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Abstract

This document describes the recovery of a train of sparse spikes using the Beurling-LASSO. This
problem can be seen as a generalisation of the LASSO, which is commonly used for regression or sparse
recovery purposes.

1 Regression/sparse recovery via the LASSO

We begin by a reminder of the LASSO.

1.1 Regression

Given training pairs (xi, yi) ∈ Rp × R for i = 1, . . . , n, find a predictor (function) f : Rp → R such
that f(xi) ≈ yi. Then, given x ∈ Rp, we can compute a prediction y = f(x).

On popular approach is via the Lasso:

argminf∈F
1

n

∑
i

‖f(xi)− yi‖2 + λ ‖f‖ . (1)

Linear model

fθ(x) = ω>x+ b = 〈

(
ω

b

)
,

(
x

1

)
〉, where θ = {ω ∈ Rp, b ∈ R},

and ‖f‖ = ‖ω‖1.

Two Layer neural network (with one hidden layer)

fθ(x) =
N∑
j=1

ajRELU(ω>j x), where θ = {aj ∈ R, ωj ∈ Rp ; j = 1, . . . , N} ,

RELU(x) = max(x, 0) and ‖f‖ = ‖a‖1. In this case, the LASSO is a nonconvex problem.

1.2 Sparse recovery

In signal processing/compressed sensing, the Lasso is often referred to as Basis pursuit denoising.

F = RN and choose ‖f‖ def.
= ‖f‖1 and f(x)

def.
= x>f . Then, given a vector y = Xf0 ∈ Rm with

Xω =
(
x>k ω

)m
k=1

and for some f0 ∈ RN , (1) becomes

min
f∈RN

1

2λ
‖Xf − y‖22 + ‖f‖1 .
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An example of this setup is the problem of reconstructing a sparse sum of complex sinusoids from
a small sampling of its time samples: Find the parameters (aj , tj) ∈ C × [0, 1] for j = 1, . . . , s of
S(ξ) =

∑s
j=1 aje

2πiξtj from finitely many samples ξ ∈ Λ = {ξj ; j = 1, . . . ,m}. Often, we discretize the

interval [0, 1] and assume that tj ∈
{
n
N

; n = 0, . . . , N − 1
}

. Then, xk
def.
=
(
e2πiξk

n
N

)N−1

n=0
. Solving Lasso

recovers a vector f , if this has support S, the recovered parameters are a = (fn)n∈S and t = (n/N)n∈S .
Can we avoid discretization of [0, 1] and recover the true positions and amplitudes?
In both cases, what do we choose N to be? Choosing N too small leads to discretization errors and

choosing N too large could lead to numerical instabilities.

2 The sparse spikes problem

Let X ⊂ Rd. The space of Radon measures M(X ) is defined as the dual of

C0(X )
def.
= {f ∈ C(X ) ; f has compact support in X}

‖·‖∞

endowed with the uniform norm. M(X ) is a Banach space with the dual norm

|µ| (X ) = sup

{∫
X
η(x)dµ(x) ; η ∈ C0(X ), ‖η‖L∞ 6 1

}
.

This is called the total variation norm. Moreover,M(X ) is weak* compact, i.e. given any µn ∈M(X )
with |µn| (X ) 6 B, there exists a subsequence and µ∗ ∈M(X ) such that µnk weak* converges to µ∗.

The sparse spikes problem is as follows:

Recover µ0 ∈ M(X ), X ⊆ Rd, from observations, y = Φµ0 + w. Here, w ∈ H is the additive
noise and Φ :M(X )→ H, Φµ =

∫
ϕ(x)dµ(x) with ϕ ∈ C(X ,H). Typically, the measure of interest

is µ0 =
∑s
j=1 ajδxj where aj ∈ R and aδx denotes the Dirac at x ∈ X with amplitude a ∈ R.

2.1 Examples

Sampling the Fourier transform (e.g. astronomy) Let X = Td, H = Cm and ϕ(x) =(
e2πi〈x, ω〉

)
ω∈Ω

where Ω ⊂ Rd consists of m values. For example, if Ω =
{
k ∈ Zd ; |k|∞ 6 fc

}
, then

m = (2fc + 1)d and Φµ =
(∑

j aje
2πi〈k, xj〉

)
|k|6fc

.

Deconvolution H = L2(X ), ϕ(x) = t 7→ ψ(x − t) ∈ L2(X ) for some ψ ∈ L2(X ). Note that
(Φµ)(t) =

∑
j ajψ(xj − t). For example, let ψ(t) = exp

(
−‖t‖2

)
for Gaussian deconvolution.

Sampling the Laplace transform (e.g. microscopy) Recover µ ∈ M(Rd+) from (Φµ)(t) =∑
j aj exp(−〈xj , t〉). Here, ϕ(x) = t 7→ exp(−〈x, t〉).

Regression Given m training samples {(ωk, yk) ; k = 1, . . . ,m}, construct a function to predict the
values yk from ωk using a continuous dictionary of functions ω 7→ ϕω(x), parametrised by x ∈ X .

The training of a two layer neural network can be placed into this framework [Bac17].
• X = Rd.
• Let Ω ⊂ Rd, and (Ω,Λ) be a probability space (with probability distribution Λ). For ω ∈ Ω, let
ϕω(x) = max (〈x, ω〉, 0).

Let ωk be m iid points drawn from (Ω,Λ) and ϕ(x) = (ϕωk (x))mk=1. Then, Φ :M(Rd)→ Cm and given
µ0 =

∑s
j=1 ajδxj , then

(Φµ0)k =

s∑
j=1

aj max (〈xj , ωk〉, 0) .

So, we can interpret aj as the weights in the output layer and xj as the weights in the hidden layer.
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Density mixture estimation Given data on T , estimate parameters (ai)
s
i=1 ∈ Rs+ and (xi)

s
i=1 ∈ X s

of a mixture

ξ(t) =

s∑
j=1

ajξxj (t) =

∫
X
ξx(t)dµ0(x) (2)

where µ0 =
∑
j ajδxj where (ξx)x∈X is a family of template distributions. E.g. x = (m,σ) ∈ X = R×R+

and ξx = N (m,σ). So, this is a sparse spikes problem with ϕ(x)
def.
= ξx.

Sketching of density mixtures We can also consider an extension of the density estimation
problem: Typically, there is no direct access to ξ (from equation (2)) but instead, we have access to n iid
samples (t1, . . . , tn) ∈ T n drawn from ξ. Moreover, since n might be very large, rather than recording
this huge set of data, one could compute online a small set y ∈ Cm of m “sketches” against sketching
functions θω(t) [, keriven]:

yk
def.
=

1

n

n∑
j=1

θωk (tj) ≈
∫
T
θωk (t)ξ(t)dt =

∫
X

∫
T
θωk (t)ξx(t)dtdµ0(x).

So, we are back to the sparse spikes problem with ϕω(x)
def.
=
∫
T θωk (t)ξx(t)dt. For example, if θω(t) =

ei〈ω, t〉, then ϕ·(x) is the characterisatic function of ξx.

3 The BLASSO

Let us consider the following optimisation problem:

min
µ∈M(X )

|µ| (X ) +
1

2λ
‖Φµ− y‖2 . (Pλ(y))

where λ > 0 is a regularisation parameter and in the noiseless case, consider

min
µ∈M(X )

|µ| (X ) subject to Φµ = y. (P0(y))

This is called the Beurling LASSO, and was initially proposed in [DCG12] and [BP13].
Note that,

(i) µ 7→ |µ| (X ) is lower semicontinous with respect to weak* convergence and Φ is weak* to weak
continuous, so it is straightforward to establish the existence of solutions to (Pλ(y)) and (P0(y))
via the direct method of calculus.

(ii) Recall that |µ| (X ) = ‖a‖1 for µ =
∑
j ajδxj . So, this is a generalisation of the LASSO.

Questions:
1. Under what conditions can we recover a sparse measure µ0 =

∑s
j=1 ajδxj exactly in the noiseless

setting by solving (P0(y))?
2. If µ0 can be recovered in the noiseless setting, can it be stably recovered via (Pλ(y))?
3. The question of stability is a little more delicate here. Given µ1 =

∑
j ajδxj and µ2 =

∑
j a
′
jδx′j ,

we have |µ1 − µ2| (X ) =
∑
j |aj |+ |a

′
j |.

4. When do we have support stability? That is, we recover exactly s spikes and have control on error
of the amplitudes and positions.

5. Numerical algorithms which respect the infinite dimensional structure?

4 Dual certificates and recovery

4.1 Optimality condition

Let us first remark that |µ| (X ) is non-differentiable (just like the `1-norm is not differentiable), so
we consider instead its subdifferential

∂ |µ| (X )
def.
=

{
η ∈ C(X ) ; |µ̃| (X ) > |µ| (X ) +

∫
ηd(µ̃− µ)

}
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One can show that

∂ |µ| (X ) =

{
η ∈ C(X ) ; ‖η‖∞ 6 1 and

∫
ηdµ = |µ| (X )

}
.

In particular, if µ =
∑
j ajδxj ,

∂ |µ| (X ) =
{
η ∈ C(X ) ; ‖η‖∞ 6 1 and ∀j, η(xj) = sign(aj)

}
.

