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The space of Radon measures

Let X ⊂ Rd. The space of Radon measures M(X ) is defined as the dual of

C0(X )
def.
= {f ∈ C(X ) ; f has compact support in X}‖·‖∞

endowed with the uniform norm.

M(X ) is a Banach space with the dual norm

|µ| (X ) = sup

{
Re

∫
X
η(x)dµ(x) ; η ∈ C0(X ), ‖η‖L∞ 6 1

}
.

This is called the total variation norm.

Examples:

µ
def.
=
∑s
j=1 ajδxj ∈M(X ) where aj ∈ C and aδx denotes the Dirac at x ∈ X with

amplitude a ∈ C. Moreover, |µ| (X ) =
∑
j |aj |.

If µ is such that f = dµ
dx

with f ∈ L1(X ), then |µ| (X ) = ‖f‖L1 .
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The sparse spikes problem

Aim: Recover µ0 ∈M(X ), X ⊆ Rd, from m observations, y = Φµ0 + w.

w ∈ H is the additive noise

Φ :M(X )→H, Φµ =
∫
ϕ(x)dµ(x) with ϕ ∈ C(X ,H).

Typically, the measure of interest is of the form µ0 =
∑s
j=1 ajδxj .
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Examples

Deconvolution

H = L2(X ), ϕ(x) = t 7→ ψ(x− t) ∈ L2(X ) for some ψ ∈ L2(X ).

(Φµ)(t) =
∑
j ajψ(xj − t).

ψ(t) = exp
(
−‖t‖2

)
for Gaussian deconvolution.

Sampling Fourier coefficients

Let X = Td, H = Cm and ϕ(x) =
(
e2πi〈x, ω〉

)
ω∈Ω

where Ω ⊂ Rd consists of m values.

If Ω =
{
k ∈ Zd ; |k|∞ 6 fc

}
, then m = (2fc + 1)d and Φµ =

(∑
j aje

2πi〈k, xj〉
)
|k|6fc

.

Sampling the Laplace transform

ϕ(x) = t 7→ exp(−〈x, t〉).
(Φµ)(t) =

∑
j aj exp(−〈xj , t〉).
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Examples

Neuron imaging (EEG/MEG)

We want to locate point sources on some domain X given boundary measurements.

Let H = L2(∂X ), and ϕ(x) = (ψ(x, t))t∈∂X for some kernel ψ.

E.g. ψ(x, t) = ‖x− t‖−2.

In machine learning, you may want to fit a probability distribution to some data.

Estimate parameters (ai) ∈ RN and (xi)
N
i=1 ∈ XN of a mixture

∑N
i=1 aiϕ(xi) of N

elementary distributions.

w accounts for the sampling scheme.

Gaussian mixture model: In a simple setup, consider recovering the means m ∈ R and
standard deviation s ∈ R+ of a Gaussian mixture, i.e. x = (m, s) ∈ X = R× R+ and

ϕ(x) = 1
s
e−(·−m)2/(2s2) ∈ H = L2(R).
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Relation to the compressed sensing problem

Note that in compressed sensing, we aim to recover an s-sparse vector v0 ∈ CN from m
measurements of the form Av0 where A ∈ Cm×N .

There are 2s unknowns, since we need to locate the support and the corresponding
amplitudes of v0.

In the sparse spikes problem, we want to recover µ0 =
∑s
j=1 ajδxj . So there are still 2s

unknown values {(aj , xj)}sj=1, however, the points {xj}sj=1 are no longer constrained to

a finite set of values.

Off-the-grid compressed sensing

Set H def.
= Cm and Φ is a linear operator defined as follows:

Let (Ω,Λ) be a probability space. For ω ∈ Ω, we have random features ϕω ∈ C(X ) .

ϕ(x)
def.
= 1√

m
(ϕωk (x))mk=1.

The sampling operator is Φ :M(X )→ Cm, Φµ
def.
= 1√

m

(∫
ϕωk (x)dµ(x)

)m
k=1

, where

ωk
iid∼ Λ.
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Examples

Random Fourier sampling: instead of recovering µ from (Fµ(ω))|ω|∞6fc
, recover

from (Fµ(ωk))mk=1 where F is the Fourier transform and ωk are drawn iid from

([[−fc, fc]]d,Unif). Here, ϕω(x) = exp
(
−i2πx>ω

)
.

Sampling the Laplace transform: Recover µ ∈M(Rd+) from (Lµ(ωk))mk=1 where L
is the Laplace transform and ωk are drawn iid from (Rd+,Λα) where

Λα(ω) ∝ exp
(
−2α>ω

)
. Here, ϕω(x) = exp

(
−x>ω

)
.
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Density estimation with sketching

Given data on T , estimate parameters (ai) ∈ RN+ and (xi)
s
i=1 ∈ X s of a mixture

ξ(t) =
s∑
j=1

ajξxj (t) =

∫
X
ξx(t)dµ0(x)

where µ0 =
∑
j ajδxj where (ξx)x∈X is a family of template distributions. E.g.

x = (m,σ) ∈ X = R× R+ and ξx = N (m,σ).

Sketching [Gribonval, Blanchard, Keriven & Traonmilin, 2017 ]

Typically, there is no direct access to ξ but n iid samples (t1, . . . , tn) ∈ T n drawn from ξ.
Moreover, since n might be very large, rather than recording this huge set of data, one could
compute online a small set y ∈ Cm of m “sketches” against sketching functions θω(t):

yk
def.
=

1

n

n∑
j=1

θωk (tj) ≈
∫
T
θωk (t)ξ(t)dt =

∫
X

∫
T
θωk (t)ξx(t)dtdµ0(x).

So, we are back to the sparse spikes problem with ϕω(x)
def.
=
∫
T θωk (t)ξx(t)dt. For example,

if θω(t) = ei〈ω, t〉, then ϕ·(x) is the characterisatic function of ξx.

9 / 56



Density estimation with sketching

Given data on T , estimate parameters (ai) ∈ RN+ and (xi)
s
i=1 ∈ X s of a mixture

ξ(t) =
s∑
j=1

ajξxj (t) =

∫
X
ξx(t)dµ0(x)

where µ0 =
∑
j ajδxj where (ξx)x∈X is a family of template distributions. E.g.

x = (m,σ) ∈ X = R× R+ and ξx = N (m,σ).

Sketching [Gribonval, Blanchard, Keriven & Traonmilin, 2017 ]

Typically, there is no direct access to ξ but n iid samples (t1, . . . , tn) ∈ T n drawn from ξ.
Moreover, since n might be very large, rather than recording this huge set of data, one could
compute online a small set y ∈ Cm of m “sketches” against sketching functions θω(t):

yk
def.
=

1

n

n∑
j=1

θωk (tj) ≈
∫
T
θωk (t)ξ(t)dt =

∫
X

∫
T
θωk (t)ξx(t)dtdµ0(x).

So, we are back to the sparse spikes problem with ϕω(x)
def.
=
∫
T θωk (t)ξx(t)dt. For example,

if θω(t) = ei〈ω, t〉, then ϕ·(x) is the characterisatic function of ξx.

9 / 56



Outline

1 The sparse spikes problem

2 The BLASSO and dual certificates

3 Minimal norm certificate and support stability

4 Analysis of the minimal norm certificate

5 Recovery statements

6 Numerical algorithms

10 / 56



The Beurling LASSO (BLASSO)

Let us consider the following optimisation problem:

min
µ∈M(X )

|µ| (X ) +
1

2λ
‖Φµ− y‖2 . (Pλ(y))

where λ > 0 is a regularisation parameter and the total variation norm |µ| (X ) of µ ∈M(X )
is defined as

|µ| (X ) = sup

{
Re

∫
X
η(x)dµ(x) ; η ∈ C0(X ), ‖η‖L∞ 6 1

}
.

