn}n∈Λ. One would hope that

f ≈
∑
n∈Λ

cngn.

3 / 40



The Fourier basis

Recall that, the Fourier transform of f ∈ L1(R) is defined by

f̂(ξ) =

∫
R
f(x)e−ixξdx, ξ ∈ R

and this definition can be extended to L2(R) since L1(R) ∩ L2(R) is dense in L2(R).

From classical Fourier analysis, we know that{
1

√
2Bπ

eiB
−1k· ; k ∈ Z

}
is an orthonormal basis of L2([−Bπ,Bπ]). So, given any f ∈ L2([−Bπ,Bπ]),

f(x) =
1

2Bπ

∑
k∈Z

f̂(kB−1)eikB
−1x. (1.1)
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The Shannon-Nyquist-Whittake sampling theorem (1950)

Theorem

Suppose f̂ is piecewise smooth and continuous and f̂(ξ) = 0 for all |ξ| > Bπ. Then,

f(x) =
∑
k∈Z

f

(
k

B

)
ϕ

(
x−

k

B

)
,

where ϕ(x) =
sin(πBx)
πBx

. We also have that

fN =
∑
|k|6N

f

(
k

B

)
ϕ

(
· −

k

B

)
→ f in L∞(R).

The Shannon-Nyquist-Whittaker theorem provides a discrete representation of functions and
describes how one may approximate f with finitely many values. Forms the basis of modern
signal processing and communication theory.
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Drawbacks

− Fourier approximations or Shannon approximations are better for approximating
smooth signals. Natural images have discontinuities...

− Fourier representations have the drawback of requiring many samples or coefficients to

represent localized events. More precisely, the support of the functions eikB
−1· over the

entire real line, so changing f locally will result in a change in all its coefficients

f̂(kB−1).

Approximation with N = 128 Fourier coefficients:

Wavelets, developed between the 1990’s and early 2000’s form an alternative basis which are
much better for approximating piecewise smooth signals.
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This course: some aspects of sparsity in imaging

The Shannon-Nyquist theorem was an important development and forms the basis of much
of modern signal processing.

However, in the last few decades, sparsity has played an increasing important role. We will
only look at a selection of these developments.

1980’s to early 2000’s saw the development of wavelets give rise to sparse
representations for natural images and signals.

mid-2000’s to early 2010 saw the development of compressed sensing – how can we
exploit this sparsity for efficient image reconstruction and data acquisition?

around 2012 onwards – development of infinite dimensional versions of compressed
sensing. We will look at the Beurling LASSO.
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Wavelet representations: idea

218,228,215,223,221,225,226,127,106,106, 132,132,129,130,129,128.

{
Averages : 223, 219, 223, 176.5, 106, 132, 129.5, 128.5.

Differences : 10, 8, 4,−99, 0, 0, 1,−1,

{
A : 221, 199.75, 119, 129,

D : −4,−46.5, 26,−1,

{
A : 210.375, 124,

D : −21.25, 10,

{
A : 167.188,

D : −86.375
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Wavelet decomposition
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Sparse approximation with wavelets

I {〈I, ψj,k〉 : k, j ∈ Z}
∑
k,j∈Λ〈I, ψj,k〉ψj,k

13 / 40



Wavelet definition

Wavelet

We say that a function ψ ∈ L2(R) is a wavelet for L2(R) if{
ψj,k(t) := 2j/2ψ(2jt− k) ; j, k ∈ Z

}
forms an orthonormal basis of L2(R).
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A (very) brief history

In 1910, Haar constructed the wavelet basis (although it was not known as such), by
choosing

ψ = 1[−1,−1/2) − 1[−1/2,0),

he showed that {
ψj,k := 2j/2ψ(2j · −k) ; j, k ∈ Z

}
forms an orthonormal basis of L2(R). The basis functions are compactly supported, and
large coefficients occur at sharp signal transitions (discontinuities) only.

In 1980, Strömberg discovered a piecewise linear wavelet ψ which yields better
approximation properties for smooth functions.