FACT: µ is a minimiser of a convex functional F if and only if 0 ∈ ∂F (µ).
In particular, µ is a solution of (Pλ(y)) iff 0 ∈ Φ∗(Φµ − y) + λ∂ |µ| (X ). So, if µ =

∑
j ajδxj , then

η
def.
= 1

λ
Φ∗(y − Φµ) satisfies 0 = −η + ∂ |µ| (X ), η(xj) = sign(aj), and ‖η‖∞ 6 1.

4.2 Dual problems

Relevant details on duality can be found in the appendix. The Fenchel dual problem to (Pλ(y)) is

max
‖Φ∗p‖∞61

〈y, p〉 − λ

2
‖p‖2 (Dλ(y))

which is equivalent to

min
‖Φ∗p‖∞61

∥∥∥ y
λ
− p
∥∥∥2

This is a projection onto a closed convex set and we have immediately existence and uniqueness of the
dual solution.

The dual problem of P0(y) is
sup

‖Φ∗p‖∞61

〈y, p〉. (D0(y))

Here, existence is not guaranteed, but is true when Im(Φ∗) is finite dimensional.
We have strong duality. Primal solution to (Pλ(y)) and dual solution pλ satisfy

Φ∗pλ ∈ ∂ |µλ| (X ) and pλ = − 1

λ
(Φµλ − y) (3)

Conversely, any pair pλ and µλ which satisfy the relationship (3) must be primal and dual solutions of
(Pλ(y)) and (Dλ(y)) respectively.

If there exists p ∈ D0(y), then it is linked to any solution µ of P0(y) by

Φ∗p ∈ ∂ |µ| (X ). (4)

Again, any pair µ and p which satisfy (4) must be primal and dual solutions of (P0(y)) and (D0(y))
respectively.

4.2.1 Unique recovery

Given X
def.
= {xj}sj=1, define ΦX : Rs → H by ΦXa =

∑
j ajϕ(xj).

Theorem 1. Suppose that µ0 =
∑
j ajδxj , y = Φµ0 and there exists p ∈ D0(y) such that Φ∗p(xj) =

sign(aj) and |Φ∗p(x)| < 1 for all x 6∈ {xj}j, and assume that ΦX is injective. Then, µ0 is the unique
solution to (P0(y)).

Proof. Suppose that µ is a solution of (P0(y)). We must have Supp(µ) ⊂ X. Given two solutions
µ =

∑
j ajδxj and ν =

∑
j ãjδxj , we have Φ(µ− ν) =

∑
j(aj − ãj)ϕ(xj) = ΦX(a− ã) = 0 if and only if

aj = ãj for all j. Therefore, µ = µ0.
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4.2.2 Stability

We say that a certificate is nondegenerate wrt sign(a), X if η(xj) = sign(aj), η(x) < 1 for all x 6∈ {xj}j
and sign(aj)∇2η(xj) ≺ 0. In the following, we show that more precise control on the nondegeneracy of
η around each xj ’s will lead to bounds on how closely solutions to (Pλ(y)) “cluster” around the support
{xj}j .
Theorem 2. [CFG13, ADCG15] For i = 1, . . . , s, let Bε(xi) be a neighbourhood around xi of radius ε.
Suppose that there exists c2, c0 > 0 and η = Φ∗p such that
• |η(x)| 6 1− c2 ‖x− xi‖2 for all x ∈ Bε(xi).
• |η(x)| < 1− c0 for all x 6∈

⋃
iBε(xi).

Then, choosing λ ∼ δ/ ‖p‖, any solution µ̂ to (Pλ(y)) with ‖w‖ 6 δ satisfies

c0 |µ̂|

(
X \

⋃
i

Bε(xi)

)
+ c2

s∑
i=1

∫
Bε(xi)

‖x− xi‖2 d |µ̂| (x) . δ ‖p‖ .

Remark 1. Suppose that µ̂ =
∑s
j=1

∑
k âj,kδx̂j,k +

∑
j b̂kδẑk where x̂j,k ∈ Bε(xj) and ẑj ∈ X \

⋃
j Bε(xj).

Then, this theore implies that

c0
∑
k

∣∣∣b̂k∣∣∣+ c2
∑
j

∑
k

|x̂j,k − xj |2 |âj,k| . δ ‖p‖

which suggest that the close x̂j,k is to xj , the smaller |âj,k| should be.

Remark 2. If H is a finite dimensional space, such as Cm or Rm, then there exists a solution µ which is
a sparse measure of at most m diracs. However, µ0 and µ need not be sparse in general. For example,
consider the case of deconvolution with Φ :M(X )→ L2(R) with ϕ(x) = ψ(· − x), where

ψ(t) =

{
2− 4x x ∈ [0, 1

2
]

2 + 4x x ∈ [− 1
2
, 0]

.

If dµ0
dx

def.
= χ[−1,1], then Φµ0 is symmetric about 0 with

(Φµ0)(t) =


1 t ∈ [0, 1

2
]

1− 2(t− 1/2)2 t ∈ [1/2, 1]

2(3/2− t)2 t ∈ (1, 3/2]

0 t > 3/2

Note that for p
def.
= χ[−3/2,3/2], (ψ ? p)(t) = 1 for t ∈ [−1, 1] and |(ψ ? p)(t)| < 1 for all |t| > 1. Therefore,

Φ∗p ∈ ∂ |µ0| (X ) and hence, p solves (D0(y)) and µ0 solves (P0(y)) with y = Φµ0.

Remark 3. This stability result bounds the measure on X \Supp(µ0). In the case of µ0 being a nonsparse

measure, let X̃ def.
= X \ Supp(µ0). Then,

c0 |µ̂|

(
X̃ \

⋃
i

Bε(xi)

)
+ c2

s∑
i=1

∫
X̃∩Bε(xi)

‖x− xi‖2 d |µ̂| (x) . δ ‖p‖ .

The proof of Theorem 2 makes use of the following two lemmas. The first provides a bound on the
Bregman “distance” with respect to η.

Lemma 1. [BO04] Let µ0 ∈ M(X ) be such that ‖y − Φµ0‖ 6 δ and let η = Φ∗p be such that η ∈
∂ |µ0| (X ). Then,

dη(µ, µ0)
def.
= |µ| (X )− |µ0| (X )− 〈η, µ− µ0〉 6

δ2

2λ
+
λ ‖p‖2

2
+ δ ‖p‖ .

Remark 4. Given a function J : X → R ∪ {−∞}, the Bregman distance for x, x0 ∈ X and p ∈ ∂J(x0) is
defined as dp(x, x0) = J(x)− J(x0)− 〈p, x− x0〉. By definition, dp(x, x0) > 0. For example, if X = Rn
and J(x) = 1

2
‖x‖22, then ∂J(x0) = {x0} and dp(x, x0) = 1

2
‖x− x0‖22. However, it is not a true distance

for general J as it is not symmetric.
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Proof. Since µ is a minimizer,

λ |µ| (X ) +
1

2
‖Φµ− y‖2 6 λ |µ0| (X ) +

1

2
‖Φµ0 − y‖2 6 λ |µ0| (X ) +

δ2

2
.

So,
1

2
‖Φµ− y‖2 + λdη(µ, µ0) + λ〈η, µ− µ0〉 6

δ2

2
.

By recalling that η = Φ∗p,

1

2
‖Φµ− y + λp‖2 + λdη(µ, µ0)− λ2 ‖p‖2

2
+ λ〈p, y − Φµ0〉 6

δ2

2
,

and by rearranging the above inequality,

dη(µ, µ0) 6
δ2

2λ
+
λ ‖p‖2

2
+ δ ‖p‖ .

Therefore, up to a constant, the choice of λ ∼ δ/ ‖p‖ yields a upper bound of δ ‖p‖ for the Bregman
distance. The claim of Theorem 2 follows combining this result with the following lower bound for
dη(µ, µ0):

Lemma 2. Under the assumptions of Theorem 2, we have

dη(µ, µ0) > c2
∑
j

∫
Bε(xj)

‖x− xj‖2 d |µ| (x) + c0 |µ|

(⋃
i

Bε(xi)

)
.

Proof. We have

|µ| (X )− |µ0| − 〈η, µ− µ0〉 = |µ| (X )− 〈η, µ〉

> |µ| (X )−
∑
i

|µ|

(⋃
i

Bε(xi)

)
+ c2

∑
j

∫
Bε(xj)

|x− xj |2 d |µ| (x)− (1− c0) |µ|

(
X \

⋃
i

Bε(xi)

)

= c0 |µ|

(
X \

⋃
i

Bε(xi)

)
+ c2

∑
j

∫
Bε(xj)

‖x− xj‖2 d |µ| (x)

4.3 The minimal norm certificate (MNC) and support stability

Checking the existence of a dual certificate which saturates only at X guarantees uniqueness of
solutions to P0(y) and clustering stability. However, for support stability, we need to consider the
certificate of minimal norm [DP15]. For simplicity, we restrict to the case of d = 1, although all results
can be easily extended to the higher dimensional case.

Given any µ∗ solution to (P0(y)), define

p0
def.
= min {‖p‖ ; Φ∗p ∈ ∂ |µ∗| (X )}

If p0 exists, then we call it the minimal norm certificate, and a key property is that it is the limit of
the (unique) dual solutions of (Dλ(y)) as λ→ 0.

Lemma 3. [DP15] Let pλ be the solution to (Dλ(y)) If p0 exists, then ‖pλ − p0‖ → 0 and η
(k)
λ → η

(k)
0

uniformly for all k.