In the noiseless case, consider

min
µ∈M(X )

|µ| (X ) subject to Φµ = y. (P0(y))

Questions:

Under what conditions can we recover a sparse measure µ0 =
∑s
j=1 ajδxj exactly in

the noiseless setting by solving (P0(y))?

If µ0 can be recovered in the noiseless setting, can it be stably recovered via (Pλ(y))?

The question of stability is a little more delicate here. Given µ1 =
∑
j ajδxj and

µ2 =
∑
j a
′
jδx′j

, we have |µ1 − µ2| (X ) =
∑
j |aj |+ |a′j |.

When do we have support stability? That is, we recover exactly s spikes and have
control on error of the amplitudes and positions.

Numerical algorithms which respect the infinite dimensional structure?
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Optimality condition
Let us first remark that |µ| (X ) is non-differentiable (just like the `1-norm is not
differentiable), so we consider instead its subdifferential

∂ |µ| (X )
def.
=

{
η ∈ C(X ) ; |µ̃| (X ) > |µ| (X ) +

∫
ηd(µ̃− µ)

}

One can show that

∂ |µ| (X ) =

{
η ∈ C(X ) ; ‖η‖∞ 6 1 and

∫
ηdµ = |µ| (X )

}
.

In particular, if µ =
∑
j ajδxj ,

∂ |µ| (X ) =
{
η ∈ C(X ) ; ‖η‖∞ 6 1 and ∀j, η(xj) = sign(aj)

}
.

and given any µ ∈M(X ) and η ∈ ∂ |µ| (X ),

Supp(µ) ⊆ {x ∈ X ; |η(x)| = 1} .

Optimality condition

FACT: µ is a minimiser of a convex functional F if and only if 0 ∈ ∂F (µ).
A discrete measure µ =

∑
j ajδxj is a solution of (Pλ(y)) iff

0 ∈ Φ∗(Φµ− y) + λ∂ |µ| (X ).

That is, η
def.
= 1

λ
Φ∗(y − Φµ) satisfies η ∈ ∂ |µ| (X ), η(xj) = sign(aj), and ‖η‖∞ 6 1.
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Duality

Fenchel dual problems

The dual problem to (Pλ(y)) and P0(y) are (Dλ(y)) and (D0(y)) respectively:

sup
‖Φ∗p‖∞61

〈y, p〉 −
λ

2
‖p‖2 (Dλ(y))

sup
‖Φ∗p‖∞61

〈y, p〉. (D0(y))
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〈y, p〉 −
λ

2
‖p‖2 (Dλ(y))

sup
‖Φ∗p‖∞61

〈y, p〉. (D0(y))

Comments:

Solving (Dλ(y)) is equivalent to

min
‖Φ∗p‖∞61

∥∥∥ y
λ
− p
∥∥∥2

This is a projection onto a closed convex set and we have immediately existence and
uniqueness of the dual solution.

Here, existence of solutions to (D0(y)) is not guaranteed, but is true when Im(Φ∗) is
finite dimensional.

We have strong duality.
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Duality

Fenchel dual problems

The dual problem to (Pλ(y)) and P0(y) are (Dλ(y)) and (D0(y)) respectively:

sup
‖Φ∗p‖∞61

〈y, p〉 −
λ

2
‖p‖2 (Dλ(y))

sup
‖Φ∗p‖∞61

〈y, p〉. (D0(y))

Primal and dual solutions

1 Primal solution µλ to (Pλ(y)) and dual solution pλ to (Dλ(y)) satisfy

Φ∗pλ ∈ ∂ |µλ| (X ) and pλ = −
1

λ
(Φµλ − y)

2 If ∃ a solution p0 to (D0(y)), then it is linked to any solution µ0 of (P0(y)) by

Φ∗p0 ∈ ∂ |µ0| (X ).

Note in particular that Supp(µλ) ⊂ {x ∈ X ; |Φ∗pλ(x)| = 1}. These dual solutions
correspond precisely to dual certificates in compressed sensing.
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Unique recovery

Given X
def.
= {xj}sj=1, define ΦX : Rs →H by ΦXa =

∑
j ajϕ(xj).

Theorem

Let µ0 =
∑s
j=1 ajδxj and let y = Φµ0. Suppose that there exists η = Φ∗p such that such

that

for all j = 1, . . . , s, η(xj) = sign(aj),

for all x 6∈ {xj}j , |η(x)| < 1

ΦX is injective.

Then, µ0 is the unique solution to (P0(y)).
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for all j = 1, . . . , s, η(xj) = sign(aj),

for all x 6∈ {xj}j , |η(x)| < 1

ΦX is injective.

Then, µ0 is the unique solution to (P0(y)).

Proof.

Since η ∈ ∂ |µ0| (X ), µ0 must be a primal solution and p must a a dual solution. Moreover,
any solution µ of (P0(y)) must satisfy Supp(µ) ⊂ X. Given two solutions µ =

∑
j ajδxj and

ν =
∑
j ãjδxj , we have

Φ(µ− ν) =
∑
j

(aj − ãj)ϕ(xj) = ΦX(a− ã) = 0

if and only if aj = ãj for all j. Therefore, µ = µ0.
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∑
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Theorem

Let µ0 =
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j=1 ajδxj and let y = Φµ0. Suppose that there exists η = Φ∗p such that such

that

for all j = 1, . . . , s, η(xj) = sign(aj),

for all x 6∈ {xj}j , |η(x)| < 1

ΦX is injective.

Then, µ0 is the unique solution to (P0(y)).

Definition

We say that a certificate is nondegenerate wrt sign(a) and X
def.
= {xj}j if η(xj) = sign(aj),

η(x) < 1 for all x 6∈ X and sign(aj)∇2η(xj) ≺ 0. Precise control on the nondegeneracy of η
around each xj ’s will lead to bounds on how closely solutions to (Pλ(y)) “cluster” around
{xj}j .
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Stability

Theorem (Candès & Fernandez Granda ’14, Azäıs et al ’15)

Let µ0 =
∑s
j=1 ajδxj and suppose that η = Φ∗p ∈ ∂ |µ0| (X ). Suppose that there exists

ε, c2, c0 > 0 and η such that

|η(x)| 6 1− c2 ‖x− xi‖2 for all x ∈ Bε(xi).
|η(x)| < 1− c0 for all x 6∈

⋃
iBε(xi).

Then, choosing λ ∼ δ/ ‖p‖, any solution µ to (Pλ(y)) with y = Φµ0 + w and ‖w‖ 6 δ
satisfies

c0 |µ|
(
X \

⋃
i

Bε(xi)

)
+ c2

s∑
i=1

∫
Bε(xi)

‖x− xi‖2 d |µ| (x) . δ ‖p‖ .

Remark

Suppose that µ =
∑s
j=1

∑
k âj,kδx̂j,k +

∑
j b̂kδẑk where {x̂j,k}k ⊂ Bε(xj) and

{ẑk}k ⊂ X \
⋃
j Bε(xj). Then, this theore implies that

c0
∑
k

∣∣∣b̂k∣∣∣+ c2
∑
j

∑
k

∣∣x̂j,k − xj∣∣2 ∣∣âj,k∣∣ . δ ‖p‖

which suggest that the closer x̂j,k is to xj , the smaller
∣∣âj,k∣∣ should be.
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Proof: step 1, bounding the Bregman “distance”

Lemma (Burger & Osher ’04)

Let µ0 ∈M(X ) be such that ‖y − Φµ0‖ 6 δ and let η = Φ∗p be such that η ∈ ∂ |µ0| (X ).
Then,

dη(µ, µ0)
def.
= |µ| (X )− |µ0| (X )− 〈η, µ− µ0〉 6

δ2

2λ
+
λ ‖p‖2

2
+ δ ‖p‖ .

Proof.

Since µ is a minimizer,

λ |µ| (X ) +
1

2
‖Φµ− y‖2 6 λ |µ0| (X ) +

1

2
‖Φµ0 − y‖2 6 λ |µ0| (X ) +

δ2

2
.

