Sparsity in imaging: Compressed sensing

Clarice Poon University of Bath

January, 2019

Candés, Romberg & Tao (2006); Donoho (2006)

Task: Given $y_0 = Ax_0$ where $A : \mathbb{R}^N \to \mathbb{R}^m$ with $N \gg m$, recover x_0 .

In general, this is impossible, since we have more unknowns than knowns.

Candés, Romberg & Tao (2006); Donoho (2006)

Task: Given $y_0 = Ax_0$ where $A : \mathbb{R}^N \to \mathbb{R}^m$ with $N \gg m$, recover x_0 .

In general, this is impossible, since we have more unknowns than knowns.

Suppose that $f \in \mathbb{C}^N$ is sparse in some orthonormal basis Ψ . That is, $f = \Psi x_0$ for some sparse vector x_0 . Then,

$$y = Af = \underline{A} \circ \Psi x_0 = \underline{\Phi} x_0.$$

Solve instead

$$\min_{x} \|x\|_0 \text{ subject to } \Phi x = y$$

Candés, Romberg & Tao (2006); Donoho (2006)

Task: Given $y_0 = Ax_0$ where $A : \mathbb{R}^N \to \mathbb{R}^m$ with $N \gg m$, recover x_0 .

In general, this is impossible, since we have more unknowns than knowns.

Suppose that $f \in \mathbb{C}^N$ is sparse in some orthonormal basis Ψ . That is, $f = \Psi x_0$ for some sparse vector x_0 . Then,

$$y = Af = \underline{A} \circ \Psi x_0 = \underline{\Phi} x_0.$$

Solve instead

$$\min_{x} \|x\|_0 \text{ subject to } \Phi x = y$$

 Even though this problem might have a unique solution, it is nontrivial to find an algorithm to solve this.

Candés, Romberg & Tao (2006); Donoho (2006)

Task: Given $y_0 = Ax_0$ where $A : \mathbb{R}^N \to \mathbb{R}^m$ with $N \gg m$, recover x_0 .

In general, this is impossible, since we have more unknowns than knowns.

Suppose that $f \in \mathbb{C}^N$ is sparse in some orthonormal basis Ψ . That is, $f = \Psi x_0$ for some sparse vector x_0 . Then,

$$y = Af = A \circ \Psi x_0 = \Phi x_0.$$

Solve instead

$$\min_{x} \|x\|_0$$
 subject to $\Phi x = y$

- Even though this problem might have a unique solution, it is nontrivial to find an algorithm to solve this.
- Naively, we can attempt to solve $A_S u = y$ for all subsets S of size s. However, it is unpractical to check all $\binom{N}{s}$ such subsets! E.g. if N = 1000, s = 10, then there are $\binom{1000}{10} \geqslant (1000/10)^{10} = 10^{20}$ linear systems of size 10×10 . Even if each system is solved in 10^{-10} s, this approach requires 10^{10} s > 300 years.

Candés, Romberg & Tao (2006); Donoho (2006)

Task: Given $y_0 = Ax_0$ where $A : \mathbb{R}^N \to \mathbb{R}^m$ with $N \gg m$, recover x_0 .

In general, this is impossible, since we have more unknowns than knowns.

Suppose that $f \in \mathbb{C}^N$ is sparse in some orthonormal basis Ψ . That is, $f = \Psi x_0$ for some sparse vector x_0 . Then,

$$y = Af = A \circ \Psi x_0 = \Phi x_0.$$

Solve instead

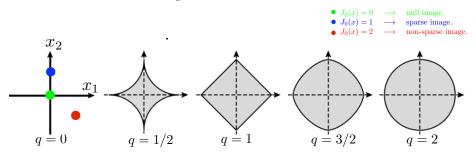
$$\min_{x} \|x\|_0 \text{ subject to } \Phi x = y$$

- Even though this problem might have a unique solution, it is nontrivial to find an algorithm to solve this.
- Naively, we can attempt to solve $A_S u = y$ for all subsets S of size s. However, it is unpractical to check all $\binom{N}{s}$ such subsets! E.g. if N = 1000, s = 10, then there are $\binom{1000}{10} \geqslant (1000/10)^{10} = 10^{20}$ linear systems of size 10×10 . Even if each system is solved in 10^{-10} s, this approach requires 10^{10} s > 300 years.
- ullet In general, the ℓ^0 problem can be transposed into an NP-hard problem.

Candés, Romberg & Tao (2006); Donoho (2006)

Let $||x||_q^q = \sum_j |x_j|^q$. Convex when $q \ge 1$ and "close to" ℓ_0 for small q.

$$\min_{x} \|x\|_{p} \text{ subject to } \Phi x = y$$



Candés, Romberg & Tao (2006); Donoho (2006)

Key outcome of compressed sensing:

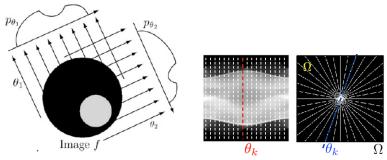
We can recover sparse vectors of length N from $m \ll N$ randomised linear measurements by solving the following convex optimisation problem:

$$\min_{x} \|x\|_{1} \text{ subject to } \Phi x = y. \tag{BP}$$

Applications of compressed sensing – Fourier measurements

Many imaging devices can be seen as providing pointwise samples of the Fourier transform.

- Magnetic resonance imaging
- Radio interferometry
- Electron microscopy
- Tomography.