Proof. Since pλ is a solution to Dλ(y), we have

〈y, pλ〉 −
λ

2
‖pλ‖2 > 〈y, p0〉 −

λ

2
‖p0‖2 , (5)
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and p0 being a solution to D0(y) implies that

〈y, p0〉 > 〈y, pλ〉.

Therefore, ‖p0‖ > ‖pλ‖, and given λn → 0, we may extract a subsequence such that pλnk
weakly

converges to p∗ for some p∗ ∈ H (recall that the closed unit ball of a Hilbert space is weakly sequentially
compact). Taking the limit of λ→ 0 in (5) yields 〈y, p∗〉 > 〈y, p0〉.

Note that Φ∗pλnk
converges weakly to Φ∗p, and so,

‖Φ∗p‖∞ 6
∥∥∥Φ∗pλnk

∥∥∥
∞

= 1.

Therefore, p∗ solves D0(y). Finally, p∗ is the solution of minimal norm since

‖p∗‖ 6 lim inf
k

∥∥∥pλnk

∥∥∥ 6 ‖p0‖ ,

and hence, p∗ = p0,
∥∥∥pλnk

∥∥∥ → ‖p0‖ and pλnk
→ p0 strongly in H. This implies limλ→0 ‖pλ − p0‖ = 0,

since otherwise, we can extract a subsequence pλk such that ‖pλk − p0‖ > ε and by the above argument,
extract a further subsequence which converges strongly to p0.

Finally, for the convergence of η
(k)
λ , note that∣∣∣η(k)

λ (x)− η(k)
0 (x)

∣∣∣ 6 ∥∥∥ϕ(k)
∥∥∥
∞
‖pλ − p0‖ → 0, λ→ 0.

Theorem 3. [DP15] Suppose that η0 is nondegenerate, there exists r, λ0, c0 such that for all λ 6 λ0

and ‖w‖ 6 c0λ, any solution µλ,w of (Pλ(y)) has support contained in
⋃s
i=1 Bε(xi). Moreover, if µ0 is

identifiable, then µλ,w has exact support {xi}.

Proof. Suppose that η0 is nondegenerate. Note that since the solution to Dλ(y) is the projection onto a
closed convex set, we have

‖pλ,0 − pλ,w‖ 6
‖w‖
λ
.

Suppose that η′′0 (x) 6= 0 in x ∈ Br(xj), j = 1, . . . , s, and |η0(x)| < 1 for x 6∈ ∪jBr(xj). Then, for all

ε > 0, for all λ and ‖w‖ /λ sufficiently small,
∣∣∣η(k)

0 − η(k)
λ,w

∣∣∣ < ε for k ∈ {0, 2}. Therefore, ηλ,w is such

that
∣∣∣η(2)
λ,w(x)

∣∣∣ 6= 0 in Br(xj) for each j and |ηλ,w(x)| < 1 for x 6∈ ∪jBr(xj). So, there exists at most 1

point in Bε(xj) for which |ηλ,w| = 1.
But if P0 has a unique solution µ0, then we know that µλ,w converges in the weak-* topology as

λ, ‖w‖ → 0. Therefore µλ,w(Xj) → µ0(Xj) 6= 0 and hence, for λ,w sufficiently small, µλ,w has exactly
one spike in Bε(xj).

In fact, if ΓX : R2s → H defined by

ΓX

(
a

b

)
=
∑
j

ajϕ(xj) +
∑
j

bjϕ
′(xj).

is full rank, then the following (stronger) result holds:

Theorem 4. [DP15] Suppose that ΓX is full rank and η0 is nondegenerate. Then there exists λ∗, c∗
such that for all λ 6 λ∗ and ‖w‖ 6 c∗λ, Pλ(y) has a unique solution which consists of precisely s spikes.
Writing v = (λ,w), we have µv =

∑s
i=1 a

v
i δxvi . the mapping v 7→ (av, Xv) is C1 and

‖av − a0‖+ ‖Xv −X0‖ 6 C (λ+ ‖w‖) .

The proof can be found in Appendix C.

4.4 Precertificates

We need to find η = Φ∗p such that η(xi) = sign(ai) for all i and ‖η‖∞ 6 1. This is hard.
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Vanishing derivatives precertificate [DP15] Consider instead: ηV = Φ∗pV with

pV = argmin {‖p‖ ; ∀i, (Φ∗p)(xi) = sign(ai) and ∇(Φ∗p)(xi) = 0} .

The constraint consists of (d + 1)s equations and in fact, writing the covariance kernel K(x, x′)
def.
=

〈ϕ(x), ϕ(x′)〉, we have

ηV (x) =

N∑
i=1

αiK(xi, x) +

N∑
i=1

βi∂1K(xi, x),

(
α

β

)
= D−1

K,X

(
sign(a)

0N

)

with correlation kernel K(x, x′) = 〈ϕ(x), ϕ(x′)〉, DK,X
def.
=

(
M0, M1

M∗1 M2

)
,

where M0 = (K(xi, xj))i,j , M1 = (∂1K(xi, xj))i,j , M2 = (∂1∂2K(xi, xj))i,j .

ηV is called the vanishing derivatives precertificate by Duval & Peyré (2015), coincides with the
minimal norm certificate if ‖ηV ‖∞ 6 1 and is necessarily a valid certificate if there is support stability:

Given X = {xj}sj=1, define Γ : R2s → H by ΓX
(
a
b

)
=
∑
j ajϕ(xj) + bjϕ

′(xj).

Lemma 4. Let X0 = {x0,i}si=1 and Suppose that µ0 =
∑s
i=1 a0,iδx0,i and ΓX0 is full rank. Suppose that

there exists λ0 > 0 such that there exists a continuous path g : [0, λ0)→ Rs×X s, λ 7→ (aλ, Xλ) such that

for all λ ∈ [0, λ0), µλ
def.
=
∑s
i=1 aλ,ixλ,i solves (Pλ(y)) with y = Φµ0. Then, ηV exists and ‖ηV ‖∞ 6 1,

so ηV = η0.

Proof. This result follows because pλ = 1
λ

(ΦX0a0 − ΦXa) (the solution to (Dλ(y)) converges to pV =

Γ∗,†X0

(
sign(a0)

0

)
. We first establish this convergence under the assumption that g is differentiable: Given

λ ∈ [0, λ0), let (a,X) = g(λ). For all λ sufficiently small, we have sign(a) = sign(a0) by continuity of g.
Therefore,

Γ∗X (ΦXa− ΦX0a0) + λ

(
sign(a0)

0

)
= 0.

Note that ΦXa = ΓX
(
a
0

)
. Applying Γ∗,†X = ΓX(Γ∗XΓX)† to both sides gives

ΓX

(
a

0

)
− ΓXΓ†XΓX0

(
a0

0

)
+ λΓ∗,†X

(
sign(a0)

0s

)
= 0. (6)

Let ΠX be the projection onto Im(ΓX)⊥. Then, ΠX = (Id− ΓXΓ†X), so we can rearrange (6) to obtain

−ΦXa+ ΦX0a0 = ΠXΦX0a0 + λΓ∗,†X

(
sign(a0)

0s

)
.

Note that pλ = 1
λ

(ΦX0a0 − ΦXa) and

pV = Γ∗,†X0

(
sign(a0)

0s

)
= lim
λ→0

Γ∗,†X

(
sign(a0)

0s

)
,

since ‖Γ∗XΓX − ΓX0ΓX0‖ converges to 0 as λ→ 0, by continuity of g. Therefore, limλ→0 ‖pλ − pV ‖ = 0
provided that

lim
λ→0

1

λ
‖ΠXΦX0a0‖ = 0.

By Taylor expansion,

ΦX0a0 =
∑
j

a0,jϕ(x0,j) =
∑
j

a0,j

(
ϕ(xj) + ϕ′(xj)(xj − x0,j) + (xj − x0,j)

2

∫ 1

0

ϕ′′(t(xj − x0,j))dt

)
,

and since ΠX is a projection onto Im(ΓX)⊥, we have ΠXϕ(xj) = 0 and ΠXϕ
′(xj) = 0. Therefore,

1

λ
‖ΠXΦX0a0‖ 6 ‖a0‖∞

∥∥ϕ′′∥∥∞ 1

λ
‖X −X0‖2 6 ‖a0‖∞

∥∥ϕ′′∥∥∞ 1

λ
‖g(λ)− g(0)‖2 . λ
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since g is differentiable. TThis proves that limλ→0 pλ = pV = p0 by uniqueness of limits.
It remains to show that g is differentiable. Define f : Rs ×X s × R+ → R2s by

f(u, λ) = Γ∗X (ΦXa− ΦX0a0) + λ

(
sign(a0)

0

)
,

with u = (a,X). One can check that f is C1, f((a0, X0), 0) = 0, f(g(λ), λ) = 0 for all λ sufficiently
small such that sign(aλ) = sign(a0). Moreover, letting Ja be the diagonal matrix with diagonal

(
1s

sign(a)

)
,

∂uf((a0, X0), 0) = (Γ∗X0
ΓX0)Ja0 is invertible.

Therefore, by the implicit function theorem, there exists a neighbourhood V of 0 in [0, λ0) and U of
(a0, X0) in Rs ×X s, and a unique continuously differentiable function g∗ such that g∗ : V → U satisfies
f(u, λ) = 0 for u ∈ U and λ ∈ V if and only if g∗(λ) = u, and g∗(0) = (a0, X0). In particular, g∗

coincides with g on V . So, f(g(λ), λ) = 0 for λ ∈ V .