So,
1

2
‖Φµ− y‖2 + λdη(µ, µ0) + λ〈η, µ− µ0〉 6

δ2

2
.

By recalling that η = Φ∗p,

1

2
‖Φµ− y + λp‖2 + λdη(µ, µ0)−

λ2 ‖p‖2

2
+ λ〈p, y − Φµ0〉 6

δ2

2
,

and by rearranging the above inequality,

dη(µ, µ0) 6
δ2

2λ
+
λ ‖p‖2

2
+ δ ‖p‖ .
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Proof: step 2 lower bound on dη(µ, µ0)
Choosing λ ∼ δ/ ‖p‖, we have dη(µ, µ0) . δ ‖p‖. The claim of Theorem 2.2 follows
combining this result with the following lower bound for dη(µ, µ0):

Lemma

Under the assumptions of Theorem 2.2, we have

dη(µ, µ0) > c2
∑
j

∫
Bε(xj)

‖x− xj‖2 d |µ| (x) + c0 |µ|
(⋃

i

Bε(xi)

)
.

Proof.

Let X far def.
= X \

⋃
iBε(xi).

(i) |µ| (X )− |µ0| − 〈η, µ− µ0〉 = |µ| (X )− 〈η, µ〉
(ii) 〈η, µ〉 6

∑
i

∫
Bε(xi)

|η(x)| d |µ| (x) + ‖η‖L∞(Xfar) |µ| (X far).

(iii) Plugging in the assumptions on η into (ii) yields

〈η, µ〉 6
∑
i

|µ|
(⋃

i

Bε(xi)

)
− c2

∫
Bε(xi)

|x− xi|2 d |µ| (x) + (1− c0) |µ|
(
X far

)
= |µ| (X )− c2

∑
i

∫
Bε(xi)

|x− xi|2 d |µ| (x)− c0 |µ|
(
X far

)
(iv) Combining (i) and (iii) yields the required conclusion.
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The minimal norm certificate

Checking the existence of a dual certificate which saturates only at X guarantees uniqueness
of solutions to P0(y) and to some extent, stability. However, for support stability, we need to
consider the certificate of minimal norm [Duval & Peyré ’15].

Minimal norm certificate

Given any µ∗ solution to (P0(y)), define

p0
def.
= min {‖p‖ ; p ∈ (D0(y))}

If p0 exists, then we call it the minimal norm certificate

A key property is that it is the limit of the (unique) dual solutions of (Dλ(y)) as λ→ 0.
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Limit of pλ

Lemma (Duval & Peyré ’15)

Let pλ be the solution to (Dλ(y)). If p0 exists, then ‖pλ − p0‖ → 0 and η
(k)
λ → η

(k)
0

uniformly for all k.

Proof.

Step 1, extract a weakly convergent subsequence: Since pλ is a solution to Dλ(y), we
have

〈y, pλ〉 −
λ

2
‖pλ‖2 > 〈y, p0〉 −

λ

2
‖p0‖2 , (4.1)

and p0 being a solution to D0(y) implies that

〈y, p0〉 > 〈y, pλ〉.

Therefore, ‖p0‖ > ‖pλ‖, and given λn → 0, we may extract a subsequence such that pλnk
weakly converges to p∗ for some p∗ ∈ H (recall that the closed unit ball of a Hilbert space is
weakly sequentially compact).
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and p0 being a solution to D0(y) implies that

〈y, p0〉 > 〈y, pλ〉.

Therefore, ‖p0‖ > ‖pλ‖, and given λn → 0, we may extract a subsequence such that pλnk
weakly converges to p∗ for some p∗ ∈ H (recall that the closed unit ball of a Hilbert space is
weakly sequentially compact).
Step 2, the weak limit solves (D0(y)): Taking the limit of λ→ 0 in (3.1) yields
〈y, p∗〉 > 〈y, p0〉.
Note that Φ∗pλnk

converges weakly to Φ∗p in C(X ), and so,

‖Φ∗p‖∞ 6 lim inf
k

∥∥∥Φ∗pλnk

∥∥∥
∞

= 1.

Therefore, p∗ solves D0(y).
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(k)
λ → η

(k)
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uniformly for all k.

Proof.

Step 3, the weak limit is the minimal norm solution: p∗ is the solution of minimal
norm since

‖p∗‖ 6 lim inf
k

∥∥∥pλnk ∥∥∥ 6 ‖p0‖ ,

and hence, p∗ = p0,
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Step 3, the weak limit is the minimal norm solution: p∗ is the solution of minimal
norm since

‖p∗‖ 6 lim inf
k

∥∥∥pλnk ∥∥∥ 6 ‖p0‖ ,

and hence, p∗ = p0,
∥∥∥pλnk ∥∥∥→ ‖p0‖ and pλnk

→ p0 strongly in H.

Step 4, full convergence: This implies limλ→0 ‖pλ − p0‖ = 0, since otherwise, we can
extract a subsequence pλk such that

∥∥pλk − p0

∥∥ > ε and by the above argument, extract a

further subsequence which converges strongly to p0. Finally, for the convergence of η
(k)
λ ,

note that ∣∣∣η(k)
λ (x)− η(k)

0 (x)
∣∣∣ 6 ∥∥∥ϕ(k)

∥∥∥
∞
‖pλ − p0‖ → 0, λ→ 0.
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Exact support stability under small noise
Suppose that µ0 =

∑s
i=1 ajδxj .

Theorem (Duval & Peyré ’15)

Suppose that η0 is nondegenerate, there exists r, λ0, c0 such that for all λ 6 λ0 and
‖w‖ 6 c0λ, any solution µλ,w of (Pλ(y)) with y = Φµ0 + w has support contained in⋃s
i=1Br(xi). Moreover, if µ0 is identifiable, then µλ,w consist of exactly s spikes.

Proof.

Note that since the solution to Dλ(y) is the projection onto a closed convex set, we have∥∥pλ,0 − pλ,w∥∥ 6
‖w‖
λ
.

Suppose that η′′0 (x) 6= 0 in x ∈ Br(xj), j = 1, . . . , s, and |η0(x)| < 1 for x 6∈ ∪jBr(xj).
Then, for all ε > 0, for all λ and ‖w‖ /λ sufficiently small,

∣∣∣η(k)
0 − η(k)

λ,w

∣∣∣ < ε for

k ∈ {0, 2}.

Therefore, ηλ,w is such that
∣∣∣η(2)
λ,w(x)

∣∣∣ 6= 0 in Br(xj) for each j and
∣∣ηλ,w(x)

∣∣ < 1 for

x 6∈ ∪jBr(xj). So, there exists at most 1 point in Bε(xj) for which
∣∣ηλ,w∣∣ = 1.

But if P0 has a unique solution µ0, then we know that µλ,w converges in the weak-*
topology as λ, ‖w‖ → 0. Therefore µλ,w(Br(xj))→ µ0(Br(xj)) 6= 0 and hence, for λ,w
sufficiently small, µλ,w has exactly one spike in Br(xj).
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Exact support stability under small noise

In fact, the following (stronger) result holds:

Theorem (Duval & Peyré ’15)

Suppose that η0 is nondegenerate and µ0 is identifiable, then there exists λ∗, c∗ such that for
all λ 6 λ∗ and ‖w‖ 6 c∗λ, Pλ(y) has a unique solution which consists of precisely s spikes.
Writing v = (λ,w), we have µv =

∑s
i=1 a

v
i δxvi . the mapping v 7→ (av , Xv) is C1 and

‖av − a0‖+ ‖Xv −X0‖ 6 C (λ+ ‖w‖).
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Summary

The extremal points of solutions to the dual problem inform on the support of the
primal solutions.

Existence of a nondegenerate dual certificate guarantees exact recovery in the noiseless
setting, and support clustering stability in the noisy setting.