Unaware of this result, Meyer tried to prove that there does not exist a regular wavelet
which generates an orthonormal basis. Instead of proving this, his attempt led to the
construction of an entire family of orthonormal wavelet bases which are infinitely
continuously differentiable.

The work of Meyer led to a scurry of research on wavelets throughout the late 1980’s
and 1990’s. In the following sections, we shall study the systematic approach of
constructing orthonormal wavelet bases via multiresolution analysis, which was
established by Meyer and Mallat.

Today, JPEG 2000 standard provides compression architectures based on wavelets.
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Multiresolution Analysis [Mallat ’89, Meyer ’92]

A multiresolution analysis (MRA)

consists of a sequence of closed subspaces Vj of L2(R), with j ∈ Z, satisfying the following.

(I) Vj ⊂ Vj+1 for all j ∈ Z.

(II) For all j ∈ Z, f ∈ Vj if and only if f(2·) ∈ Vj+1.

(III) limj→−∞ Vj =
⋂
j∈Z Vj = {0}.

(IV) limj→+∞ Vj =
⋃
j∈Z Vj = L2(R).

(V) There exists ϕ ∈ V0 such that {ϕ(· − k) ; k ∈ Z} is an orthonormal basis for V0.

The function ϕ in (V) is called a scaling function for the MRA.

(II) means that the spaces are scaled versions of each other.

(I) means that the spaces become increasingly detailed as j increases. As j → +∞, we

recover the entire signal limj→+∞

∥∥∥PVj f − f∥∥∥ = 0; as j → −∞, we eventually lose all

details as limj→−∞

∥∥∥PVj f∥∥∥ = 0.

We can replace (V) with the requirement that there exists θ such that {θ(· − k) ; k ∈ Z}
is a Riesz basis for V0, i.e. there exists A,B > 0 such that for all f ∈ V0,

A ‖f‖2 6
∑
k

|〈f, θ(· − k)〉|2 6 B ‖f‖2 .

So, signal expansions over {θ(· − k) ; k ∈ Z} are numerically stable.
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Examples of MRA

Piecewise-constant: ϕ = χ[0,1). and Vj =

{
χ

[ k
2j
,
(k+1)

2j
)

; k ∈ Z
}
. Not ideal for

approximating smooth functions.

Shannon approximation: Vj is the set of functions with Fourier transform support inside

[−π2j , π2j ]. We know from the Shannon-Nyquist theorem that we can choose ϕ(t) =
sin(πt)
πt

.

Slow decay of
∥∥∥PVj f − f∥∥∥ if f has compact support.

Spline approximations: Vj of degree m is the space of functions which are m− 1
continuously differentiable and equal to polynomial of degree m on intervals
[n2−j , (n+ 1)2−j ] for n ∈ Z. m = 0 for piecewise-constant MRA, m = 1 for piecewise linear.
One can construct a Riesz basis for V0 using box splines,

θm = χ[0,1] ? · · · ? χ[0,1]︸ ︷︷ ︸
m+1 times

,

centering at 0 if m is odd and at 1/2 otherwise. The resultant scaling function is m− 1
differentiable and has exponential decay.
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Constructing wavelets from MRA

Let W0 be the orthogonal complement of V0 in V1, so that

V1 = V0 ⊕W0.

If we dilate elements in W0 by 2j , we get Wj
def.
=
{
ψ(2j ·) ; ψ ∈W0

}
such that

Vj+1 = Vj ⊕Wj , ∀j ∈ Z.

Since Vj → {0} as j → −∞, we have that

Vj+1 = Vj ⊕Wj = Vj−1 ⊕Wj−1 ⊕Wj = ⊕jl=−∞Wl.

Also, since Vj → L2(R) as j → +∞,

L2(R) = ⊕
j∈Z

Wj .

If we can find ψ ∈W0 such that {ψ0,k}k∈Z is an orthonormal basis of W0, then {ψj,k}k∈Z is
an orthonormal basis of Wj . This implies that{

ψj,k ; j, k ∈ Z
}

is an orthonormal basis of L2(R).
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The low pass filter

Note that
1

2
ϕ(
·
2

) ∈ V−1 ⊂ V0.