For tomography, if p_{θ} is the Radon projection of f at angle θ , then the Fourier splice theorem says:

$$\hat{p}_{\theta}(t) = \hat{f}(t\cos(\theta), t\sin(\theta)).$$

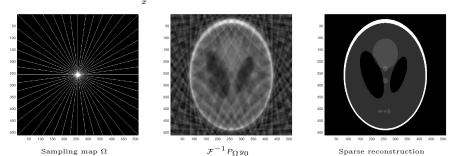
We therefore are interested in $y = P_{\Omega} \mathcal{F} W x$.

The matlab phantom experiment [Candès, Romberg and Tao '06]

Let $P_{\Omega}\mathcal{F}x=(\hat{x}_j)_{j\in\Omega}$. Given observations $y_0=P_{\Omega}\mathcal{F}x_0$, take the reconstruction z as $\underset{x}{\operatorname{argmin}} \|Wx\|_1$ subject to $P_{\Omega}\mathcal{F}x=y_0$

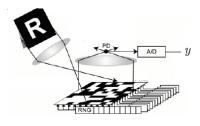
If W is invertible, this is equivalent to

$$\underset{x}{\operatorname{argmin}} \left\| x \right\|_1 \text{ subject to } P_{\Omega} \mathcal{F} W^{-1} x = y_0$$



The single pixel camera [Duarte, Davenporte, Takhar, Laska, Sun, Kelly, Baraniuk '08]

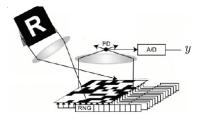
- Let $z = \mathbb{R}^N$.
- The single pixel camera is a microarry consisting of N mirrors, each of which can be switched on or off individually.
- The light from the image is reflected on the micro array, and a lens then combines all reflected beams in one sensor.



Each measurement is $\langle z, b \rangle$ where b is a vector consisting of 1's at locations where the mirrors are 'on' and 0 where the mirrors are 'off'.

The single pixel camera [Duarte, Davenporte, Takhar, Laska, Sun, Kelly, Baraniuk '08]

- Let $z = \mathbb{R}^N$.
- The single pixel camera is a microarry consisting of N mirrors, each of which can be switched on or off individually.
- The light from the image is reflected on the micro array, and a lens then combines all reflected beams in one sensor.



Each measurement is $\langle z, b \rangle$ where b is a vector consisting of 1's at locations where the mirrors are 'on' and 0 where the mirrors are 'off'.

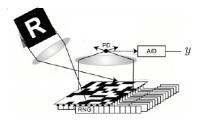
m/N = 1

m/N=0.16

m/N=0.02

The single pixel camera [Duarte, Davenporte, Takhar, Laska, Sun, Kelly, Baraniuk '08]

- Let $z = \mathbb{R}^N$.
- The single pixel camera is a microarry consisting of *N* mirrors, each of which can be switched on or off individually.
- The light from the image is reflected on the micro array, and a lens then combines all reflected beams in one sensor.



Each measurement is $\langle z, b \rangle$ where b is a vector consisting of 1's at locations where the mirrors are 'on' and 0 where the mirrors are 'off'.

Link to Bernoulli measurements

We can think of this as recovering sparse x from $y=Az=AW^*x$. where $A\in\{-1,1\}^{m\times N}$ a Bernoulli random matrix (entries take values ± 1 with equal probability: if $a\in\{-1,1\}^N$ is a Bernoulli sequence, then

$$b_j^1 = \begin{cases} 1 & a_j = 1 \\ 0 & a_j = -1 \end{cases} \quad \text{and} \quad b_j^2 = \begin{cases} 1 & a_j = -1 \\ 0 & a_j = 1 \end{cases}$$

we have $\langle z, a \rangle = \langle z, b^1 \rangle - \langle z, b^2 \rangle$. So, 2m measurements is equivalent to taking m Bernoulli measurements.

Outline

Minimal number of measurements

2 Conditions for uniform recovery of sparse vectors via ℓ^1 minimisation

- Recovery with incoherent bases
 - Theoretical results Non-uniform recovery

Outline

Minimal number of measurements

2 Conditions for uniform recovery of sparse vectors via ℓ^1 minimisation

- Recovery with incoherent bases
 - Theoretical results Non-uniform recovery

Lower bound on sampling complexity

Task 1: Find $A \in \mathbb{C}^{m \times N}$ and recovery maps $\Delta : \mathbb{C}^m \to \mathbb{C}^N$ such that $\Delta(Ax) = x$ for all $x \in \mathbb{C}^N$ s-sparse.

In general, we need $m \geqslant 2s$.

Lower bound on sampling complexity

Task 1: Find $A \in \mathbb{C}^{m \times N}$ and recovery maps $\Delta : \mathbb{C}^m \to \mathbb{C}^N$ such that $\Delta(Ax) = x$ for all $x \in \mathbb{C}^N$ s-sparse.

In general, we need $m \ge 2s$.

Task 2: Find $A \in \mathbb{C}^{m \times N}$ and recovery maps $\Delta : \mathbb{C}^m \to \mathbb{C}^N$ such that

$$\|x - \Delta(Ax)\|_2 \leqslant \frac{C}{\sqrt{s}} \sigma_s(x)_1, \quad \forall x \in \mathbb{C}^N.$$

In order for (A, Δ) to be stable of order s, we need $m \ge Cs \ln(eN/s)$.