For support stability, we look to a special solution of D0(y), the one of minimal norm.

the MNC is the limit of pλ and so, it informs on the support of µλ for λ small.
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Vanishing derivatives precertificate

We need to find η = Φ∗p such that η(xi) = sign(ai) for all i and ‖η‖∞ 6 1. What is a good
(closed form) candidate?

Minimal norm certificate

Consider instead the vanishing derivatives precertificate, defined as ηV = Φ∗pV with

pV = argmin
{
‖p‖ ; ∀i, (Φ∗p)(xi) = sign(ai) and ‖Φ∗p‖∞ 6 1

}
.

Closed form expression: The constraint consists of (d+ 1)s equations. Writing

ΓX : R2s →H,
(a
b

)
7→
∑
j

ajϕ(xj) + bjϕ
′(xj)

the constraints can be written as Γ∗Xp =
(sign(a)

0

)
and so, pV = Γ∗,†X

(sign(a)
0

)
.

Kernel expression: Writing the covariance kernel K(x, x′)
def.
= 〈ϕ(x), ϕ(x′)〉, we have

ηV (x) =

N∑
i=1

αiK(xi, x) +

N∑
i=1

βi∂1K(xi, x),
(α
β

)
= D−1

K,X

(sign(a)

0N

)
with correlation kernel K(x, x′) = 〈ϕ(x), ϕ(x′)〉, DK,X

def.
=

(
M0, M1

M∗1 M2

)
,

where M0 = (K(xi, xj))i,j , M1 = (∂1K(xi, xj))i,j , M2 = (∂1∂2K(xi, xj))i,j .
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Necessity of ηV

ηV coincides with the minimal norm certificate if ‖ηV ‖∞ 6 1 and is necessarily a valid
certificate if there is support stability.

Given X = {xj}sj=1, define Γ : R2s →H by ΓX
(a
b

)
=
∑
j ajϕ(xj) + bjϕ

′(xj).

Lemma

Let X0 = {x0,i}si=1 and Suppose that µ0 =
∑s
i=1 a0,iδx0,i and ΓX0

is full rank. Suppose

that there exists a C1 path g : [0, λ0)→ Rs ×X s, λ 7→ (aλ, Xλ) such that

µλ
def.
=
∑s
i=1 aλ,ixλ,i solves (Pλ(y)) with y = Φµ0. Then ηV = η0.

Typical strategy: compute some ηV based on a correlation kernel K, then check that it is
nondegenerate.
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Proof of necessity of ηV (bc limλ→0 pλ = pV )

Given λ ∈ [0, λ0), let (a,X) = g(λ). For all λ sufficiently small, we have sign(a) = sign(a0)

by continuity of g, and recall that pλ = 1
λ

(
ΦX0

a0 − ΦXa
)
. Therefore,

Γ∗X
(
ΦXa− ΦX0a0

)
+ λ
(sign(a0)

0

)
= 0.

Applying ΓX(Γ∗XΓX)† to both sides gives

ΓX

(a
0

)
− ΓXΓ†XΓX0

(a0

0

)
+ λΓ∗,†X

(sign(a0)

0s

)
= 0.

Let ΠX be the projection onto Im(ΓX)⊥. Then, ΠX = (Id− ΓXΓ†X), so

1

λ

(
−ΦXa+ ΦX0

a0

)
︸ ︷︷ ︸

pλ

−
1

λ
ΠXΦX0

a0 = Γ∗,†X

(sign(a0)

0s

)
︸ ︷︷ ︸

cvg. Γ
∗,†
X0

(
sign(a0)

0s

)
=pV

.

Since ΠX is a projection and ΦX0
a0 =

∑
j a0,jϕ(x0,j) is∑

j

a0,j

(
ϕ(xj) + ϕ′(xj)(xj − x0,j) + (xj − x0,j)

2

∫ 1

0
ϕ′′(t(xj − x0,j))dt

)
,

we have

1

λ

∥∥ΠXΦX0
a0

∥∥ 6 ‖a0‖∞
∥∥ϕ′′∥∥∞ 1

λ
‖X −X0‖2 6 ‖a0‖∞

∥∥ϕ′′∥∥∞ 1

λ
‖g(λ)− g(0)‖2 . λ

since g is differentiable. Therefore, limλ→0 pλ = pV and hence, pV = p0.
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λ

(
ΦX0
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Γ∗X
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+ λ
(sign(a0)

0

)
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ΓX
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0
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− ΓXΓ†XΓX0

(a0

0
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Examples

Consider

ϕk =

(
1−

|k|
fc + 1

)
e2πik· and Φµ = (〈ϕk, µ〉)k=−fc,...,fc .

Solve

min
µ
|µ| (T) +

1

2λ
‖Φµ− y‖22

where y = Φµ0 + ε.

µ0 consists of 4 spikes.

Let fc = 10, λ = 10−3 and ‖ε‖ = 10−4 ‖y‖.

ηV is nondegenerate

Reconstruction ηV
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Key takeaway point

The vanishing derivatives certificate has a closed form expression and leads to an
understanding of the recovery properties of the BLASSO.

If ‖ηV ‖∞ > 1, then no support stability is possible (arbitrarily small noise can lead to
the appearance of spurious spikes).

ηV nondegenerate implies support stability in the small noise regime, and unique
recovery in the noiseless regime.

ηV nondegenerate implies clustering stability in the large noise regime.

Next: precise recovery statements obtained via the analysis of vanishing derivatives
certificates.
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Outline

1 The sparse spikes problem

2 The BLASSO and dual certificates

3 Minimal norm certificate and support stability

4 Analysis of the minimal norm certificate

5 Recovery statements

6 Numerical algorithms
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Sampling the Fourier transform

One of the seminal papers on the BLASSO is by Candès and Fernandez-Granda, Towards a
Mathematical Theory of Superresolution published in CPAM, 2014.

Setting: We want to recover µa,X =
∑
j ajδxj for xj ∈ T, from samples of its Fourier

transform:

Φµ
def.
=
{
〈e−i2πk·, µ〉 ; k ∈ Z, |k| 6 fc

}
.

The minimum separation condition is defined as

∆(X)
def.
= min

i 6=j
|xi − xj | .

Theorem (Candès & Fernandez-Granda ’14)

Suppose that ∆(X) > C
fc

. Then, µa,X is the unique solution to (P0(y)) with y = Φµa,X .

Here, C > 0 is a universal constant, C
def.
= 2 in the original paper of Candès and

Fernandez-Granda, with improvement to C = 1.26 by Fernandez-Granda in 2016.

Since the proof constructs a nondegenerate dual certificate, “clustering stability” is also
guaranteed in the noisy regime. Stability bounds on

∥∥ϕhigh ? (µ̂− µa,X)
∥∥
L1 are also

possible.
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Comment 1: the separation condition is necessary

In order to recover spikes of arbitrary signs, the minimum separation condition is necessary.

To recover µa,X , it is necessary that there exists a trigonometric function η which
interpolates sign(a) at points X.

Suppose that |xj − xi| = ∆, sign(aj) = 1, sign(ai) = −1. Then, for some x ∈ [xi, xj ],

η(xi)− η(xj) = η′(x)(xi − xj)

Therefore, ∣∣η′(x)
∣∣ > ∣∣∣∣η(xi)− η(xj)

(xi − xj)

∣∣∣∣ =
2

∆
.

The classical Bernstein’s inequality asserts that for every trigonometric polynomial of degree
at most f , |q′(x)| 6 f ‖q‖∞ . In our case, η is a trigonometric polynomial of degree 2fc.
Therefore, we must have ∆ > 1/fc.

Remark

Note that if the spikes are all positive, then it can be shown that the BLASSO does not
require any separation [De Castro et al ’12]

For the arbitrary signs case, the separation condition is fundamental only for the
BLASSO, it is known that other methods, such as Prony type methods do not require
any separation.

33 / 56



Comment 1: the separation condition is necessary

In order to recover spikes of arbitrary signs, the minimum separation condition is necessary.