Typical strategy: compute ηV based on a correlation kernel K, then check that it is nondegenerate.

5 Nondegenerate MNC for translation invariant kernels

Let Φ be a convolution operator Φ :M(X ;R)→ L2(R) with ϕ(x) = t 7→ ψ(t− x) ∈ L2(R), so

Φµ = t 7→
∫
ψ(t− x)dµ(x).

Then,

K(x, x′)
def.
= κ(x− x′), where κ

def.
= ψ ? ψ. and DK,X

def.
=

(
(κ(xi − xj))i,j (κ′(xi − xj))i,j
(κ′(xj − xi))i,j (−κ′′(xi − xj))i,j

)
.

For example, if ψ = 1
4√π
√
σ

exp
(
−t2/(2σ2)

)
, then κ(t) = exp

(
−t2/(4σ2)

)
.

First note that we can write we can write

ηV (x) =

s∑
i=1

α̃iκ(xi − x) +

N∑
i=1

β̃i
κ′(xi − x)√
|κ′′(0)|

where

(
α̃

β̃

)
= D̃K,X

(
sign(a)

0S

)

with

D̃K,X
def.
=

 (κ(xi − xj))i,j
(
|κ′′(0)|−1/2

κ′(xi − xj)
)
i,j(

|κ′′(0)|−1/2
κ′(xj − xi)

)
i,j

(
− |κ′′(0)|−1

κ′′(xi − xj)
)
i,j


In the following theorem, we show that nondegeneracy of ηV can be guaranteed under a minimum

separation condition on X. See [, Bendory] for further details.

Theorem 5. Let p > 1
2

, r, b > 0 and assume that κ satisfies

κ′′(t)

|κ′′(0)| < −b, ∀ |t| < r√
|κ′′(0)|

and for k = 0, 1, 2, 3, ∣∣∣κ(k)(t)
∣∣∣

|κ′′(0)|k/2
6

Ak
(1 + Ct2)p

.

Choose γ, ε ∈ (0, 1) such that ε < b/(6 + 2b). and 1
(1+r)p

< γ(1− 2ε)− 2ε.

Let |xi − xj | > ∆ for all i 6= j, with

∆
def.
=

1√
C

max
k=0,1,2,3

(
2p

(2p− 1)ε
Ak

) 1
2p

.

Then, ηV is nondegenerate with
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• sign(aj)

|κ′′(0)| η
′′
V (x) < −b/2 for all x ∈

⋃s
j=1 B|κ′′(0)|−1/2r(xj).

• |ηV (x)| < γ for all x 6∈
⋃s
j=1 B|κ′′(0)|−1/2r(xj).

Proof. By our choice of ∆ and X,

∑
i6=j

∣∣∣κ(k)(xj − xi)
∣∣∣

|κ′′(0)|k/2
6
∑
j>1

Ak
(1 + j2∆2)p

6
Ak
∆2p

∑
j>1

1

j2p
6

Ak
∆2p

(
1 +

∫ ∞
1

x−2p

)
6

2pAk
(2p− 1)∆2p

= ε

Step I, DK,X is invertible.
Let

Υ0
def.
= (κ(xi − xj))i,j , Υ1

def.
=
(∣∣κ′′(0)

∣∣−1/2
κ′(xi − xj)

)
i,j
, Υ2

def.
=
(
−
∣∣κ′′(0)

∣∣−1
κ′′(xi − xj)

)
i,j
.

Then,

‖Id−Υ0‖∞ 6 max
j

∑
i6=j

|κ(xi − xj)| 6 ε,

‖Υ1‖∞ 6
1√
|κ′′(0)|

max
j

∑
i

∣∣κ′(xi − xj)∣∣ 6 ε,

‖Id−Υ2‖∞ 6
1

|κ′′(0)| max
j

∑
i 6=j

∣∣κ′′(xi − xj)∣∣ 6 ε,

The Schur complement of the block Υ2 is

ΥS
def.
= Υ0 −Υ1Υ−1

2 Υ>1

and ΥS is invertible since

‖Id−ΥS‖∞ 6 ‖Id−Υ0‖∞ + ‖Υ1‖2∞
∥∥Υ−1

2

∥∥
∞ 6 ε+

ε2

1− ε =
ε

1− ε
def.
= εS .

Therefore, D̃K,X is invertible.

Step 2, bounds on the coefficients We have

α̃ = Υ−1
S sign(a) and β̃ = −Υ−1

2 Υ1Υ−1
S sign(a)

Therefore, ‖α̃‖∞ 6 1/(1− εS) = (1− ε)/(1− 2ε),

‖α̃− sign(a)‖∞ 6
∥∥Id−Υ−1

S sign(a)
∥∥
∞ 6

∥∥Υ−1
S

∥∥
∞ ‖Id−ΥS‖∞ 6

εS
1− εS

=
ε

1− 2ε

and ∥∥∥β̃∥∥∥
∞

6
ε

(1− ε)(1− εS)
=

ε

1− 2ε
.

Step 3, bounds on ηV Given any x, there is at most one element of X such that |xj − x| < ∆/s.

So, given x s.t. |κ′′(0)|1/2 |xj − x| > r for all j, we may asssume that |xj − x| > ∆/2 for all j 6= i and we
have

|ηV (x)| 6 |α̃iκ(xi − x)|+ ‖α̃‖∞
∑
j 6=i

|κ(xj − x)|+

∣∣∣β̃iκ′(xi − x)
∣∣∣

|κ′′(0)|1/2
+
∥∥∥β̃∥∥∥

∞

∑
j 6=i

|κ′(xj − x)|
|κ′′(0)|1/2

6
1− ε
1− 2ε

|κ(xi − x)|+ ε(1− ε)
1− 2ε

+
ε

1− 2ε

(∣∣κ′′(0)
∣∣−1/2 ∣∣κ′(xi − x)

∣∣+ ε
)

6
1− ε
1− 2ε

|κ(xi − x)|+ 2ε

1− 2ε

6
1− ε
1− 2ε

1

(1 + r)p
+

2ε

1− 2ε
< γ

10



if
1

(1 + r)p
< γ(1− 2ε)− 2ε

If |xi − x| < r, then

sign(ai)η
′′
V (x)

|κ′′(0)| 6
1

|κ′′(0)|

sign(ai)α̃iκ
′′(xi − x) + ‖α̃‖∞

∑
j 6=i

∣∣κ′′(xj − x)
∣∣+

∣∣∣β̃iκ′′′(xi − x)
∣∣∣

|κ′′(0)|1/2
+
∥∥∥β̃∥∥∥

∞

∑
j 6=i

|κ′′′(xj − x)|
|κ′′(0)|1/2


6
κ′′(xi − x)

|κ′′(0)| +
ε

1− 2ε
+
ε(1− ε)
1− 2ε

+
ε

1− 2ε
(1 + ε)

6
κ′′(xi − x)

|κ′′(0)| +
3ε

1− 2ε
< −b+

3ε

1− 2ε
< − b

2

since |sign(ai)α̃i − 1| = |α̃i − sign(ai)| 6 εS
1−εS

. and since ε < b/(6 + 2b).

5.1 Examples

For both examples below, we have a scaling factor σ. We can choose b, r, Ak and p to be constants
independent of σ and C ∼ |κ′′(0)| ∼ σ−2. Therefore, we have a nondegenerate certificate ηV provided
that ∆ & σ.

Cauchy kernel
Let κ(t) = 1/(1 + σ−2t2). Then,

κ′(t) = − 2σ−2t

(σ−2t2 + 1)2

κ′′(t) =
8σ−4t2

(σ−2t2 + 1)3
− 2σ−2

(σ−2t2 + 1)2

κ′′′(t) =
24σ−4t

(σ−2t2 + 1)p+2
− (48σ−6t3)

(σ−2t2 + 1)4

Normalising by |κ′′(0)| = 2σ−2, we have

σ√
2
κ′(t) = −

√
2σ−1t

(σ−2t2 + 1)2

σ2

2p
κ′′(t) =

4σ−2t2

(σ−2t2 + 1)3
− 1

(σ−2t2 + 1)2

σ3

(2p)3/2
κ′′′(t) =

12pσ−1t√
2(σ−2t2 + 1)3

− 24σ−3t3√
2(σ−2t2 + 1)4

Gaussian kernel Let κ(t) = exp(−t2/(2σ2)). Then, κ′(t) = −t
σ2 exp(−t2/σ).

κ′′(t) =
−1

σ2
exp(−t2/(2σ2)) +

t2

σ4
exp(−t2/(2σ2))

κ′′′(t) =
3t exp(−t2/(2σ2)))

σ4
− t3 exp(−t2/(2σ2))

σ6
.

Normalising by |κ′′(0)|1/2 = 1/σ, we have

σκ′(t) =
−t
σ

exp(−t2/σ)

σ2κ′′(t) = − exp(−t2/(2σ2)) +
t2

σ2
exp(−t2/(2σ2))

σ3κ′′′(t) =
3t exp(−t2/(2σ2)))

σ
− t3 exp(−t2/(2σ2))

σ3
.
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6 Some remarks on sampling the Fourier transform

Suppose we want to recover µ =
∑
j ajδxj for xj ∈ T, from samples of its Fourier transform:

Φµ
def.
=
{
〈e−i2πk·, µ〉 ; k ∈ Z, |k| 6 fc

}
,

6.1 Squared Fejer kernel

Let ϕ(x) =
(√

gfc(k)e−i2πkx
)
|k|6fc

. Then the corresponding kernel is the squared Fejer kernel

K(x, x′) = κ(x− x′) =
∑
|k|6fc

gfc(k)ei2πk(x−x′) =

(
sin(πt

(
fc
2

+ 1
)
)(

fc
2

+ 1
)

sin(πt)

)4

.