Gelfand widths

Given $K \subset X$ where X is a normed space, the Gelfand m-width are:

$$d^m(K,X) \stackrel{\text{def.}}{=} \inf \left\{ \sup_{x \in K \cap L^m} \|x\| \ ; \ L^m \subset X, \quad \operatorname{codim}(L^m) \leqslant m \right\}$$

Gelfand widths

Given $K \subset X$ where X is a normed space, the Gelfand m-width are:

$$d^{m}(K, X) \stackrel{\text{def.}}{=} \inf \left\{ \sup_{x \in K \cap \mathcal{N}(A)} \|x\| \; ; \; A : X \to \mathbb{R}^{m} \text{ linear} \right\}$$

Measures the extent to which one can determine elements of K from m linear measurements.

[Kashin '77, Garnaev & Gluskin '84] proved

$$d^m(B_1^N, \ell_2^N) \asymp \min\left(1, \sqrt{\frac{\ln(eN/m)}{m}}\right).$$

where B_1^N is the ℓ^1 ball and ℓ_2^N is the N-dimensional vector space with norm $\left\|\cdot\right\|_2$.

Gelfand widths

Given $K \subset X$ where X is a normed space, the Gelfand m-width are:

$$d^{m}(K, X) \stackrel{\text{def.}}{=} \inf \left\{ \sup_{x \in K \cap \mathcal{N}(A)} ||x|| \; ; \; A : X \to \mathbb{R}^{m} \text{ linear} \right\}$$

Measures the extent to which one can determine elements of K from m linear measurements.

[Kashin '77, Garnaev & Gluskin '84] proved

$$d^m(B_1^N, \ell_2^N) \asymp \min\left(1, \sqrt{\frac{\ln(eN/m)}{m}}\right).$$

where B_1^N is the ℓ^1 ball and ℓ_2^N is the N-dimensional vector space with norm $\|\cdot\|_2$.

Consequence of
$$d^m(B_1^N, \ell_2^N) \gtrsim \sqrt{\frac{\ln(eN/m)}{m}}$$
 is $m \gtrsim s \ln(eN/s)$.

If (A, Δ) is stable of order s, then for $v \in \mathcal{N}(A) \cap B_1^N$, stable recovery of v_S and v_{S^c} respectively means:

$$\begin{aligned} \|-v_S - \Delta(A(-v_S))\| &\leqslant 0 \implies -v_S = \Delta(A(-v_S)) = \Delta(Av_{S^c}) \\ \|v_{S^c} - \Delta(Av_{S^c})\| &\leqslant \frac{C}{\sqrt{s}} \sigma_s(v_{S^c})_1 \leqslant \frac{C}{\sqrt{s}} \|v\|_1 \implies \|v\|_2 \leqslant \frac{C}{\sqrt{s}} \end{aligned}$$

So, we have $d^m(B_1^N, \ell_2^n) \leq C/\sqrt{s}$ which implies that $m \gtrsim s \ln(eN/m)$.

Outline

Minimal number of measurements

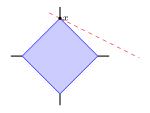
 $\ensuremath{ 2 \hspace{-0.8mm} 2}$ Conditions for uniform recovery of sparse vectors via ℓ^1 minimisation

- 3 Recovery with incoherent bases
 - Theoretical results Non-uniform recovery

Note that x uniquely minimises

$$\min_{z} \|z\|_1 \text{ subject to } Az = Ax$$

 $\text{if and only if } \mathcal{F}_x \cap \mathcal{B}_x = \{x\} \text{ where } \mathcal{F}_x \stackrel{\text{def.}}{=} \{z \; ; \; Az = Ax\} \text{ and } \mathcal{B}_x \stackrel{\text{def.}}{=} \{z \; ; \; \|z\|_1 \leqslant \|x\|_1\}$



Null space property

 $A \in \mathbb{C}^{m \times N}$ is said to satisfy the NSP relative to a set $S \subset [N]$ if

$$||v_S||_1 < ||v_{S^c}||_1, \qquad \forall v \in \mathcal{N}(A) \setminus \{0\}$$

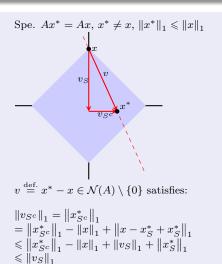
It is said to satisfy the NSP of order s if this holds for all $S \subset [N]$ with $|S| \leqslant s.$

Theorem

Given $A \in \mathbb{C}^{m \times N}$, every $x \in \mathbb{C}^N$ supported on $S \subset [N]$ is the unique solution to (BP) if and only if A satisfies the NSP relative to set S.

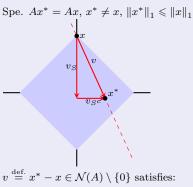
Theorem

Given $A \in \mathbb{C}^{m \times N}$, every $x \in \mathbb{C}^N$ supported on $S \subset [N]$ is the unique solution to (BP) if and only if A satisfies the NSP relative to set S.