To recover µa,X , it is necessary that there exists a trigonometric function η which
interpolates sign(a) at points X.

Suppose that |xj − xi| = ∆, sign(aj) = 1, sign(ai) = −1. Then, for some x ∈ [xi, xj ],

η(xi)− η(xj) = η′(x)(xi − xj)

Therefore, ∣∣η′(x)
∣∣ > ∣∣∣∣η(xi)− η(xj)

(xi − xj)

∣∣∣∣ =
2

∆
.

The classical Bernstein’s inequality asserts that for every trigonometric polynomial of degree
at most f , |q′(x)| 6 f ‖q‖∞ . In our case, η is a trigonometric polynomial of degree 2fc.
Therefore, we must have ∆ > 1/fc.

Remark

Note that if the spikes are all positive, then it can be shown that the BLASSO does not
require any separation [De Castro et al ’12]

For the arbitrary signs case, the separation condition is fundamental only for the
BLASSO, it is known that other methods, such as Prony type methods do not require
any separation.

33 / 56



Comment 1: the separation condition is necessary

In order to recover spikes of arbitrary signs, the minimum separation condition is necessary.

To recover µa,X , it is necessary that there exists a trigonometric function η which
interpolates sign(a) at points X.

Suppose that |xj − xi| = ∆, sign(aj) = 1, sign(ai) = −1. Then, for some x ∈ [xi, xj ],

η(xi)− η(xj) = η′(x)(xi − xj)

Therefore, ∣∣η′(x)
∣∣ > ∣∣∣∣η(xi)− η(xj)

(xi − xj)

∣∣∣∣ =
2

∆
.

The classical Bernstein’s inequality asserts that for every trigonometric polynomial of degree
at most f , |q′(x)| 6 f ‖q‖∞ . In our case, η is a trigonometric polynomial of degree 2fc.
Therefore, we must have ∆ > 1/fc.

Remark

Note that if the spikes are all positive, then it can be shown that the BLASSO does not
require any separation [De Castro et al ’12]

For the arbitrary signs case, the separation condition is fundamental only for the
BLASSO, it is known that other methods, such as Prony type methods do not require
any separation.

33 / 56



Comment 1: the separation condition is necessary

In order to recover spikes of arbitrary signs, the minimum separation condition is necessary.

To recover µa,X , it is necessary that there exists a trigonometric function η which
interpolates sign(a) at points X.

Suppose that |xj − xi| = ∆, sign(aj) = 1, sign(ai) = −1. Then, for some x ∈ [xi, xj ],

η(xi)− η(xj) = η′(x)(xi − xj)

Therefore, ∣∣η′(x)
∣∣ > ∣∣∣∣η(xi)− η(xj)

(xi − xj)

∣∣∣∣ =
2

∆
.

The classical Bernstein’s inequality asserts that for every trigonometric polynomial of degree
at most f , |q′(x)| 6 f ‖q‖∞ . In our case, η is a trigonometric polynomial of degree 2fc.
Therefore, we must have ∆ > 1/fc.

Remark

Note that if the spikes are all positive, then it can be shown that the BLASSO does not
require any separation [De Castro et al ’12]

For the arbitrary signs case, the separation condition is fundamental only for the
BLASSO, it is known that other methods, such as Prony type methods do not require
any separation.

33 / 56



Comment 2: analysis via the Jackson kernel

ηV (x) =
s∑
i=1

αiK(xi, x) +
N∑
i=1

βi∂1K(xi, x) where
(α
β

)
= DK,X

(sign(a)

0S

)

Since ϕ(x) =
(
e−i2πkx

)
|k|6fc

, we have

K(x, y) =
∑
|k|6fc

ei2πk(x−y) = κ(x− y)

where κ(t) =
sin((2fc+1)πt)
(2fc+1) sin(πt)

is the Dirichlet kernel.

The κ has slow decay 1/(1 + fc |t|), so it was proposed to replace κ by κCF (4th power of
Dirichlet kernel):

KCF(x, x′) = κCF(x− x′) =

 sin(πt
(
fc
2

+ 1
)

)(
fc
2

+ 1
)

sin(πt)

4

.

Under KCF, ηV is still a trigonometric polynomial with frequencies |k| 6 fc. So
nondegeneracy of ηF still guarantees exact and stable clustering recovery.

KCF(x, x′) = 〈ϕ̃(x), ϕ̃(x′)〉 with ϕF (x) =
(√
gke
−i2πkx)

|k|6fc
, for some appropriate

weight g. So, the result of C-FG guarantees support stability for weighted Fourier
sampling.
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Extension: Subsampling

Observe
{
〈e−i2πk·, µ0〉 ; k ∈ Ω

}
where Ω ⊂

{
k ∈ Z ; |k| 6 fc

2

}
drawn uniformly at random.

Theorem (Tang et al ’13)

Let µ0 =
∑
j ajδxj with mini6=j |xi − xj | > C/fc. Suppose that sign(a) is a Steinhaus

sequence and
|Ω| & max

(
s log(s/δ) log(fc/δ), log(fc/δ)

2
)
.

Then, w.p. at least 1− δ, µ0 can be exactly recovered from P0(y).
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Convolution

Let Φ be a convolution operator Φ :M(X ;R)→ L2(R) with ϕ(x) = t 7→ ψ(t− x) ∈ L2(R):

Φµ = t 7→
∫
ψ(t− x)dµ(x).

Then,

K(x, x′)
def.
= κ(x− x′), where κ

def.
= ψ ? ψ.

Let σ
def.
= 1/

√
|κ′′(0)|, and assume that for p > 1

2
, r, b > 0, we have

Sufficient decay: for k = 0, 1, 2, 3, σk
∣∣κ(k)(t)

∣∣ 6 Ak
(1+Ct2)p

.

Sufficient peak: σ2κ′′(t) < −b, ∀ |t| < σr.

Theorem ([Bendory et al ’15])

Let |xi − xj | > ∆ for all i 6= j, with ∆
def.
= D√

C
. Then, ηV is nondegenerate. Here D > 0 is a

constant which depends only on Ak, b, r and p.

Gaussian kernel: ψ(t) = 1
4√π
√
σ

exp
(
−t2σ−2/2

)
, then κ(t) = exp

(
−t2σ−2/4

)
.

Cauchy kernel: ψ(t) = 2√
σπ(4t2σ−2+1)

, then κ(t) = 1
(t2σ−2+1)

.

We have a scaling factor σ, but b, r, Ak and p can be chosen to to be constants independent
of σ and C ∼ |κ′′(0)| ∼ σ−2. Therefore, ηV is nondegenerate provided that ∆ & σ.
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We have a scaling factor σ, but b, r, Ak and p can be chosen to to be constants independent
of σ and C ∼ |κ′′(0)| ∼ σ−2. Therefore, ηV is nondegenerate provided that ∆ & σ.
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Convolution

Let Φ be a convolution operator Φ :M(X ;R)→ L2(R) with ϕ(x) = t 7→ ψ(t− x) ∈ L2(R):

Φµ = t 7→
∫
ψ(t− x)dµ(x).

Then,

K(x, x′)
def.
= κ(x− x′), where κ

def.
= ψ ? ψ.

Let σ
def.
= 1/

√
|κ′′(0)|, and assume that for p > 1

2
, r, b > 0, we have

Sufficient decay: for k = 0, 1, 2, 3, σk
∣∣κ(k)(t)

∣∣ 6 Ak
(1+Ct2)p

.

Sufficient peak: σ2κ′′(t) < −b, ∀ |t| < σr.

Theorem ([Bendory et al ’15])

Let |xi − xj | > ∆ for all i 6= j, with ∆
def.
= D√

C
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Summary

On conditions for recovery:

The extremal points of solutions to the dual problem inform on the support of the
primal solutions.

Existence of a nondegenerate dual certificate guarantees exact recovery in the noiseless
setting, and support clustering stability in the noisy setting.