Note that ηV defined via this kernel is an element of Im(Φ∗)

Theorem 6. [CFG14] Suppose that ∆ > C
fc

. Then, ηV is nondegenerate and hence exact recovery is
guaranteed.

• Proving nondegeneracy of ηV with this kernel requires more refined arguments, however, the idea
of the proof is similar to that of Theorem 5 above. One can show that for t & 1/fc,

f−jc

∣∣∣κ(j)(t)
∣∣∣ . 1

(1 + t2f2
c )2

and −κ′′(0) = π2fc(fc+4)
3

∼ f2
c .

• The choice of the weights is somewhat arbitrary and are chosen due to the easier-to-manipulate
properties of the squared Fejer kernel. Note that without any weighting, the resultant kernel is the
Dirichlet kernel which has decay like 1/(1 + fc |t|).

6.2 Necessity of the separation condition

Arbitrary signs We have so far imposed a separation condition to deduce that ηV is nondegenerate.
We show here that in order to recover spikes of arbitrary signs, this is a necessary condition. See [Tan15]
for further generalisations of this phenomenon to other measurement operators.

Suppose that |xj − xi| = ∆, sign(aj) = 1, sign(ai) = −1. Then, by the mean value theorem, for some
x ∈ [xi, xj ],

η(xi)− η(xj) = η′(x)(xi − xj)
Therefore, ∣∣η′(x)

∣∣ > ∣∣∣∣η(xi)− η(xj)

(xi − xj)

∣∣∣∣ =
2

∆
.

The classical Bernstein’s inequality asserts that for every trigonometric polynomial of degree at most f ,
|q′(x)| 6 f ‖q‖∞ . In our case, η is a trigonometric polynomial of degree 2fc. Therefore, we must have
∆ > 1/fc.

Remark 5. For the arbitrary signs case, the separation condition is fundamental only for the BLASSO,
it is known that other methods, such as Prony type methods do not require any separation [LF16].

All positive signs If the spikes are all positive, then ithe BLASSO does not require any separation.
In particular, suppose we observe all Fourier measurements indexed by {k ∈ Z ; |k| 6 fc} and suppose
that fc > s. Then,

η(x)
def.
= 1−

s∏
j=1

sin2(π(xk − x)),

satisfies η(xj) = 1, |η(x)| < 1 for all x 6∈ X and η′′(xj) 6= 0. Therefore, η is a nondegenerate dual
certificate for sign(a) and X if aj > 0 for all j. In particular, (P0(y)) recovers µa,X as the unique
solution. Although nondegeneracy of η can be used to deduce stability, note that the stability estimates
will deteriorate as the points in X converge towards some x0 ∈ X , i.e. ∆(X) → 0, since the uniform
limit of η is 1− sin2s(π(x0 − x)) which has 2s− 1 vanishing derivatives at x0.

See [DCG12] for generalisations of this to other measurement operators and [DDP17] for stability
analysis of the BLASSO in the case of positive spikes.
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6.3 Subsampling

Let us now consider the case where we observe draw m elements iid uniformly at random from{
〈e−i2πk·, µ0〉 ; k ∈ Z, |k| 6 fc

2

}
.

The following theorem is proved in [TBSR12].

Theorem 7. Let µ0 =
∑
j ajδxj . Suppose that sign(a) is a Steinhaus sequence and

m & max
(
s log(s/δ) log(fc/δ), log(fc/δ)

2) .
Then, w.p. at least 1− δ, µ0 can be exactly recovered from P0(y).

We know that

ηV (x) =

N∑
i=1

αiK(xi, x) +

N∑
i=1

βi∂1K(xi, x),

(
α

β

)
= D−1

K,X

(
sign(a)

0N

)
is nondegenerate.

Let Ω denote the set of observed frequencies. We simply need to prove that

η̂V (x)
def.
=

N∑
i=1

α̂iK̂(xi, x) +

N∑
i=1

β̂i∂1K̂(xi, x),

(
α̂

β̂

)
= D−1

K̂,X

(
sign(a)

0N

)

where K̂ =
∑
k∈Ω gfc(k)ei2πk(x−x′), is nondegenerate. Note that E[K̂] = K and E[DK̂,X ] = DK,X . The

result can be proved by bounding the deviation of K̂ from K, DK̂,X from DK,X .

7 Numerical algorithm

(Pλ(y)) is an optimisation problem over the set of measures. One straightforward way of solving
(Pλ(y)) is to simply discretize over a fine grid (xj)

N
j=1 ⊂ X , that is, solve

min
a∈RN

‖a‖1 + ‖Φdiscretea− y‖2

where Φdiscrete : RN → H is defined by Φdiscretea =
∑N
j=1 ajϕ(xj). This is then simply the LASSO and

when H is a finite dimensional space, this can be solved by a wide range of first order methods, such as
projected gradient descent. Other approach which are better aligned to the infinite dimensional nature
of (Pλ(y)) include SDP approaches (for Fourier measurements) or the Frank-Wolfe/conditional gradient
algorithm.

7.1 SDP solver

Let us consider the case where we observe Fourier coefficients up to some cut-off fc ∈ N. Let
n = 2fc + 1. The dual to Pλ(y) is

max
c

Re〈y, c〉 − λ

2
‖c‖2 subject to ‖F∗nc‖∞ 6 1

where
F∗nc(t) =

∑
|k|6fc

cke
i2πkt.

Theorem 8. [Dum07] A causal trigonometric polynomial (i.e. a trigonometric polynomial of the form∑n−1
k=0 cke

i2πkt) with coefficients c ∈ Cn is bounded by 1 in magnitude iff there exists Q ∈ Cn×n Hermitian
s.t.

0 �
(
Q c
c∗ 1

)
and

n−j∑
i=1

Qi,i+j = δ0,j , j = 1, . . . , n− 1, (7)

where δ0,j = 1 if j = 0 and 0 otherwise.
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Remark 6. Note that one direction is easy to see: letting z = (x>,−〈x, c〉) where x ∈ Cn, the pos-
itive semidefiniteness constraint implies that x∗Qx > |〈c, x〉|2. So, by choosing x = (e2πikt)n−1

k=0 , we
have x∗Qx = 1 by the constraint that all off-diagonals of Q sum to 0 and Q has trace 1. Therefore,∣∣∑n−1

k=0 cke
i2πkt

∣∣ 6 1.

Note that ei2πfct(F∗nc)(t) is a causal trigonometric polynomial. This observation allows (Dλ(y)) to
be formulated as a SDP problem [CFG14]: The dual problem becomes

Step I:

max
c,Q

Re〈y, c〉 − λ

2
‖c‖2 subject to (7)

This is a finite dimensional semidefinite program.
To find the solution to the primal problem, note that

p2n−2(ei2πt) = 1− |(F∗nc)(t)|
2

= 1−
∑
|k|62fc

uke
i2πkt where uk =

∑
j

cj c̄j−k.

• z2fcp2n−2(z) is a polynomial of degree 2n − 2 = 4fc and has the same roots as p2n−2 (ignoring
z = 0).

• p2n−2(ei2πt) has at most 2n− 2 roots.
• p2n−2(ei2πt) is real-valued and nonnegative, so it cannot have single roots on the unit circle. i.e.

either p2n−2(ei2πt) = 0 or there are at most n− 1 roots on the unit circle.
• Any solution to the primal satisfies |µ| (X ) = 〈y, c〉 = 〈µ, F∗nc〉. So, F∗nc achieves its extremal

points on the support of µ.
Step II: Find the support X̂ of µ by locating the roots of p2n−2 on the unit circle (eigenvalues of its

companion matrix).
Step III: After finding the support X̂, solve

∑
t∈X̂ e

−i2πktat = yk to recover the amplitudes a.

7.1.1 The multivariate setting

For the multivariate case when d > 1, one needs to make use of a so-called Lasserre Hierarchy.
Consider the semidefinite relaxation of order m with m > n = 2fc + 1:

max
c∈Cnd

,Q∈Cnd×nd
Re〈y, c〉

subject to

0 �

[
Q p

p∗ 1

]
TraceΘkQ = δ0,k, k ∈ (−m,m)d ∩ Z,

(D̂λ,m(y))

where Θk
def.
= θkd⊗· · ·⊗θk1 with ⊗ denoting the Kronecker product and θkj denoting the m×m Toeplitz

matrix with ones on its kthj diagonal and zeros elsewhere. It is known that (D̂λ,m(y)) converges to Dλ(y)
as m→ +∞. If we have finite convergence, then the hierarchy is said to collapse.

In general, it is not know if we have finite convergence. However, as discussed above, in d = 1, this
relaxation is tight in the sense that (D̂λ,m(y)) is equivalent to Dλ(y) for m > n. For d = 2, it is known
that we have finite convergence (and in practice, it sufficies to take m > n2.)

To detect collapse of the hierarchy, it suffices to recover a measure µλ,m whose positions are the roots
of Φ∗p which lie on the complex unit circle and amplitudes are found by solving the linear system of Step
III above. If Φ∗p is a dual certificate to µλ,m, then µλ,m is a solution to (Pλ(y)).