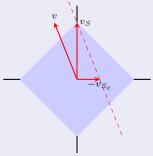
Theorem

Given $A \in \mathbb{C}^{m \times N}$, every $x \in \mathbb{C}^N$ supported on $S \subset [N]$ is the unique solution to (BP) if and only if A satisfies the NSP relative to set S.



$$\begin{aligned} \|v_{S^c}\|_1 &= \|x_{S^c}^*\|_1 \\ &= \|x_{S^c}^*\|_1 - \|x\|_1 + \|x - x_S^* + x_S^*\|_1 \\ &\leq \|x_{S^c}^*\|_1 - \|x\|_1 + \|v_S\|_1 + \|x_S^*\|_1 \\ &\leq \|v_S\|_1 \end{aligned}$$

Spe. $\exists v \in \mathcal{N}(A) \setminus \{0\} \text{ s.t. } \|v_S\|_1 \ge \|v_{S^c}\|_1$



Let $x \stackrel{\text{def.}}{=} v_S$. Then, $Av_S = -Av_{S^c}$ but xis not the unique solution to (BP).

$$\mathcal{F}_x = \{z \; ; \; Az = Ax\}$$
 is the dotted red line.

Robust and stable recovery

Let y=Ax+e with $\|e\|\leqslant\eta$. What conditions should we impose on A such that $\Delta^{\eta}_{BP}(y)\stackrel{\mathrm{def.}}{=} \operatorname{argmin}\|z\|_1 \ \text{ subject to } \ \|Az-y\|_2\leqslant\eta.$ satisfies $\left\|x-\Delta^{\eta}_{BP}(y)\right\|_2\leqslant\frac{C}{\sqrt{s}}\sigma_s(x)_1+D\eta$ for some C,D>0?

Robust and stable recovery

Let y = Ax + e with $||e|| \leq \eta$. What conditions should we impose on A such that

$$\Delta_{BP}^{\eta}(y) \stackrel{\text{def.}}{=} \operatorname{argmin} \left\|z\right\|_1 \ \text{subject to} \ \left\|Az - y\right\|_2 \leqslant \eta.$$

satisfies
$$\|x - \Delta_{BP}^{\eta}(y)\|_{2} \leqslant \frac{C}{\sqrt{s}} \sigma_{s}(x)_{1} + D\eta$$
 for some $C, D > 0$?

Robust null space property

We say that A satisfies the robust NSP with constant $\rho, \tau > 0$ if

$$||v_S||_2 \leqslant \frac{\rho}{\sqrt{s}} ||v_{S^c}||_1 + \tau ||Av||_2, \quad \forall v \in \mathbb{C}^N.$$

Robust and stable recovery

Let y = Ax + e with $||e|| \leq \eta$. What conditions should we impose on A such that

$$\Delta_{BP}^{\eta}(y) \stackrel{\text{def.}}{=} \operatorname{argmin} \left\|z\right\|_{1} \ \text{subject to} \ \left\|Az - y\right\|_{2} \leqslant \eta.$$

satisfies
$$\|x - \Delta_{BP}^{\eta}(y)\|_{2} \leqslant \frac{C}{\sqrt{s}} \sigma_{s}(x)_{1} + D\eta$$
 for some $C, D > 0$?

Robust null space property

We say that A satisfies the robust NSP with constant $\rho, \tau > 0$ if

$$\|v_S\|_2 \leqslant \frac{\rho}{\sqrt{s}} \|v_{S^c}\|_1 + \tau \|Av\|_2, \qquad \forall v \in \mathbb{C}^N.$$

- robust NSP with $\rho < 1$ implies the NSP.
- If A satisfies the robust NSP with $\rho < 1$, then this is sufficient for robust and stable recovery.
- If we have stable and robust recovery, then setting $x \stackrel{\text{def.}}{=} v \in \mathbb{C}^N$, e = -Av and $\eta = \|Av\|_2$, we have $\Delta_{BP}^{\eta}(Ax + e) = 0$ and $\|v\|_2 \leqslant \frac{C}{\sqrt{s}}\sigma_s(v)_1 + D \|Av\|_2$. So, this condition is necessary.

The restricted isometry property

This is one way to assess the quality of the matrix A for recovering s-sparse vectors.

The RIP

The sth restricted isometry constant δ_s of a matrix A is the smallest $\delta > 0$ such that

$$(1 - \delta) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta) \|x\|_2^2$$
,

for all s-sparse vectors $x \in \mathbb{C}^N$.

- $\bullet \ \delta_s = \max_{|S| \leqslant s} \|A_S^* A_S \operatorname{Id}\|.$
- All singular values of A_S are restricted to $[1 \delta_s, 1 + \delta_s]$.

The restricted isometry property

This is one way to assess the quality of the matrix A for recovering s-sparse vectors.

The RIP

The sth restricted isometry constant δ_s of a matrix A is the smallest $\delta > 0$ such that

$$(1 - \delta) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta) \|x\|_2^2$$

for all s-sparse vectors $x \in \mathbb{C}^N$.

- $\bullet \ \delta_s = \max_{|S| \leqslant s} \|A_S^* A_S \operatorname{Id}\|.$
- All singular values of A_S are restricted to $[1 \delta_s, 1 + \delta_s]$.

Theorem (RIP \implies robust NSP \implies robust and stable recovery)

If $\delta_{2s} < \frac{1}{\sqrt{2}}$, then A satisfies the robust NSP of order s with $\rho \in (0,1)$ and $\tau > 0$ dependent only on δ_{2s} . So, the RIP implies that $\|x - \Delta_{BP}^{\eta}(Ax + e)\|_2 \leqslant \frac{C}{\sqrt{s}}\sigma_s(x)_1 + D\eta$ for some C, D > 0 which depend only on δ_{2s} .