By (V),
1

2
ϕ(
·
2

) =
∑
k

αkϕ(·+ k)

where

αk =
1

2

∫
ϕ(
x

2
)ϕ(x+ k)dx,

∑
k

|αk|2 <∞.

By applying the Fourier transform,

ϕ̂(2ξ) =
∑
k

αke
ikξϕ̂(ξ) =: m0(ξ)ϕ̂(ξ).

The 2π-periodic function m0 is call the low pass filter of ϕ.

Theorem

Let {Vj}j∈Z be an MRA with scaling function ϕ and low pass filter m0. Let ψ be such that

ψ̂(ξ) = eiξ/2m0(ξ/2 + π)ϕ̂(ξ/2).

Let W0 = Span
{
ψ0,k ; k ∈ Z

}
. Then,

{
ψ0,k ; k ∈ Z

}
is an orthonormal basis of W0 and

V1 = V0 ⊕W0.
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We have therefore shown that given any MRA and scaling function, we can always construct
an orthonormal wavelet by

ψ̂(ξ) = eiξ/2m0(ξ/2 + π)ϕ̂(ξ/2).

Recall also that
ϕ̂(2ξ) = ϕ̂(ξ)m0(ξ), m0(ξ) =

∑
k∈Z

αke
ikξ.

So,

ψ̂(2ξ) = eiξϕ̂(ξ)
∑
k∈Z

αke
−ikξ(−1)k ⇐⇒ ψ̂(ξ) = ϕ̂(ξ/2)

∑
k∈Z

αke
−i(k−1)ξ/2(−1)k

and by taking the Fourier transform,

ψ(x) = 2
∑
k∈Z

(−1)kαkϕ(2x− (k − 1)).

βk
def.
= (−1)kαk are called the high pass filter coefficients.

Example: Piecewise constant MRA is linked to Haar wavelet

If ϕ = 1[−1,0), then m0(ξ) = 1
2

(1 + eiξ) and ϕ̂(ξ) = 1−eiξ
−iξ = eiξ/2

sin(ξ/2)
ξ/2

. So,

ψ̂(ξ) = eiξ/2
(1− e−iξ/2)(1− eiξ/2)

−iξ
= ieiξ/2

sin2(ξ/4)

ξ/4

which is the Fourier transform of 1[−1,−1/2) − 1[−1/2,0).
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Almost all wavelets are MRA wavelets...

Remark

Not all wavelets are associated with an MRA, however, non-MRA wavelets are rare. In
particular, if ψ is an orthonormal wavelet such that any of the following conditions hold,
then it must be an MRA wavelet.

ψ is compactly supported.∣∣∣ψ̂∣∣∣ is continuous and
∣∣∣ψ̂(x)

∣∣∣ = O(|x|−1/2−α) for some α > 0.

ψ is bandlimited and
∣∣∣ψ̂∣∣∣ is continuous.
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Discrete wavelet transform

Let N = 2J . For a continuous signal f supported on [0, 1], we have

2J/2〈f, ϕJ,k〉 = 2J
∫
f(x)ϕ(2Jx− k)dx ≈ f(k/N), k = 1, . . . , N.

For j, n ∈ Z, let
aj,n = 〈f, ϕj,n〉, dj,n = 〈f, ψj,n〉.

Recall
VJ = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕WJ−1.

Given any f ∈ VJ ,

f =
∑
n

aJ,nϕJ,n, f =
∑
n

a0,nϕ0,n +

J−1∑
j=0

∑
n

dj,nψj,n,

You can convert between the following 2 representations in O(N) operations:

{aJ,k : k = 1, . . . , N}

{a0,0} ∪ {dj,k : 0 6 j < J, 0 6 k < 2j}
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Discrete wavelet transform [Mallat ’89]

We first consider one level of the decomposition Vj = Vj−1 ⊕Wj−1.