7.2 Frank Wolfe

In this section, we present the Frank Wolfe approach to solving (Pλ(y)). Unlike SDP approaches,
this approach is much more general.
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Frank-Wolfe algorithm aims to solve

min
m∈C

f(m) (8)

where C is a weakly compact convex set of a Banach space, and f is a differentiable convex function.
In our setting, we are interested in recovering m as a measure, and C ⊆ M(X ). The key advantage

of this algorithm is that it is better suited to optimisation over Banach spaces as it does not rely on
any underlying Hilbertian structure (for example, the proximal gradient descent algorithm involves a
proximal term which is often in terms of the Euclidean distance), and only uses directional derivatives
of f . Indeed, in a Hilbert space setting, the proximal gradient descent algorithm

mk+1 = PC(mk − γdf(mk))

where PC(m)
def.
= argmins∈C ‖m− s‖ is another approach for solving (8). However, this approach cannot

be easily extended to the Banach space setting as projections are not necessarily well-defined.
The Frank-Wolfe algorithm is as follows

Algorithm 1 Frank-Wolfe

1: for k = 0, . . . , n do
2: sk ∈ argmins∈C f(mk) + df(mk)(s−mk)
3: if df(mk)(sk −mk) = 0 then mk is a solution. Stop.
4: else
5: γk ← 2

k+2 or γk ∈ argminγ∈[0,1] f(mk + γ(sk −mk))

6: mk+1 ← mk + γk(sk −mk)
7: end if
8: end for

Let us make some remarks:
• Note that given a differentiable convex function,

f(x) > f(y) + df(y)(x− y)

so the stopping criterion does ensure that mk is a global minimiser, since minimality of sk in step
2 implies that for all s ∈ C,

f(s) > f(mk) + df(mk)(s−mk) > f(mk) + df(mk)(sk −mk) = f(mk).

• We remark that in line 6, we can replace mk+1 by any element of m̃ ∈ C such that f(m̃) 6 f(mk+1)
without adversely affecting the convergence properties of this algorithm.

• The assumption of weak compactness ensures that step 2 has a minimizer.
In our case, we are interested in applying Frank-Wolfe to

fλ(µ)
def.
=

1

2
‖Φµ− y‖2 + λ |µ| (X ).

There are 2 immediate problems: the first is that fλ is not differentiable and the second is thatM(X ) is
unbounded. The following lemma allows us to rewrite minimisation of fλ over M(X ) into the form (8).

Lemma 5. [DDPS18] µ∗ is a minimiser of fλ if and only if (|µ∗| (X ), µ∗) minimises

min
(t,µ)∈C

f̃λ(µ)
def.
=

1

2
‖Φµ− y‖+ λt

where C
def.
= {(t,m) ∈ R+ ×M(X ) ; |µ| (X ) 6 t 6M} and M

def.
= ‖y‖2

2λ
.

Proof. Note that if µ∗ is a minimiser of fλ, then |µ∗| (X ) 6 1
λ
fλ(µ∗) 6 1

λ
fλ(0) 6 ‖y‖

2λ
. Therefore, it

suffices to minimise fλ over all measure with |µ| (X ) 6M . It is then easy to check that µ∗ minimises fλ
if and only if it minimises f̃λ.
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Note that f̃λ is now differentiable over R×M(X ) with df̃λ = (λ,Φ∗(Φµ− y)), so

df̃λ : (t′, µ′) 7→ λt′ +

∫
X

Φ∗(Φµ− y)dµ′.

Moreover, even though C is not weakly compact, it is compact in the weak∗ topology, and the convergence
arguments for Algorithm 1 can be applied to conclude that

Lemma 6. Let (tk, µk) be a sequence generated by Algorithm 1 applied to f̃λ. Then, there exists C > 0
such that for any solution µ∗ of (Pλ(y)), we have

fλ(µk)− fλ(µ∗) 6
C

k
.

As a corollary of this lemma, we have the following result, which shows under a nondegneracy condi-
tion, µk increasingly clusters around the support of the solution µ∗.

Theorem 9. Suppose that µa,X =
∑
i aiδxi is the unique solution to (Pλ(y)) and 1

λ
Φ∗(y − Φµ∗) is

nondegenerate and satisfies the conditions of Theorem 2. Then,
1.
∣∣µk∣∣ (X \⋃iBε(xi))+

∑s
i=1

∫
Bε(xi)

|x− xi|2 d
∣∣µk∣∣ (x) . 1

k
.

2. Suppose ΦX is injective. Then, akj
def.
= µk(Bε(xj)) satisfies

∥∥ak − a∥∥2
. 1

k
.

Proof. Let rk = fλ(µk)−fλ(µ∗). Let F (µ)
def.
= 1

2λ
‖Φµ− y‖2 and J(µ)

def.
= |µ| (X ). Then, fλ = λ (J + F ).

By convexity of F ,
λ−1rk > J(µk)− J(µ∗) + 〈F ′(µ∗), µk − µ∗〉.

Since −F ′(µ∗) = 1
λ

Φ∗(y − Φµ∗) ∈ ∂J(µ∗), and −F ′(µ∗) is nondegenerate, by Theorem 2,

λ−1rk > c0

∣∣∣µk∣∣∣(X \⋃
i

Bε(xi)

)
+ c2

s∑
i=1

∫
Bε(xi)

|x− xi|2 d
∣∣∣µk∣∣∣ (x).

For the second claim, define

R(ν)
def.
= J(ν)− J(µ∗) + 〈F ′(µ∗), ν − µ∗〉 and T (ν)

def.
= F (ν)− F (µ∗)− 〈F ′(µ∗), ν − µ∗〉.

Note that for all ν, R(ν) > 0 (since −F ′(µ∗) ∈ ∂J(µ∗) and T (ν) > 0 by convexity of F . Also, λ−1rk =
J(µk) + T (µk) > T (µk). Let akj = µk(Bε(xj)) and let µ̂k =

∑
j a

k
j δxj . If ΦX is injective with ‖ΦXa‖2 >

C ‖ΦXa‖2, then

λ−1rk > T (µk) =

∥∥Φ(µk − µ∗)
∥∥2

2
>

3

8

∥∥∥Φ(µ̂k − µ∗)
∥∥∥2

+
3

2

∥∥∥Φ(µ̂k − µk)
∥∥∥2

>
3

8
C
∑
k

∣∣∣akj − aj∣∣∣2 − 3

2

∥∥∥Φ(µ̂k − µk)
∥∥∥2

,

where we used (a− b)2/2 > 3a2/8− 3b2/2. Finally, note that

∥∥∥Φ(µ̂k − µk)
∥∥∥2

6

∥∥∥∥∥∑
j

∫
Bε(xj)

(ϕ(x)− ϕ(xj))dµ
k(x) +

∫
Xfar

ϕ(x)dµk(x)

∥∥∥∥∥
2

6 2

(∑
j

∫
Bε(xj)

∥∥ϕ′∥∥∞ |x− xj |d ∣∣∣µk∣∣∣ (x)

)2

+ 2
∣∣∣µk∣∣∣ (X far)2

6 2

(∑
j

∥∥ϕ′∥∥∞
√
|µk| (Bε(xj))

∫
Bε(xj)

|x− xj |2 d |µk| (x)

)2

+ 2
∣∣∣µk∣∣∣ (X far)2

6 2
∥∥ϕ′∥∥∞ ∣∣∣µk∣∣∣ (Xnear)

(∑
j

∫
Bε(xj)

|x− xj |2 d
∣∣∣µk∣∣∣ (x)

)
+ 2

∣∣∣µk∣∣∣ (X far)2

. λ−1c−1
2 rk + λ−2c−2

0 r2
k.
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Let us now discuss lines the form of 2, 3, 4 of Algorithm 1:
• For step 2: Note that given (tk, µk) ∈ C, s 7→ df̃λ(tk, µk) is a linear form, and since C is convex,

it achieves its minimum at an extremal point of C. These extremal points are of the form s =
(M,±Mδx) with x ∈ X . Therefore,

argmins∈C df̃(tk,mk)(s) = argminx∈X ±M(Φ∗(Φµk − y))(x) + λM

= argminx∈X ±η
k(x) + 1 where ηk

def.
=

1

λ
Φ∗(Φµk − y)

= argmaxx∈X

∣∣∣ηk(x)
∣∣∣ .

Therefore, for each k, we introduce a new support point xk+1, sk = (M,σMδx) where σηk(xk+1) =
−
∥∥ηk∥∥∞. Let {xkj }kj=1 denote the support of µk.

• The halting condition of step 3 implies that µk is a minimiser of (Pλ(y)) and hence, ηk is a dual
certificate. Therefore, we in fact iteratively construct a dual certificate.

• If µk =
∑k
j=1 a

k
j δxkj

, then the line search in step 4 is

min
γ

(1− γ)
∥∥∥ak∥∥∥

1
+ γM +

1

2
‖Φµγ − y‖2

where µγ =
∑k
j=1 a

k
j δxkj

+σMδxk+1 . Note that since we can replace this step with any (t, µ) which

improves the objective value, it seems sensible to simply perform in step 4

min
a∈Rk+1

‖a‖1 +
1

2
‖Φµa − y‖2

where µa
def.
=
∑k
j=1 ajδxkj

+ ak+1δxk+1 . This is a finite dimensional nonsmooth convex optimisation

problem and can be tackled using a variety of algorithms such as Forward Backward or FISTA.