Theorem

Let $A \in \mathbb{R}^{m \times N}$ with entries as iid $\mathcal{N}(0,1)$. Let $\tilde{A} = \frac{1}{\sqrt{m}}A$. Then, provided that $m \geqslant C\delta^{-2} \sin(eN/s)$, $wp \geqslant 1 - 2\exp\left(-\frac{m\delta^2}{128}\right)$, \tilde{A} has RIP constant $\delta_s \leqslant \delta$.

Theorem

Let $A \in \mathbb{R}^{m \times N}$ with entries as iid $\mathcal{N}(0,1)$. Let $\tilde{A} = \frac{1}{\sqrt{m}}A$. Then, provided that $m \geqslant C\delta^{-2}s\ln(eN/s)$, $wp \geqslant 1 - 2\exp\left(-\frac{m\delta^2}{128}\right)$, \tilde{A} has RIP constant $\delta_s \leqslant \delta$.

Step 1, Concentration inequality: For fixed $x \in \mathbb{R}^N$ and t > 0,

$$\mathbb{P}\left(\left|\left\|\tilde{A}x\right\|_{2}^{2}-\left\|x\right\|_{2}^{2}\right|>t\left\|x\right\|_{2}^{2}\right)\leqslant2\exp\left(-\frac{mt^{2}}{16}\right).$$

- Note that $(\tilde{A}x)_i = \frac{1}{\sqrt{m}} \sum_{j=1}^N A_{ij} x_j = \frac{\|x\|_2}{\sqrt{m}} g_i$ where $g_i = \mathcal{N}(0,1)$.
- $\mathbb{P}\left(\left\|\tilde{A}x\right\|^2 > (1+t)\right) = \mathbb{P}\left(\frac{1}{m}\sum_i g_i^2 > (1+t)\right) = \mathbb{P}\left(\exp\left(u\sum_i g_i^2\right) > \exp\left(um(1+t)\right)\right)$
- By Markov's inequality *, this is upper bounded by

$$\frac{\mathbb{E}\left(\exp\left(u\sum_{i}g_{i}^{2}\right)\right)}{\exp\left(um(1+t)\right)} \underset{\text{indep.}}{\overset{=}{\rightleftharpoons}} \prod_{i=1}^{m} \frac{\mathbb{E}\left(\exp\left(ug_{i}^{2}\right)\right)}{\exp\left(u(1+t)\right)} \underset{\text{moment gen. fn,}^{\dagger}}{\overset{=}{\rightleftharpoons}} \left(\frac{1/\sqrt{1-2u}}{\exp(u(1+t))}\right)^{m}$$

• Choosing u = t/8 < 1/4, this is exponentially decaying in t, in particular, upper bounded by $\exp(-mt^2/16)$.

$$^*\mathbb{P}(|X| \geqslant t) \leqslant \mathbb{E}|X|/t$$

[†] For a < 1/2, $\mathbb{E}[\exp(ag^2)] = \frac{1}{\sqrt{1-2a}}$

Theorem

Let $A \in \mathbb{R}^{m \times N}$ with entries as iid $\mathcal{N}(0,1)$. Let $\tilde{A} = \frac{1}{\sqrt{m}}A$. Then, provided that $m \geqslant C\delta^{-2}s\ln(eN/s)$, $wp \geqslant 1 - 2\exp\left(-\frac{m\delta^2}{128}\right)$, \tilde{A} has RIP constant $\delta_s \leqslant \delta$.

Step 2: Fix $S \subset [N]$ with |S| = s. Then $\|\tilde{A}_S^* \tilde{A}_S - \operatorname{Id}\| \leq \delta$ whp.

- The unit sphere of \mathbb{R}^s can be covered by $n \leq (1 + 2/\rho)^s$ balls of radius ρ .
- Let $\Sigma_S \stackrel{\mathrm{def}}{=} \{z \in \mathbb{R}^N : \operatorname{Supp}(z) \subseteq S\}$. There exists ℓ_2 normalised $u_1, \ldots, u_n \in \Sigma_S$, $n \leqslant (1 + 2/\rho)^s$ s.t. for all $x \in \Sigma_S$ with ||x|| = 1, there exists k s.t. $||x u_k|| \leqslant \rho$.
- Let $B \stackrel{\text{def.}}{=} \tilde{A}_S^* \tilde{A}_S \text{Id.}$

$$\mathbb{P}(\exists k \in [n], |\langle Bu_k, u_k \rangle| > t) = \mathbb{P}(\exists k \in [n], \left| \left\| \tilde{A}u_k \right\|_2^2 - \left\| u_k \right\|_2^2 \right| > t)$$

$$\leq 2n \exp\left(-\frac{mt^2}{16}\right) \leq 2(1 + 2/\rho)^s \exp\left(-\frac{mt^2}{16}\right) = 2 \exp\left(\ln(9)s - \frac{m\delta^2}{64}\right) \stackrel{\text{def.}}{=} \varepsilon.$$

if $\rho = 1/4$ and $t = \delta/2$.

• This means that w.p. $1 - \varepsilon$, $||B|| \leq \delta$:

$$\begin{split} |\langle Bx, \, x \rangle| &= |\langle Bu_k, \, u_k \rangle + \langle B(x + u_k), \, (x - u_k) \rangle| \leqslant \frac{\delta}{2} + \|B\| \, \|x + u_k\| \, \|x - u_k\| \\ &\leqslant \frac{\delta}{2} + 2\rho \, \|B\| = \frac{\delta}{2} + \frac{1}{2} \, \|B\| \, . \end{split}$$

Theorem

Let $A \in \mathbb{R}^{m \times N}$ with entries as iid $\mathcal{N}(0,1)$. Let $\tilde{A} = \frac{1}{\sqrt{m}}A$. Then, provided that $m \geqslant C\delta^{-2} \sin(eN/s)$, $wp \geqslant 1 - 2\exp\left(-\frac{m\delta^2}{128}\right)$, \tilde{A} has RIP constant $\delta_s \leqslant \delta$.