f =
∑
n

aj,nϕj,n, f =
∑
n

aj−1,nϕj−1,n +
∑
n

dj,nψj−1,n,

Recall that

ϕj−1,n =
√

2
∑
k∈Z

αkϕj,2n−k and ψj−1,n =
√

2
∑
k∈Z

βkϕj,2n−k.
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Decomposition from {aj,n}n to {aj−1,n, dj−1,n}n

aj−1,n = 〈f, ϕj−1,n〉 = 〈f,
√

2
∑
k∈Z

αkϕj,2n−k〉 =
√

2
∑
k

αkaj,2n−k =
√

2(aj ? α)[2n].

dj−1,n = 〈f, ψj−1,n〉 = 〈f,
√

2
∑
k∈Z

βkϕj,2n−k〉 =
√

2
∑
k

βkaj,2n−k =
√

2(aj ? β)[2n].

23 / 40



Discrete wavelet transform [Mallat ’89]
We first consider one level of the decomposition Vj = Vj−1 ⊕Wj−1.

f =
∑
n

aj,nϕj,n, f =
∑
n

aj−1,nϕj−1,n +
∑
n

dj,nψj−1,n,

Recall that

ϕj−1,n =
√

2
∑
k∈Z

αkϕj,2n−k and ψj−1,n =
√

2
∑
k∈Z

βkϕj,2n−k.

Reconstruction from {aj−1,n, dj−1,n}n to {aj,n}n∑
n

aj,nϕj,n =
∑
n

aj−1,ϕj−1,n +
∑
n

dj−1,nψj−1,n

=
∑
n

aj−1,n

√2
∑
k∈Z

αkϕj,2n−k

+
∑
n

dj−1,n

√2
∑
k∈Z

βkϕj,2n−k


=
∑
n∈Z

ϕj,n

(
√

2
∑
k

aj−1,kα2k−n + dj−1,kβ2k−n

)

Let α̃j = α−j , β̃j = β−j and let

ãj,n =

{
aj,n/2 n even,

0 otherwise,
d̃j,n =

{
dj,n/2 n even,

0 otherwise.

Then, aj,n =
√

2(ãj−1 ? α̃+ d̃j−1 ? β̃)n.
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Wavelets in 2D

Given an ONB
{
ψj,k ; j, k ∈ Z

}
for L2(R), we can construct an ONB for L2(R2) by taking

tensor products:{
Ψj1,j2,k1,k2

(x, y)
def.
= ψj1,k1

(x)ψj2,k2
(y) ; j1, j2, k1, k2 ∈ Z

}
.

But we lose the MRA structure and we mix information at different scales.

Take tensor product of 1D MRA’s.
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Separable wavelet bases
Given an MRA {Vj}j∈Z, define for j ∈ Z,

Vj = Vj ⊗ Vj = span {f(x)g(y) ; f, g ∈ Vj} .

To construct the wavelet basis, just as in the 1D case, Wj is defined to be the orthogonal
complement of Vj in Vj+1. Observe that

Vj+1 = Vj+1 ⊗ Vj+1 = (Vj ⊕Wj)⊗ (Vj ⊕Wj)

= (Vj ⊗ Vj)︸ ︷︷ ︸
Vj

⊕ (Wj ⊗ Vj)⊕ (Vj ⊗Wj)⊕ (Wj ⊗Wj)︸ ︷︷ ︸
Wj

.

Wj consists of 3 parts and it has an orthonormal basis given by{
Ψhj,n,Ψ

v
j,n,Ψ

d
j,n ; n ∈ Z2

}
where given Ψ(x, y), Ψj,n(x, y)

def.
= Ψ(2jx− n1, 2jy − n2).

There are 3 generating wavelets:

Horizonal: Ψh(x, y) = ψ(x)ϕ(y),

Vertical: Ψv(x, y) = ϕ(x)ψ(y),

Diagonal: Ψd(x, y) = ψ(x)ψ(y).
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Linear and nonlinear approximation (Fourier)

Reconstruct 1D periodic signal f ∈ L2[0, 1] with basis elements: em(x) for m ∈ Z.

f linM =
∑

|m|6M/2
〈f, em〉em, fnonlinM =

∑
m∈ΛM

〈f, em〉em

where ΛM indexes the largest M coefficients of f in magnitude.