7.2.1 The sliding Frank-Wolfe algorithm

The observation that one can replace the update of step 6 by any value which improves the objective
value is important. As observed in [BP13] and [BSR17], this can significantly improve the convergence
properties of the algorithm. Building upon remark (iii) above, one can further improve this step by
optimising over the positions and the amplitudes simultaneously. This idea is proposed and analysed in
[DDPS18] and under certain nondegeneracy conditions, this update leads to finite termination. Moreover,
it is observed empirically that under the nondegeneracy condition, one has convergence in s iterations.
The algorithm of [DDPS18] is presented in Algorithm 2. Note that since t is an auxilliary variable, it is
omitted in the presentation of the algorithm.

Theorem 10. [DDPS18] Let µa,X =
∑
i aiδxi be the unique solution to (Pλ(y)) and suppose that

ηλ = 1
λ

Φ∗(y−Φµa,X) is nondegenerate. Then, Algorithm 2 recovers µa,X after a finite number of steps.

Sketch of proof. We discuss only the main ideas of the proof here. First note that µk converges to µa,X
in the weak-∗ topology. Since Φ is weak-∗ to weak continuouse, we have pk = 1

λ
(y − Φµk) converges

weakly to pλ. Furthermore, pk must be uniformly bounded in H. This implies that the functions

ηk
def.
= x 7→ 〈ϕ(x), pk〉 are uniformly bounded and equicontinuous. So, by Arzela-Ascoli, we can extract a

subsequence of ηk which converges to ηλ in L∞ norm. This is true also for the first and second derivatives
of ηk.

Now, ηλ is nondegenerate implies that there exists a small neighbourhood around each xi on which
η′′λ 6= 0. Therefore, there exists ε > 0 and k1 ∈ N such that for all k > k1, (ηk)′′(x) 6= 0 for x ∈
(xi − ε, xi + ε)

def.
= Ixi,ε, and

∣∣ηk(x)
∣∣ < 1 for all x 6∈ ∪iIxi,ε.

Finally, note that the optimality condition of step 8 is

0 ∈ Φ∗x(Φxa− y) + λ∂ ‖a‖1 and ∀j, 〈(Φxa− y), ϕ′(xj)〉 = 0.

So, ηk = − 1
λ

Φ∗(Φxka
k − y) satisfies ηk(xkj ) = sign(akj ) and (ηk)′(xj) = 0. In particular,

∣∣ηk(x)
∣∣ < 1

except at xk. So, ηk is a valid certificate for all k > k1. Hence, the algorithm terminates for k > k1.
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Algorithm 2 Sliding Frank-Wolfe [DDPS18]

1: Initialise with µ0 = 0.
2: for k = 0, . . . , n do

3: µk =
∑Nk

i=1 a
k
i δxk

i
, aki ∈ R, xki ∈ X distinct, find xk∗ ∈ X s.t.

xk∗ ∈ argmaxx∈X
∣∣ηk(x)

∣∣ where ηk
def.
=

1

λ
Φ∗(y − Φµk).

4: if then
∣∣ηk(xk∗)

∣∣ 6 1
5: µk is a solution. Stop.
6: else
7: µk+

1
2 =

∑Nk

i=1 a
k+ 1

2
i δxk

i
+ a

k+ 1
2

i δxk
∗

s.t.

ak+
1
2 ∈ argmin

a∈RNk+1

1

2

∥∥∥Φ
xk+1

2
a− y

∥∥∥2 + λ ‖a‖1

where xk+
1
2 = (xk1 , · · · , xkNk , x

k
∗).

8: µk+1 =
∑Nk+1
i=1 ak+1

i δxk+1
i

s.t.

(ak+1, xk+1) ∈ argmin
(a,x)∈RNk×XNk+1

1

2
‖Φxa− y‖2 + λ ‖a‖1 ,

using a non-convex solver initialised with (ak+
1
2 , xk+

1
2 ).

9: end if
10: end for

Remark 7. Step 8 of Algorithm 2 requires solving a nonconvex optimisation problem, however, the
proof of Theorem 10 utilises only the optimality condition of the optimisation problem and hence, finite

convergence still holds even if ak+ 1
2 is merely a stationary point.

A Useful facts and definitions

Schur complement: Consider solving for x, y:(
A B
C D

)(
x

y

)
=

(
a

b

)
(9)

The Schur complement of the block D of this matrix is S
def.
= A − BD−1C, and provided that S and D

are invertible, this system is solvable with

x = S−1(a−BD−1b) and y = D−1(b− Cx).

A Banach space is a vector space over a field K (R or C) equipped with a norm ‖·‖X which is complete
with respect to this norm. A Hilbert space is a real or complex inner product space with inner product

〈·, ·〉, complete with respect to the induced norm ‖x‖ def.
=
√
〈x, x〉. A Hilbert space is a Banach space.

The dual space of a normed space X is denoted by X ′ and is the space of continuous linear functionals
from X to K. X ′ is a Banach space for every normed space X.

The weak topology on X is the coarsest topology on X such that all elements x′ ∈ X ′ are continuous.
In particular, a sequence (xn) ⊂ X is said to weakly converge to x if for all y ∈ X ′, y(xn)→ y(x).

The weak* topology on X ′ is the coarsest topology on X ′ such that for all x ∈ X, the mapping
x′ 7→ x′(x) is continuous. In particular, a sequence (x′n) ⊂ X ′ is said to weakly converge to x′ if for all
y ∈ X, xn(y)→ x(y).

Weakly convergent sequences are uniformly bounded (due to the uniform boundedness principle/Banach-
Steinhaus theorem).
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Every bounded sequence in a Hilbert space has a weakly convergent subsequence.
If un converges weakly to u in a Hilbert space, then lim infn ‖un‖ > ‖u‖. Furthermore, limn ‖un‖ = u

implies that un converges strongly to u.
M(X ) is weak* compact, that is, given µn ∈ M(X ) such that |µn| (X ) 6 B, there exists µ ∈ M(X )

and a subsequence such that µnk weak* converges to µ.

Theorem 11 (Arzela-Ascoli). If X is a compact metric space and fn : X → R are equicontinuous (i.e.
for every ε > 0, there exists δ > 0 such that |fn(x)− fn(y)| 6 ε for all x, y with d(x, y) < δ and all n)
and equibounded (i.e. there exists C > 0 such that |fn(x)| 6 C for all x ∈ X and all n), then there exists
a subsequence fnk which converges uniformly to a continuous function f : X → R.

B Duality

Let V be a real topological vector space and let V ∗ be its dual.

Definition 1. Given F : V → (−∞,+∞], its convex conjugate is F ∗ : V ∗ → (−∞,+∞] defined by

F ∗(y)
def.
= sup

x∈V
{〈x, y〉 − F (x)}.

• F ∗ is convex regardless of whether F is convex.
• We have the Fenchel Young inequality: 〈x, y〉 6 F (x) + F ∗(y),
• if F is convex and lower semi-continuous, then F ∗∗ = F .
• if F is convex, then y ∈ ∂F (x) if and only if F (x) + F ∗(y) = 〈x, y〉.
Examples:

(a) if F (x) = 1
2
‖x‖2 and V is a Hilbert space, then F ∗(y) = 1

2
‖y‖2:

– F ∗(y) = supx〈x, y〉 − 1
2
‖x‖2 6 1

2
‖y‖2.

– Setting x
def.
= y in the supremum above yields F ∗(y) > 1

2
‖y‖2.

(b) If F (x) = ‖x‖ and ‖·‖∗ is its dual norm, then

F ∗(y) =

{
0 ‖y‖∗ 6 1

+∞ otherwise.

(c) If F = ιK (takes value 0 for x ∈ K and +∞ otherwise) with K being a convex set, then F ∗(y) =
supx∈K〈x, y〉.

B.1 Convex optimisation

Let V, Y be real topological vector spaces with duals V ∗ and Y ∗. Let y ∈ Y and bj ∈ R for
j = 1, . . . ,M . Consider

min
x∈V

F0(x) subject to Ax = y, (10)

Fj(x) 6 bj , j ∈ [M ], (11)

where F0 : V → (−∞,+∞] is called the objective function and Fj : V → (−∞,+∞] for j ∈ [M ]

are called the constraint functions. A : V → Y is a continuous linear functional. The set K
def.
=

{x ∈ V ; Ax = y, Fj(x) 6 bj} is called the admissible set.
The Lagrange function is defined for x ∈ V , ξ ∈ Y ∗ and ν ∈ RM with ν` > 0 for all ` ∈ [M ] by

L(x, ξ, ν)
def.
= F0(x) + 〈ξ, Ax− y〉+

M∑
`=1

ν (F`(x)− b`) .

The variables ξ and ν are called the Lagrange multipliers.
The Lagrange dual function is defined as

H(ξ, ν)
def.
= inf

x∈V
L(x, ξ, ν), ξ ∈ Y ∗, ν ∈ RM>0.

If x 7→ L(x, ξ, ν) is unbounded from below, then we write H(ξ, ν) = −∞.
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• The dual function is always concave since it is the pointwise infimum of a family of affine functions.
• We have H(ξ, ν) 6 infx∈K F0(x) for all ξ ∈ Y ∗ and ν ∈ RM>0. Indeed, we have H(ξ, ν) 6

infx∈K L(x, ξ, ν), and note that given any x ∈ K, we have Ax − y = 0 and F`(x) − b` 6 0, so
L(x, ξ, ν) 6 F0(x).