Step 3, Union bound: There are $\binom{N}{s} \leq (eN/s)^s$ subsets of size s in [N]. Therefore,

$$\begin{split} \mathbb{P}(\delta_s > \delta) &= \mathbb{P}\left(\left\|\tilde{A}_S^* \tilde{A}_S - \operatorname{Id}\right\| > \delta \text{ for some } S \subset [N], |S| = s\right) \\ &\leqslant 2(eN/s)^s \exp\left(\ln(9)s - \frac{m\delta^2}{64}\right) \leqslant 2\exp\left(-\frac{m\delta^2}{128}\right) \end{split}$$

provided that $\ln(9e)s \ln(eN/s) \leq m\delta^2/128$, i.e. $m \geq C\delta^{-2}s \ln(eN/s)$.

Theorem

Let $A \in \mathbb{R}^{m \times N}$ with entries as iid $\mathcal{N}(0,1)$. Let $\tilde{A} = \frac{1}{\sqrt{m}}A$. Then, provided that $m \geqslant C\delta^{-2}s\ln(eN/s)$, $wp \geqslant 1 - 2\exp\left(-\frac{m\delta^2}{128}\right)$, \tilde{A} has RIP constant $\delta_s \leqslant \delta$.

Step 3, Union bound: There are $\binom{N}{s} \leq (eN/s)^s$ subsets of size s in [N]. Therefore,

$$\begin{split} \mathbb{P}(\delta_s > \delta) &= \mathbb{P}\left(\left\| \tilde{A}_S^* \tilde{A}_S - \operatorname{Id} \right\| > \delta \text{ for some } S \subset [N], |S| = s \right) \\ &\leqslant 2(eN/s)^s \exp\left(\ln(9)s - \frac{m\delta^2}{64} \right) \leqslant 2 \exp\left(-\frac{m\delta^2}{128} \right) \end{split}$$

provided that $\ln(9e)s\ln(eN/s) \leq m\delta^2/128$, i.e. $m \geq C\delta^{-2}s\ln(eN/s)$.

Remarks:

- Similar result of random Bernoulli matrices.
- Let $U \in \mathbb{R}^{N \times N}$ be unitary. Then, $\delta_s(\tilde{A}U^*) \leq \delta$ with the same probability, since given any $x \in \mathbb{C}^N$, let $x' \stackrel{\text{def.}}{=} U^*x$:

$$\mathbb{P}\left(\left|\left\|\tilde{A}U^*x\right\|_2^2-\|x\|^2\right|>t\,\|x\|_2^2\right)=\mathbb{P}\left(\left|\left\|\tilde{A}x'\right\|_2^2-\left\|x'\right\|^2\right|>t\,\|x'\|_2^2\right)\leqslant 2\exp\left(\frac{-mt^2}{16}\right).$$

Summary

Compressed sensing allows for the recovery of s-sparse vectors $x \in \mathbb{C}^N$ from randomised linear measurements $Ax \in \mathbb{C}^m$ with $m \ll N$ via ℓ^1 -minimisation.

- To guarantee the stable recovery of s-sparse signals, we need at least $m = \mathcal{O}(s \log(N/s))$ measurements (for **any** method).
- the NSP is a necessary and sufficient condition for the recovery of s-sparse signals.
- the robust NSP is a sufficient (and almost necessary) condition for the stable and robust recovery of s-sparse signals.
- if a matrix has sufficiently small RIP constant δ_s , then it satisfies the robust-NSP.
- random Gaussian/random Bernoulli matrices satisfy the RIP with $m = \mathcal{O}(s \log(N/s))$.

Outline

Minimal number of measurements

2 Conditions for uniform recovery of sparse vectors via ℓ^1 minimisation

- Recovery with incoherent bases
 - Theoretical results Non-uniform recovery

Setup

Suppose that $V = [v_1|\cdots|v_N] \in \mathbb{C}^{N\times N}$ and $W = [w_1|\cdots|w_N] \in \mathbb{C}^{N\times N}$ are unitary matrices. Let $z \in \mathbb{C}^N$ be the signal of interest.

- Observe $\langle z, w_j \rangle$ for $j \in \Omega$ where $\Omega \subseteq [N]$ is a randomly chosen set of indices.
- z is s-sparse in V, that is, z = Vx where $x \in \Sigma_s$.

Therefore, we want to recover x from

$$y = P_{\Omega}Ux$$
, where $U = W^*V$.

Setup

Suppose that $V=[v_1|\cdots|v_N]\in\mathbb{C}^{N\times N}$ and $W=[w_1|\cdots|w_N]\in\mathbb{C}^{N\times N}$ are unitary matrices. Let $z\in\mathbb{C}^N$ be the signal of interest.

- Observe $\langle z, w_j \rangle$ for $j \in \Omega$ where $\Omega \subseteq [N]$ is a randomly chosen set of indices.
- z is s-sparse in V, that is, z = Vx where $x \in \Sigma_s$.