For Fourier approximations, linear ≈ nonlinear.
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|m|6M/2
〈f, em〉em, fnonlinM =

∑
m∈ΛM

〈f, em〉em

where ΛM indexes the largest M coefficients of f in magnitude.

Smooth functions (Fourier)

Let em(x) = e2πimx with m ∈ Z.

If f ∈W s,2[0, 1] with Supp(f) ⊂ (0, 1), then |〈f, em〉| = 1
2π|m|s

∣∣〈f (s), em〉
∣∣.

So, ∥∥∥f − f linM ∥∥∥2
=

∑
|m|>M/2

∣∣〈f (s), em〉
∣∣2

4π2 |m|2s
. 1

M2s

∑
|m|>M/2

∣∣∣〈f (s), em〉
∣∣∣2 6 1

M2s

∥∥∥f (s)
∥∥∥2

For Fourier approximations, linear ≈ nonlinear.

27 / 40



Linear and nonlinear approximation (Fourier)

Reconstruct 1D periodic signal f ∈ L2[0, 1] with basis elements: em(x) for m ∈ Z.

f linM =
∑

|m|6M/2
〈f, em〉em, fnonlinM =

∑
m∈ΛM

〈f, em〉em

where ΛM indexes the largest M coefficients of f in magnitude.

Piecewise-regular functions (Fourier)

If f is piecewise regular, then∥∥∥f − f linM ∥∥∥2
.M−1.

NB: If f = 1[0,1/2), then for m 6= 0,

|〈f, em〉| = 1
π|m| if m odd and zero

otherwise.

Examples of 1D Approximations

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

For Fourier approximations, linear ≈ nonlinear.

27 / 40



Linear and nonlinear approximation (Fourier)

Reconstruct 1D periodic signal f ∈ L2[0, 1] with basis elements: em(x) for m ∈ Z.

f linM =
∑

|m|6M/2
〈f, em〉em, fnonlinM =

∑
m∈ΛM

〈f, em〉em

where ΛM indexes the largest M coefficients of f in magnitude.

Piecewise-regular functions (Fourier)

If f is piecewise regular, then∥∥∥f − f linM ∥∥∥2
.M−1.

NB: If f = 1[0,1/2), then for m 6= 0,

|〈f, em〉| = 1
π|m| if m odd and zero

otherwise.
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For Fourier approximations, linear ≈ nonlinear.

27 / 40



Fourier approximations in 2D

If f ∈W s,2, then linear/nonlinear error is O(M−s).

If f is piecewise regular, then linear/nonlinear error is O(M−1/2).

f N/4 N/8 N/16
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Desirable properties of wavelets

1 Compact support.

2 We say that ψ has p vanishing moments if∫
ψ(x)xkdx = 0, k = 0, . . . , p− 1.

Note that if ψ has p vanishing moments, then 〈f, ψ〉 = 0 whenever f is a polynomial of
degree at most p− 1.

Tradeoffs

An orthonormal wavelet with p vanishing moments must have support size at least
2p− 1.

There does not exists a smooth wavelet with compact support.

Remarks:

In general, if f has very few discontinuities and is smooth between the discontinuities,
then one may want to choose a wavelet with many vanishing moments.

On the other hand, as the density of the singularities increase, one may wish to find a
wavelet with smaller support at the cost of reducing the number of vanishing moments.
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Daubechies wavelets

An entire family of compactly supported wavelets with arbitrarily many vanishing moments
was constructed by Daubechies in 1992!

Vanishing moments:

p = 3

p = 4

Magnitude of Wavelet Coefficients
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If f is C� on supp(⇥j,n), p � �:

f(x) = P (x � 2jn) + R(x � 2jn) = P (2jt) + R(2jt)
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If f is C� on supp(⇥j,n), p � �:

f(x) = P (x � 2jn) + R(x � 2jn) = P (2jt) + R(2jt)

The Daubechies wavelet of p vanishing moments has support size 2p− 1.