For support stability, we look to a special solution of D0(y), the one of minimal norm
η0 = Φ∗p0.

the MNC is the limit of pλ and so, it informs on the support of µλ for λ small.

Analysis of dual certificates:

To analyse the MNC, we typically look at the vanishing derivatives precertificate which
has a closed form expression.

ηV = η0 when ‖ηV ‖∞ 6 1. In fact, we must have ‖ηV ‖∞ 6 1 if we expect support
stability.

To guarantee exact recovery of spikes of arbitrary signs, it is necessary that that the
underlying positions satisfy a minimum separation condition.

I Case of sampling Fourier coefficients from [−fc, fc], need mini6=j |xi − xj | & 1
fc

.
I Case of Gaussian deconvolution with scaling σ need mini 6=j |xi − xj | & σ.
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Numerical algorithms for the BLASSO

(Pλ(y)) is an optimisation problem over the set of measures. One straightforward way of

solving (Pλ(y)) is to simply discretize over a fine grid X
def.
= (xj)

N
j=1 ⊂ X , that is, solve

min
a∈RN

λ ‖a‖1 +
1

2
‖ΦXa− y‖2

where ΦX : RN →H is defined by ΦXa =
∑N
j=1 ajϕ(xj). This is then simply the LASSO

and when H is a finite dimensional space, this can be solved by a wide range of first order
methods, such as projected gradient descent.

an+1 = Proxγλ‖·‖1 (an − γΦ∗X(ΦXa− y))

where Proxγλ‖·‖1 = argminz
1
2
‖z − x‖22 + λγ ‖x‖1 .

Other approach which are better aligned to the infinite dimensional nature of (Pλ(y))
include SDP approaches/Lasserre hierarchies (for certain measurements, e.g. Fourier) or the
Frank-Wolfe/conditional gradient algorithm.
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SDP approach of Candès and Fernandez-Granda

Let us consider the case where we observe Fourier coefficients up to some cut-off fc ∈ N. Let
n = 2fc + 1. The dual to Pλ(y) is a finite dimensional problem:

max
c∈Cn

Re〈y, c〉 −
λ

2
‖c‖2 subject to ‖F∗nc‖∞ 6 1

where
F∗nc(t) =

∑
|k|6fc

cke
i2πkt.

Theorem (Dumitrescu)

A causal trigonometric polynomial p(t)
def.
=
∑n−1
k=0 cke

i2πkt with c ∈ Cn is bounded by 1 in

magnitude iff there exists Q ∈ Cn×n Hermitian s.t.

0 �
(
Q c
c∗ 1

)
and

n−j∑
i=1

Qi,i+j = δ0,j , j = 1, . . . , n− 1, (7.1)

where δ0,j = 1 if j = 0 and 0 otherwise.

One direction is easy to see: since 〈z,
(
Q c
c∗ 1

)
z〉 > 0, choose z = (x>, 〈x, c〉)>. Then,

x∗Qx− |〈x, c〉| > 0. Choosing x =
(
e2πikt

)n
k=0

, we have |p(t)| 6 x∗Qx. The constraint on
the diagonals of Q implies that x∗Qx = 1.
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SDP approach of Candès and Fernandez-Granda

Note that ei2πfct(F∗nc)(t) is a causal trigonometric polynomial. This observation allows
(Dλ(y)) to be formulated as a SDP problem, as the dual problem becomes
Step I:

max
c∈Cn,Q∈Cn×n

Re〈y, c〉 −
λ

2
‖c‖2 subject to (6.1)

This is a finite dimensional semidefinite program.

To find the solution to the primal problem, note that F∗nc achieves its extremal points on the
support of µ.

To locate these extremal points:

p2n−2(ei2πt) = 1− |(F∗nc)(t)|
2 = 1−

∑
|k|62fc

uke
i2πkt where uk =

∑
j

cj c̄j−k.

z2fcp2n−2(z) is a polynomial of degree 2n− 2 = 4fc and has the same roots as p2n−2

(ignoring z = 0).

p2n−2(ei2πt) has at most 2n− 2 roots.

p2n−2(ei2πt) is real-valued and nonnegative, so it cannot have single roots on the unit
circle. i.e. either p2n−2(ei2πt) = 0 or there are at most n− 1 roots on the unit circle.
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SDP approach of Candès and Fernandez-Granda

Step I:

max
c,Q

Re〈y, c〉 −
λ

2
‖c‖2 subject to

0 �
(
Q c
c∗ 1

)
and

n−j∑
i=1

Qi,i+j = δ0,j , j = 1, . . . , n− 1,

Step II: Find the support X̂ of µ by locating the roots of p2n−2 on the unit circle
(eigenvalues of its companion matrix).

Step III: After finding the support X̂, solve
∑
t∈X̂ e−i2πktat = yk to recover the

amplitudes a (we have at most n− 1 unknowns and n observed values in y).

Check this out later: http://nbviewer.jupyter.org/github/gpeyre/numerical-tours/
blob/master/matlab/sparsity_8_sparsespikes_measures.ipynb
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The multivariate setting
For the multivariate case when d > 1, one needs to make use of a so-called Lasserre
Hierarchy. Consider the semidefinite relaxation of order m with m > n = 2fc + 1:

max
c∈Cnd ,Q∈Cnd×nd

Re〈y, c〉

subject to


(i) 0 �

[
Q c̃

c̃∗ 1

]

where c̃k =

{
ck k ∈ [−fc, fc]d
0 otherwise

(ii) TraceΘkQ = δ0,k, k ∈ (−m,m)d ∩ Z,

(D̂λ,m(y))

where Θk
def.
= θkd ⊗ · · · ⊗ θk1 with ⊗ denoting the Kronecker product and θkj denoting the

m×m Toeplitz matrix with ones on its kthj diagonal and zeros elsewhere.

It is known that (D̂λ,m(y)) converges to Dλ(y) as m→ +∞. If we have finite
convergence, then the hierarchy is said to collapse.

In general, it is not know if we have finite convergence. However, as discussed above, in

d = 1, this relaxation is tight in the sense that (D̂λ,m(y)) is equivalent to Dλ(y) for any
m > n. For d = 2, it is known that we have finite convergence for some m > n
(although in practice, it sufficies to take m > n2.)

To detect collapse of the hierarchy, it suffices to recover a measure µλ,m whose
positions are the roots of Φ∗c which lie on the complex unit circle and amplitudes are
found by solving the linear system of Step III above. If Φ∗c is a dual certificate to
µλ,m, then µλ,m is a solution to (Pλ(y)).
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Frank Wolfe

Frank-Wolfe algorithm aims to solve

min
m∈C

f(m) (7.2)

where C is a weakly compact convex set of a Banach space, and f is a differentiable convex
function.

Algorithm 1 Frank-Wolfe

1: for k = 0, . . . , n do
2: sk ∈ argmins∈C f(m

k) + df(mk)(s−mk)
3: if df(mk)(sk −mk) = 0 then mk is a solution. Stop.
4: else
5: γk ← 2

k+2 or γk ∈ argminγ∈[0,1] f(m
k + γ(sk −mk))

6: mk+1 ← mk + γk(sk −mk)
7: end if
8: end for
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Some comments on the Frank Wolfe algorithm

The key advantage of this algorithm is that it is better suited to optimisation over
Banach spaces as it does not rely on any underlying Hilbertian structure (for example,
the proximal gradient decent algorithm involves a proximal term which is often in terms
of the Euclidean distance), and only uses directional derivatives of f .

Note that given a differentiable convex function,

f(x) > f(y) + df(y)(x− y)

so the stopping criterion does ensure that mk is a global minimiser, since minimality of
sk in step 2 implies that for all s ∈ C,

f(s) > f(mk) + df(mk)(s−mk) > f(mk) + df(mk)(sk −mk) = f(mk).