Therefore, we want to recover x from

$$y = P_{\Omega}Ux$$
, where $U = W^*V$.

Definition

The coherence of V and W is $\mu \stackrel{\text{def.}}{=} \max_{k,\ell} |\langle v_\ell, w_k \rangle|$. In the following, let $K \stackrel{\text{def.}}{=} \sqrt{N}\mu$.

Setup

Suppose that $V=[v_1|\cdots|v_N]\in\mathbb{C}^{N\times N}$ and $W=[w_1|\cdots|w_N]\in\mathbb{C}^{N\times N}$ are unitary matrices. Let $z\in\mathbb{C}^N$ be the signal of interest.

- Observe $\langle z, w_j \rangle$ for $j \in \Omega$ where $\Omega \subseteq [N]$ is a randomly chosen set of indices.
- z is s-sparse in V, that is, z = Vx where $x \in \Sigma_s$.

Therefore, we want to recover x from

$$y = P_{\Omega}Ux$$
, where $U = W^*V$.

Definition

The coherence of V and W is $\mu \stackrel{\text{def.}}{=} \max_{k,\ell} |\langle v_\ell, w_k \rangle|$. In the following, let $K \stackrel{\text{def.}}{=} \sqrt{N}\mu$.

Clearly, $\mu \leq 1$, and since W and V are unitary, we have

$$1 = ||w_k||^2 = \sum_{\ell=1}^{N} |\langle w_k, v_\ell \rangle|^2 \leqslant N\mu^2$$

so $\mu \geqslant \frac{1}{\sqrt{N}}$. When $\mu = \frac{1}{\sqrt{N}}$, we say that V and W are maximally incoherent. So,

$$\mu \in \left[\frac{1}{\sqrt{N}}, 1\right] \quad \text{and} \quad K \in \left[1, \sqrt{N}\right]$$

• The Fourier transform $W=\frac{1}{\sqrt{N}}\left(e^{i2\pi(\ell-1)(k-1)/N}\right)_{k,\ell=1}^N$ is maximally incoherent with the canonical basis $V=\operatorname{Id}_N$, with $\mu=\frac{1}{\sqrt{N}}$.

- The Fourier transform $W=\frac{1}{\sqrt{N}}\left(e^{i2\pi(\ell-1)(k-1)/N}\right)_{k,\ell=1}^N$ is maximally incoherent with the canonical basis $V=\operatorname{Id}_N$, with $\mu=\frac{1}{\sqrt{N}}$.
- The Hadamard transform is maximally incoherence with the canonical basis, where the Hadamard transform is $H \stackrel{\text{def.}}{=} H_n \in \mathbb{R}^{2^n \times 2^n}$ is defined recursively by

$$H_n = \frac{1}{\sqrt{2}} \begin{pmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{pmatrix}, \qquad H_0 = 1.$$

It can be computed in $\mathcal{O}(N\log(N))$ time and is useful in modelling systems where there are 'on/off' measurements, such as the single-pixel camera, or Fluorescence microscopy.

- The Fourier transform $W=\frac{1}{\sqrt{N}}\left(e^{i2\pi(\ell-1)(k-1)/N}\right)_{k,\ell=1}^N$ is maximally incoherent with the canonical basis $V=\operatorname{Id}_N$, with $\mu=\frac{1}{\sqrt{N}}$.
- The Hadamard transform is maximally incoherence with the canonical basis, where the Hadamard transform is $H \stackrel{\text{def.}}{=} H_n \in \mathbb{R}^{2^n \times 2^n}$ is defined recursively by

$$H_n = \frac{1}{\sqrt{2}} \begin{pmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{pmatrix}, \qquad H_0 = 1.$$

It can be computed in $\mathcal{O}(N\log(N))$ time and is useful in modelling systems where there are 'on/off' measurements, such as the single-pixel camera, or Fluorescence microscopy.

• The Haar wavelet basis is maximally incoherent with the noiselet basis.

- The Fourier transform $W=\frac{1}{\sqrt{N}}\left(e^{i2\pi(\ell-1)(k-1)/N}\right)_{k,\ell=1}^N$ is maximally incoherent with the canonical basis $V=\mathrm{Id}_N$, with $\mu=\frac{1}{\sqrt{N}}$.
- The Hadamard transform is maximally incoherence with the canonical basis, where the Hadamard transform is $H \stackrel{\text{def.}}{=} H_n \in \mathbb{R}^{2^n \times 2^n}$ is defined recursively by

$$H_n = \frac{1}{\sqrt{2}} \begin{pmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{pmatrix}, \qquad H_0 = 1.$$

It can be computed in $\mathcal{O}(N \log(N))$ time and is useful in modelling systems where there are 'on/off' measurements, such as the single-pixel camera, or Fluorescence microscopy.

- The Haar wavelet basis is maximally incoherent with the noiselet basis.
- Any basis is maximally coherent with itself, as $\mu = 1$.

- The Fourier transform $W=\frac{1}{\sqrt{N}}\left(e^{i2\pi(\ell-1)(k-1)/N}\right)_{k,\ell=1}^N$ is maximally incoherent with the canonical basis $V=\mathrm{Id}_N$, with $\mu=\frac{1}{\sqrt{N}}$.
- The Hadamard transform is maximally incoherence with the canonical basis, where the Hadamard transform is $H \stackrel{\text{def.}}{=} H_n \in \mathbb{R}^{2^n \times 2^n}$ is defined recursively by

$$H_n = \frac{1}{\sqrt{2}} \begin{pmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{pmatrix}, \qquad H_0 = 1.$$

It can be computed in $\mathcal{O}(N \log(N))$ time and is useful in modelling systems where there are 'on/off' measurements, such as the single-pixel camera, or Fluorescence microscopy.