Magnitude of wavelet coefficients

In dimension d:

If f ∈ L∞, then
∣∣〈f, ψj,k〉∣∣ . 2−jd/2.

If f ∈ Cα and ψ has p > α vanishing moments, then
∣∣〈f, ψj,k〉∣∣ . 2−j(α+d/2).
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Wavelets on the interval

We have so far constructed wavelets for L2(R), but what about L2[0, 1]?

If we simply restricted the wavelets to [0, 1], then there will be more than 2j wavelets at the
jth scale, and vanishing moments properties will be lost.
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Wavelets on the interval

We have so far constructed wavelets for L2(R), but what about L2[0, 1]?

If we simply restricted the wavelets to [0, 1], then there will be more than 2j wavelets at the
jth scale, and vanishing moments properties will be lost.

Possibility 1: Periodize. ψper
j,k

def.
=
∑
n∈Z ψj,k(x+ n). There are 2j elements at scale j, so{

ψper
j,k ; j ∈ Z, n = 0, . . . , 2j − 1

}
is an ONB for L2[0, 1].

Disadvantage: Large coefficients near the boundary. 〈ψper
j,k , f〉 = 〈ψj,k, fper〉. Vanishing

moments are not preserved.

In general, for f ∈ Cα([0, 1]), we only have
∣∣∣〈f, ψper

j,k 〉
∣∣∣ . 2−j/2.
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We have so far constructed wavelets for L2(R), but what about L2[0, 1]?

If we simply restricted the wavelets to [0, 1], then there will be more than 2j wavelets at the
jth scale, and vanishing moments properties will be lost.

Possibility 2: Reflect. ψfold
j,k

def.
=
∑
n∈Z ψj,k(−x+ 2n) + ψj,k(x+ 2n).

Slightly smaller coefficients near boundary as 〈ψfold
j,k , f〉 = 〈ψj,k, f fold〉 and f fold is

continuous at 0 and at 1. One vanishing moment preserved.

For α ∈ (0, 1) and f ∈ Cα([0, 1]), we have
∣∣∣〈f, ψfold

j,k 〉
∣∣∣ . 2−j(α+1/2).
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Wavelets on the interval
Possibility 3 by [Cohen, Daubechies, Vial (1993)]: modify the wavelets whose support
intersect 0 or 1 . {

ψint
j,k ; j ∈ Z, k = 0, . . . , 2j − 1

}
where

ψint
j,k(x) =


ψj,k k = p, . . . , 2j − p− 1

ψleft
j,k (x) = 2j/2ψright

k (2jx) k = 0, . . . , p− 1

ψright
j,k (x) = 2j/2ψright

k (2jx) k = 2j − p, . . . , 2j − 1

Figure: Modified scaling functions and wavelets for the Daubechies wavelet of p = 2 vanishing moments.

All vanishing moments preserved. For any α > 0, if f ∈ Cα([0, 1]) and ψ has p > α vanishing

moments, then
∣∣∣〈f, ψint

j,k〉
∣∣∣ . 2−j(α+1/2).
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Nonlinear wavelet approximations (1D)

If f is Cα except outside a finite set of
discontinuities, then∥∥∥f − fnonlinM

∥∥∥2
=

{
O(M−1) (Fourier)

O(M−2α) (wavelets)

Examples of 1D Approximations
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Fourier Wavelet

Examples of 1D Approximations
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Nonlinear wavelet approximations (1D)

Suppose that f is Cα except at K points.

Idea: Let S = Supp(ψ), then for each j, there are at most K |S| elements of {ψj,k}06k<2j

whose support intersects the K discontinuities.

For linear approximation: let N = 2J .∑
j>J

∑
k

∣∣〈f, ψj,k〉∣∣2 .
∑
j>J

k |S| 2−j

︸ ︷︷ ︸
disct intersecting

+
∑
j>J

2j2−j(1+2α)

︸ ︷︷ ︸
nondisct intersecting

= O(2−J + 2−2αJ ) = O(N−1).