We remark that in line 6, we can replace mk+1 by any element of m̃ ∈ C such that
f(m̃) 6 f(mk+1) without adversely affecting the convergence properties of this
algorithm.
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Application of FW to our problem
In our setting, we are interested in recovering m as a measure, and C ⊆M(X ). In our case,
we are interested in applying Frank-Wolfe to

fλ(µ)
def.
=

1

2
‖Φµ− y‖2 + λ |µ| (X ).

Immediate problems:

1 fλ is not differentiable

2 M(X ) is unbounded.

The following lemma allows us to rewrite minimisation of fλ over M(X ) into the form (6.2).

Lemma (Denoyelle et al ’18)

µ∗ is a minimiser of fλ if and only if (|µ∗| (X ), µ∗) minimises

min
(t,µ)∈C

f̃λ(µ, t)
def.
=

1

2
‖Φµ− y‖+ λt

where C
def.
= {(t,m) ∈ R+ ×M(X ) ; |µ| (X ) 6 t 6M} and M

def.
=
‖y‖2
2λ

.

Proof.

Note that if µ∗ is a minimiser of fλ, then |µ∗| (X ) 6 1
λ
fλ(µ∗) 6 1

λ
fλ(0) 6 ‖y‖

2λ
. Therefore, it

suffices to minimise fλ over all measure with |µ| (X ) 6M . It is then easy to check that µ∗
minimises fλ if and only if it minimises f̃λ.
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suffices to minimise fλ over all measure with |µ| (X ) 6M . It is then easy to check that µ∗
minimises fλ if and only if it minimises f̃λ.
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Application of FW to our problem
In our setting, we are interested in recovering m as a measure, and C ⊆M(X ). In our case,
we are interested in applying Frank-Wolfe to

fλ(µ)
def.
=

1

2
‖Φµ− y‖2 + λ |µ| (X ).

Immediate problems:

1 fλ is not differentiable

2 M(X ) is unbounded.

The following lemma allows us to rewrite minimisation of fλ over M(X ) into the form (6.2).
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Convergence of FW

Note that f̃λ is now differentiable over R×M(X ) with df̃λ = (λ,Φ∗(Φµ− y)), so

df̃λ : (t′, µ′) 7→ λt′ +

∫
X

Φ∗(Φµ− y)dµ′.

Moreover, even though C is not weakly compact, it is compact in the weak∗ topology, and
the convergence arguments for Algorithm 1 can be applied to conclude that

Lemma

Let (tk, µk) be a sequence generated by Algorithm 1 applied to f̃λ. Then, there exists C > 0
such that for any solution µ∗ of (Pλ(y)), we have

fλ(µk)− fλ(µ∗) 6
C

k
.
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Convergence of FW

As a corollary of this lemma, we have the following result, which shows under a
nondegneracy condition, µk increasingly clusters around the support of the solution µ∗.

Corollary

Suppose that µ∗
def.
= µa,X =

∑
i aiδxi is the unique solution to (Pλ(y)) and 1

λ
Φ∗(y−Φµ∗) is

nondegenerate and satisfies the conditions of Theorem 2.2. Then,

1
∣∣µk∣∣ (X \⋃iBε(xi))+

∑s
i=1

∫
Bε(xi)

|x− xi|2 d
∣∣µk∣∣ (x) . 1

k
.

2 Suppose ΦX is injective. Then, akj
def.
= µk(Bε(xj)) satisfies

∥∥ak − a∥∥2
. 1
k

.

Step 1, relate to Bregman distance

Let rk = fλ(µk)− fλ(µ∗). Let F (µ)
def.
= 1

2λ
‖Φµ− y‖2 and J(µ)

def.
= |µ| (X ). Then,

fλ = λ (J + F ). By convexity of F ,

λ−1rk > J(µk)− J(µ∗) + 〈F ′(µ∗), µk − µ∗〉.

Since −F ′(µ∗) = 1
λ

Φ∗(y − Φµ∗) ∈ ∂J(µ∗), and −F ′(µ∗) is nondegenerate, by Theorem 2.2,

λ−1rk > c0

∣∣∣µk∣∣∣(X \⋃
i

Bε(xi)

)
+ c2

s∑
i=1

∫
Bε(xi)

|x− xi|2 d
∣∣∣µk∣∣∣ (x).
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Convergence of FW

Step 2, using injectivity of ΦX

For the second claim, define

R(ν)
def.
= J(ν)− J(µ∗) + 〈F ′(µ∗), ν − µ∗〉 and T (ν)

def.
= F (ν)− F (µ∗)− 〈F ′(µ∗), ν − µ∗〉.

R(ν) > 0 since −F ′(µ∗) ∈ ∂J(µ∗).

T (ν) > 0 by convexity of F .

λ−1rk = J(µk) + T (µk) > T (µk).

Let akj = µk(Bε(xj)) and let µ̂k =
∑
j a

k
j δxj . If ΦX is injective with ‖ΦXa‖2 > C ‖a‖2, then

rk > λT (µk) =

∥∥Φ(µk − µ∗)
∥∥2

2
>

3

8

∥∥∥Φ(µ̂k − µ∗)
∥∥∥2
−

3

2

∥∥∥Φ(µ̂k − µk)
∥∥∥2

>
3

8
C
∑
k

∣∣∣akj − aj∣∣∣2 − 3

2

∥∥∥Φ(µ̂k − µk)
∥∥∥2
,

where we used (a− b)2/2 > 3a2/8− 3b2/2.
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Step 3, bounding deviation of µk from its sparse projection

Finally, note that

∥∥∥Φ(µ̂k − µk)
∥∥∥2

6

∥∥∥∥∥∥
∑
j

∫
Bε(xj)

(ϕ(x)− ϕ(xj))dµ
k(x) +

∫
Xfar

ϕ(x)dµk(x)

∥∥∥∥∥∥
2

6 2

∑
j

∫
Bε(xj)

∥∥ϕ′∥∥∞ |x− xj |d ∣∣∣µk∣∣∣ (x)

2

+ 2
∣∣∣µk∣∣∣ (X far)2

6 2

∑
j

∥∥ϕ′∥∥∞
√∣∣µk∣∣ (Bε(xj)) ∫

Bε(xj)
|x− xj |2 d

∣∣µk∣∣ (x)

2

+ 2
∣∣∣µk∣∣∣ (X far)2

6 2
∥∥ϕ′∥∥∞ ∣∣∣µk∣∣∣ (Xnear)

∑
j

∫
Bε(xj)

|x− xj |2 d
∣∣∣µk∣∣∣ (x)

+ 2
∣∣∣µk∣∣∣ (X far)2

. λ−1c−1
2 rk + λ−2c−2

0 r2
k.
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Comments on lines 2 and 3 of Algorithm 1

For step 2: Note that given (tk, µk) ∈ C, s 7→ df̃λ(tk, µk) is a linear form, and since C
is convex, it achieves its minimum at an extremal point of C. These extremal points are
of the form s = (M,±Mδx) with x ∈ X .

Therefore,

argmins∈C df̃(tk,mk)(s) = argminx∈X ±M(Φ∗(Φµk − y))(x) + λM

= argminx∈X ±ηk(x) + 1 where ηk
def.
=

1

λ
Φ∗(Φµk − y)

= argmaxx∈X

∣∣∣ηk(x)
∣∣∣ .

Therefore, for each k, we introduce a new support point xk∗ , s
k = (M,σMδxk∗

) where∣∣ηk(xk∗)
∣∣ =

∥∥ηk∥∥∞.

The halting condition of step 3 implies that µk is a minimiser of (Pλ(y)) and hence, ηk

is a dual certificate.
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Comments on line 4 of Algorithm 1

If µk =
∑k
j=1 a

k
j δxkj

, then the line search in step 4 is

min
γ

(1− γ)
∥∥∥ak∥∥∥

1
+ γM +

1

2
‖Φµγ − y‖2

where µγ = (1− γ)
∑k
j=1 a

k
j δxkj

+ γMδxk∗
.