So, H(ξ, ν) serves as a lower bound for the infimum of F0 over K, and since we want this lower bound
to be as tight as possible, it makes sense to consider

sup
ξ∈Y ∗,ν∈RM

H(ξ, ν) subject to ν` > 0, ` ∈ [M ]. (12)

This optimisation problem is called the dual problem and (10) is called the primal problem.
• If D∗ is the supremum of (12) and P ∗ is the infimum of (10), then we have in general D∗ 6 P ∗

(this is called weak duality). When D∗ = P ∗, then we say we have strong duality.
The following theorem (Slater’s condition) gives a condition under which strong duality holds.

Theorem 12. Let F0, F1, . . . , FM be convex functions and suppose that dom(F0) = V . If there exists
x0 ∈ V such that Ax0 = y, F`(x0) < b` for all ` ∈ [M ], then strong duality holds. In the absence of the
inequality constraints, we have strong duality if there exists x0 such that Ax0 = y.

Consider now infx∈V F (Ax) +G(x), where F : Y → (−∞,+∞] and G : V → (−∞,+∞] are convex
functionals, and A : V → Y is a continuous linear operator. This is equivalent to

inf
z∈Y,x∈V

F (z) +G(x) subj. to Ax = z

the Lagrange dual is for ξ ∈ Y ∗ as

H(ξ) = inf
x,z
{F (z) +G(x) + 〈ξ, Ax− z〉}

= inf
x,z
{F (z) +G(x) + 〈A∗ξ, x〉 − 〈ξ, z〉}

= − sup
z∈Y
〈ξ, z〉 − F (z)− sup

x∈V
〈−A∗ξ, x〉 −G(x)

= −F ∗(ξ)−G∗(−A∗ξ).

So, the dual problem is
sup
ξ∈Y ∗

−F ∗(ξ)−G∗(−A∗ξ)

Theorem 13. Suppose that F and G are proper convex functionals, there exists u0 ∈ V such that
F (u0) < ∞, G(Au0) < ∞ and G is continuous at Au0. Then, strong duality holds and there exists at
least one dual optimal solution. Moreover, if p∗ is a primal optimal solution and d∗ is a dual optimal
solution, then

Ap∗ ∈ ∂F ∗(d∗) and A∗d∗ ∈ −∂G(p∗)

Deriving our dual problems: In our case, let V = H, Y = C(X ), A = Φ∗ where A : H → C(X ).
So, A∗ = Φ :M(X )→ H. Consider the primal problem as

sup
‖Φ∗p‖∞61

〈p, f〉 = − inf
p∈H
{〈p, −f〉+ ι‖·‖∞61(Φ∗p)}.

So, G(p)
def.
= 〈p, −f〉 and F (z)

def.
= ι‖·‖∞61(z). We have G∗(q)

def.
= ι{−f}(q), and F ∗(µ) = |µ| (X ).

Therefore, the dual problem is

− sup
µ∈M(X )

− |µ| (X ) + ι{Φµ=f}(µ) = inf
µ∈M(X )

|µ| (X ) subject to Φµ = f.

Moreover, given primal solution p∗ and dual solution µ∗, the optimality condition becomes

Φ∗p∗ ∈ |µ∗| (X ) and Φµ∗ ∈ −∂G∗(p∗) = {f}.

Similarly, for the case of λ > 0, consider the primal problem as

sup
‖Φ∗p‖∞61

〈p, f〉 − λ

2
‖p‖2 = − inf

p∈H
{〈p, −f〉+

λ

2
‖p‖2 + ι‖·‖∞61(Φ∗p)}
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Let G(p) = 〈p, −f〉+ λ
2
‖p‖2 and F (z) = ι‖·‖∞61(z). Then,

G∗(q) = sup
q
〈p, q + f〉 − λ

2
‖p‖2 = λ sup

q
〈p, q + f

λ
〉 − 1

2
‖p‖2 =

1

2λ
‖q + f‖2 .

Therefore, the dual problem is

inf
µ∈M(X )

|µ| (X ) +
1

2λ
‖Φµ− f‖2 .

C Proof of Theorem 4

Proof. Since η0 is nondegenerate, there exists c0, c2, ε > 0 such that

∀x 6∈
s⋃
j=1

Bε(xj), |η0(x)| 6 1− c0 and ∀x ∈ Bε(xj), sign(a0,j)η
′′
0 (xj) < −c2. (13)

Let ΦX : Rs → H be defined by ΦXa =
∑s
i=1 aiϕ(xi). Recall that µa,X solves (Pλ(y)) with y =

Φµa0,X0 + w if and only if

ηλ = Φ∗pλ where pλ =
1

λ
(ΦX0a0 + w − ΦXa)

satisfies ‖ηλ‖∞ 6 1 and η(xj) = sign(aj). Note that pλ is the unique solution and hence, if ηλ saturates
only at X and ΦX is full rank, then µa,X must be unique. To see this, note that if the saturation points
of ηλ are included in X, then any solution µ of (Pλ(y)) must have support contained in X. Finally,
injectivity of ΦX implies that µ = µa,X .

Let K(x, x′)
def.
= 〈ϕ(x), ϕ(x′)〉 and assume that hx

def.
= ∂1∂2K(x, x) > 0 for all x. Given X = {xj}j ,

let ΓX : R2s → H be defined by

ΓX

(
a

b

)
=
∑
j

ajϕ(xj) +
∑
j

bjϕ
′(xj).

Then, given any σ ∈ Rs, Γ∗Xp =
(
σ
0s

)
implies that for all j, (Φ∗p)(xj) = σj and (Φ∗p)′(xj) = 0.

Construction of a candidate solution
Define f : Rs ×X s × R×H → R2s be defined by

f(u, v) = Γ∗X(ΦXa− ΦX0a0 − w) + λ

(
sign(a0)

0s

)
,

where u = (a,X) and v = (λ,w). Note that f(u, v) = 0 ensures that ηλ satisfies ηλ(xj) = sign(a0,j) and
η′λ(xj) = 0 for all j.

We first remark that f is continuously differentiable, writing f = (f`)
2s
`=1 and z

def.
=
∑
j ajϕ(xj) − y,

we have

∂akf` = 〈ϕ(xk), ϕ(x`)〉, ` = 1, . . . , s

∂xkf` = ak〈ϕ′(xk), ϕ(x`)〉+ 〈z, ϕ′(xk)〉δk`, ` = 1, . . . , s

∂akf`+s = 〈ϕ(xk), ϕ′(x`)〉, ` = 1, . . . , s

∂xkf`+s = ak〈ϕ′(xk), ϕ(x`)〉+ 〈z, ϕ′′(xk)〉δk`, ` = 1, . . . , s

Therefore,

∂uf = (Γ∗XΓX + E) Ja, where E
def.
=

(
02s×s,

(
diag (〈z, ϕ′(xj)/aj〉)j
diag (〈z, ϕ′′(xj)/aj〉)j

))
, Ja = diag((1>s , a

>)).

and
∂vf(u, v) =

((
sign(a0)

0s

)
, Γ∗X

)
.

Note that ∂uf(u, v) = Γ∗X0
ΓX0Ja0 is invertible when u = u0 = (a0, X0) and v = (0, 0). Hence, by the

implicit function theorem, there exists 0 ∈ V ⊂ R × H and u0 ∈ U ⊂ Rs × X s such that g : V → U is
differentiable and f(u, v) = 0 if and only if u = g(v). On V , we have

dg(v) = −(∂uf(g(v), v))−1∂vf(g(v), v).
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Candidate solution is a true solution Given (a,X) = g((λ,w)) where (λ,w) ∈ V , we have a
candidate certificate ηλ,w = Φ∗pλ,w with

pλ,w
def.
=

1

λ
(ΦXa− ΦX0a0 − w) .

Note that µa,X is indeed a solution of (Pλ(y)) with y = Φµa0,X0 +w if ηλ,w
def.
= Φ∗pλ,w is nondegenerate.

To this end, we can show that

ηλ,w = η0 + Φ∗ΠX
w

λ
+

1

λ
Φ∗ΠXΦX0a0

where ΠX is the orthogonal projection onto Im(ΓX)⊥. By Taylor expansion of ϕ(x0,i) about xi, we have

ϕ(x0,i) = ϕ(xi)− ϕ′(xi)(xi − x0,i) +

∫ 1

0

1

2
ϕ′′(xi + t(x0,i − xi))(x0,i − xi)2dt

Therefore,

ΠXΦXa = ΠX

∑
i

ai

∫ 1

0

1

2
ϕ′′(xi + t(x0,i − xi))(x0,i − xi)2dt

and ‖ΠXΦXa‖ 6 L2
2
‖a0‖ ‖X −X0‖2, and for k = 0, 2,∣∣∣η(k)

λ,w − η
(k)
0

∣∣∣ 6 L0

λ

(
‖w‖+

L2

2
‖a0‖ ‖X −X0‖2

)
and since g is differentiable, we have ‖X −X0‖ . λ + ‖w‖ and assuming that ‖w‖ 6 c∗λ and λ 6 λ∗,
we obtain ∣∣∣η(k)

λ,w − η
(k)
0

∣∣∣ . L0

λ

(
‖w‖+

L2

2
‖a0‖ (‖w‖+ λ)2

)
. c∗ + λ∗

Therefore, ηλ,w is nondegenerate provided that c∗ and λ∗ are sufficiently small.
Although we shall not do this here, we remark that a quantitative version of this result can be obtained

by bounding the size of the neighbourhood V on which g is well-defined.
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