For nonlinear approximation: let fr[k] be the kth largest coefficient in magnitude.
∃ at most jK |S| wavelets at scales up to j which intersect discontinuities.∣∣∣fdiscr [jK |S|]

∣∣∣ = O(2−j/2) =⇒
∣∣∣fdiscr [m]

∣∣∣ = O(2−m/(2K|S|)).

∃ at most 2j wavelets not intersecting the discontinuities at scales up to j,∣∣∣fnondiscr [2j ]
∣∣∣ = O(2−j(α+1/2)) =⇒

∣∣∣fnondiscr [m]
∣∣∣ = O(m−(α+1/2)).

Contribution of the discontinuity intersecting wavelets is negligible!
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Wavelet approximations in 2D

If f is Cα outside a set of finite length edge curves, then∥∥∥f − fnonlinM

∥∥∥2
=

{
M−1/2 Fourier

M−1 Wavelets

if f is discontinuous along some curve, there will be O(2j) wavelets at each scale whose
support intersect this curve.

Wavelets better than Fourier, but suboptimal.

For BV functions, same rate of decay (optimal).
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Fourier vs Wavelet approximations

N/4 N/8 N/16
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Curvelets
[Candès, Donoho], [Candès, Demanet, Ying, Donoho]

Parabolic dyadic scaling: c2j (x1, x2) ≈ 2−3j/4c(2−j/2x1, 2−jx2).

Rotation: cα
2j ,u

(x1, x2) = cα
2j

((x− u)) where cα
2j

= c2j (Rα·) and Rα is the rotation

matrix with angle α.

“width ≈ length2”
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Curvelet Tight Frame

Angular sampling: Θj =
{
α = kπ2bj/2c−1 ; 0 6 k < 2−bj/2c+2

}
Spacial sampling: ∀m ∈ Z2, u

(j,α)
m = Rα(2j/2m1, 2jm2).

Tight frame of L2(R2): {cαj,m = cα
2j

(x− uj,αm )}j∈Z,α∈Θj ,m∈Z2 .

‖f‖ =
∑
j∈Z

∑
α∈Θj

∑
m∈Z2

∣∣〈f, cαj,m〉∣∣2 , f(x) =
∑
j∈Z

∑
α∈Θj

∑
m∈Z2

〈f, cαj,m〉cαj,m.
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Curvelet Approximation

fM =
∑

(θ,j,m)∈ΛT
〈f, cαj,m〉cαj,m with ΛT =

{
(j, θ,m) ;

∣∣∣〈f, cαj,m〉∣∣∣ > T
}

.

Theorem: If f is C2 outside a set of C2 edges, then ‖f − fM‖2 = O(M−2(logM)3).

Discrete curvelets: O(N log(N)) algorithm. www.curvelet.org

Other representation systems based on anisotropic scaling: Contourlets (Vetterli, 2005),
Shearlets (Kutynoik, 2006),...

Curvelets are near-optimal if f is piecewise Cα for α = 2, but not any other α! If α > 2,
the error decay exponent at 2.

Other adaptive geometric representations such as bandlets [Le Pennec, Mallat, Peyré,
’05, ’08] (dictionaries of warped wavelet basis) which exhibit optimal error decay of
O(C−α) for piecewise Cα functions.
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Denoising via thresholding

Noisy Wavelets Curvelets

Better at restoring elongated edges, parallel textures. But, irregular textures or pointwise
singularities have a representation that is more sparse with wavelets than with curvelets, and
are thus better estimated by a wavelet thresholding.
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Summary

We discussed the construction of wavelets via a multiresolution analysis. This forms the
basis of the (fast) discrete wavelet transform.

Linear vs nonlinear approximations.

Wavelet approximations are optimal for piecewise-smooth 1D signals.

Sub-optimal for cartoon images, but still better than Fourier representations.

Improved approximations for piecewise C2 images via curvelets, shearlets.

Sources

A Wavelet Tour of Signal Processing: The Sparse Way by Stephane Mallat.

Matlab code: https://statweb.stanford.edu/~wavelab/
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