Note that since we can replace this step with any (t, µ) which improves the objective
value, it seems sensible to simply perform in step 4

min
a∈Rk+1

‖a‖1 +
1

2
‖ΦXa− y‖2

where X = {xk1 , . . . , xkk, x
k
∗}. This is a finite dimensional nonsmooth convex

optimisation problem and can be tackled using a variety of algorithms such as Forward
Backward or FISTA.

We can further improve the objective value by optimising over the positions as well
[Bredies & Pikkarainnen ’13, Boyd et al ’17]

More recently, [Denoyelle et al ’18] proposed the sliding Frank-Wolfe algorithm, where
step 4 is augmented to optimise over the positions and the amplitudes simultaneously.
This minor modification in fact leads to finite termination.
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Algorithm 2 Sliding Frank-Wolfe [Denoyelle et al ’18]

1: Initialise with m0 = 0.
2: for k = 0, . . . , n do

3: µk =
∑Nk

i=1 a
k
i δxki

, aki ∈ R, xki ∈ X distinct, find xk∗ ∈ X s.t.

xk∗ ∈ argminx∈X

∣∣∣ηk(x)
∣∣∣ where ηk

def.
=

1

λ
Φ∗(y − Φµk).

4: if then
∣∣ηk(xk∗)

∣∣ 6 1

5: µk is a solution. Stop.
6: else

7: a
k+ 1

2
i ← ηk(xk∗)

8: mk+ 1
2 =

∑Nk

i=1 a
k+ 1

2
i δxki

+ a
k+ 1

2
i δxk∗

s.t.

ak+ 1
2 ∈ argmin

a∈RNk+1

1

2

∥∥∥Φ
x
k+1

2
a− y

∥∥∥2
+ λ ‖a‖1

where xk+ 1
2 = (xk1 , · · · , xkNk , x

k
∗).

9: mk+1 =
∑Nk+1
i=1 ak+1

i δ
xk+1
i

s.t.

(ak+1, xk+1) ∈ argmin
(a,x)∈RNk×XNk+1

1

2
‖Φxa− y‖2 + λ ‖a‖1 ,

using a non-convex solver initialised with (ak+ 1
2 , xk+ 1

2 ).
10: end if
11: end for
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Finite termination

Theorem (Denoyelle et al ’18)

Let µa,X =
∑
i aiδxi be the unique solution to (Pλ(y)) and suppose that

ηλ = 1
λ

Φ∗(y − Φµa,X) is nondegenerate. Then, Algorithm 2 recovers µa,X after a finite
number of steps.

Sketch of proof.

Step 1, ηk converges to ηλ:
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Theorem (Denoyelle et al ’18)

Let µa,X =
∑
i aiδxi be the unique solution to (Pλ(y)) and suppose that

ηλ = 1
λ

Φ∗(y − Φµa,X) is nondegenerate. Then, Algorithm 2 recovers µa,X after a finite
number of steps.

Sketch of proof.

Step 1, ηk converges to ηλ:

First note that µk converges to µa,X in the weak-∗ topology.

Since Φ is weak-∗ to weak continuous, we have pk = 1
λ

(y − Φµk) converges weakly to

pλ. Furthermore, pk must be uniformly bounded in H.

This implies that the functions ηk
def.
= x 7→ 〈ϕ(x), pk〉 are uniformly bounded and

equicontinuous. So, by Arzela-Ascoli, we can extract a subsequence of ηk which
converges to ηλ in L∞ norm.

This is true also for the first and second derivatives of ηk.
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Finite termination

Theorem (Denoyelle et al ’18)

Let µa,X =
∑
i aiδxi be the unique solution to (Pλ(y)) and suppose that

ηλ = 1
λ

Φ∗(y − Φµa,X) is nondegenerate. Then, Algorithm 2 recovers µa,X after a finite
number of steps.

Sketch of proof.

Step 1, ηk converges to ηλ:
Step 2, ηk becomes a valid certificate in finite time:

Now, ηλ is nondegenerate implies that there exists a small neighbourhood around each
xi on which η′′λ 6= 0. Therefore, there exists ε > 0 and k1 ∈ N such that for all k > k1,

(ηk)′′(x) 6= 0 for x ∈ (xi − ε, xi + ε)
def.
= Ixi,ε, and

∣∣ηk(x)
∣∣ < 1 for all x 6∈ ∪iIxi,ε. The

optimality condition of step 8 is

0 ∈ Φ∗x(Φxa− y) + λ∂ ‖a‖1 and ∀j, 〈(Φxa− y), ϕ′(xj)〉 = 0.

So, ηk = − 1
λ

Φ∗(Φxka
k − y) satisfies ηk(xkj ) = sign(akj ) and (ηk)′(xj) = 0. Hence,∣∣ηk(x)

∣∣ < 1 except at xk.
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Finite termination

Theorem (Denoyelle et al ’18)

Let µa,X =
∑
i aiδxi be the unique solution to (Pλ(y)) and suppose that

ηλ = 1
λ

Φ∗(y − Φµa,X) is nondegenerate. Then, Algorithm 2 recovers µa,X after a finite
number of steps.

Sketch of proof.

Step 1, ηk converges to ηλ:
Step 2, ηk becomes a valid certificate in finite time:

Remark

Step 8 of Algorithm 2 requires solving a nonconvex optimisation problem, however, the
proof utilises only the optimality condition of the optimisation problem and hence,
finite convergence still holds even if we compute a stationary point.

Under the nondegeneracy assumption, numerical observations suggest that we in fact
have convergence in s iterations.
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Example 1: nondegenerate case

Measurements: y = Φm0 + λw, where w = Φm̃, m̃ =
∑20
j=1 bjδuj , b is white noise with

standard deviation 10−3.

Let X =
{
x ∈ R2 ; ‖x‖ 6 1

}
. To model MEG/EEG, ϕ(x) = u 7→ ‖x− u‖−2 ∈ H = L2(∂X ).

ηV and µλ Zoom

Background image shows ηV

Blue for λ = 0, Red for λ = λmax.
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Example 2: Degenerate case

Measurements: y = Φm0 + λw, where w = Φm̃, m̃ =
∑20
j=1 bjδuj , b is white noise with

standard deviation 10−3.

ηV and µ0 η(`) and µ(`)

ηW,Z is not a valid certificate implies support instability.

Dot size proportional to amplitude of corresponding spikes.

Light blue dots indicate the support of m(`) with very small amplitude.

The additional spikes are required to force η(l) 6 1, this is not satisfied by ηW,Z .

Numerically, no convergence in a finite number of iterations.
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Summary
On conditions for recovery:

The extremal points of solutions to the dual problem inform on the support of the
primal solutions.

Existence of a nondegenerate dual certificate guarantees exact recovery in the noiseless
setting, and support clustering stability in the noisy setting.

For support stability, we look to a special solution of D0(y), the one of minimal norm
η0 = Φ∗p0. The MNC informs on the support of µλ for λ small.

Analysis of dual certificates:

To analyse the MNC, we typically look at the vanishing derivatives precertificate which
has a closed form expression.

ηV = η0 when ‖ηV ‖∞ 6 1. In fact, we must have ‖ηV ‖∞ 6 1 if we expect support
stability.

To guarantee exact recovery of spikes of arbitrary signs, it is necessary that that the
underlying positions satisfy a minimum separation condition.

Numerical algorithms

For Fourier type measurements, one can look to SDP type algorithms. However,
convergence for dimensions higher than 2 are not guaranteed. Also computationally
expensive.

For more general measurements, we saw that the Frank-Wolfe algorithm can be applied.

This is basically OMP where you add a new support point at each iteration, then
locally improve over the recovered amplitudes and positions.

Simultaneously optimising over the amplitudes and positions leads to substantial
improvements!

http://nbviewer.jupyter.org/github/gpeyre/numerical-tours/blob/master/matlab/
sparsity_8_sparsespikes_measures.ipynb 57 / 56
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