- The Haar wavelet basis is maximally incoherent with the noiselet basis.
- Any basis is maximally coherent with itself, as $\mu = 1$.

Uniform recovery guarantee

If

$$m \stackrel{\text{def.}}{=} |\Omega| \gtrsim K^2 \delta^{-2} s \ln^4(N),$$

then $\sqrt{\frac{N}{m}}U$ satisfies $\delta_s \leq \delta$ with probability at least $1 - N^{-\ln^3(N)}$. This guarantees uniform recovery of all s-sparse vectors.

- The Fourier transform $W=\frac{1}{\sqrt{N}}\left(e^{i2\pi(\ell-1)(k-1)/N}\right)_{k,\ell=1}^N$ is maximally incoherent with the canonical basis $V=\mathrm{Id}_N$, with $\mu=\frac{1}{\sqrt{N}}$.
- The Hadamard transform is maximally incoherence with the canonical basis, where the Hadamard transform is $H \stackrel{\text{def.}}{=} H_n \in \mathbb{R}^{2^n \times 2^n}$ is defined recursively by

$$H_n = \frac{1}{\sqrt{2}} \begin{pmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{pmatrix}, \qquad H_0 = 1.$$

It can be computed in $\mathcal{O}(N \log(N))$ time and is useful in modelling systems where there are 'on/off' measurements, such as the single-pixel camera, or Fluorescence microscopy.

- The Haar wavelet basis is maximally incoherent with the noiselet basis.
- Any basis is maximally coherent with itself, as $\mu = 1$.

Uniform recovery guarantee

If

$$m \stackrel{\text{def.}}{=} |\Omega| \gtrsim K^2 \delta^{-2} s \ln^4(N),$$

then $\sqrt{\frac{N}{m}}U$ satisfies $\delta_s \leq \delta$ with probability at least $1 - N^{-\ln^3(N)}$. This guarantees uniform recovery of all s-sparse vectors.

Note that $\log(N)^4$ is not so small... for N = 1000, $\log(N) \approx 6.9$ but $\log^4(N) > 2N!$.

So far, we have seen that NSP, robust NSP, RIP guarantee recovery of all s-sparse vectors. In particular, we have seen the following uniform recovery guarantee:

$$\mathbb{P}\left(\forall x \in \Sigma_s, \ \Delta_{BP}(Ax + e) \text{ recovers } x\right) \geqslant 1 - \varepsilon$$

So far, we have seen that NSP, robust NSP, RIP guarantee recovery of all s-sparse vectors. In particular, we have seen the following uniform recovery guarantee:

$$\mathbb{P}\left(\forall x \in \Sigma_s, \ \Delta_{BP}(Ax + e) \text{ recovers } x\right) \geqslant 1 - \varepsilon$$

However, we could ask for a weaker statement: given one vector $x \in \Sigma_s$, show that

$$\mathbb{P}\left(\Delta_{BP}(Ax+e) \text{ recovers } x\right) \geqslant 1-\varepsilon$$

So far, we have seen that NSP, robust NSP, RIP guarantee recovery of all s-sparse vectors. In particular, we have seen the following uniform recovery guarantee:

$$\mathbb{P}\left(\forall x \in \Sigma_s, \ \Delta_{BP}(Ax + e) \text{ recovers } x\right) \geqslant 1 - \varepsilon$$

However, we could ask for a weaker statement: given one vector $x \in \Sigma_s$, show that

$$\mathbb{P}\left(\Delta_{BP}(Ax+e) \text{ recovers } x\right) \geqslant 1-\varepsilon$$

In this section, we shall derive nonuniform recovery statements when $m \gtrsim K^2 s \ln(N)$.

So far, we have seen that NSP, robust NSP, RIP guarantee recovery of all s-sparse vectors. In particular, we have seen the following uniform recovery guarantee:

$$\mathbb{P}\left(\forall x \in \Sigma_s, \ \Delta_{BP}(Ax + e) \text{ recovers } x\right) \geqslant 1 - \varepsilon$$

However, we could ask for a weaker statement: given one vector $x \in \Sigma_s$, show that

$$\mathbb{P}\left(\Delta_{BP}(Ax+e) \text{ recovers } x\right) \geqslant 1-\varepsilon$$

In this section, we shall derive nonuniform recovery statements when $m \gtrsim K^2 s \ln(N)$.

Remark

Recall that stable recovery requires $m \gtrsim s \ln(N/s)$, and random Gaussian matrices achieve this optimal rate.

However, one can show that for subsampled orthonormal systems, if we want

$$\|\Delta_{BP}(x) - x\|_1 \lesssim \sigma_s(x)_1$$

to hold for all vectors x, then necessarily, $m \gtrsim s \ln(N)$.

Non-universal recovery and dual certificates

RIP and NSP are concerned with the recovery of all s-sparse vectors or all vectors supported on some $S \subset [N]$. What if we are only interested in the recovery of one vector x?

Theorem

Given $A \in \mathbb{C}^{m \times N}$, $x \in \mathbb{C}^N$ with support S is the unique minimiser of BP with y = Ax if either

- (a) $|\langle \operatorname{sign}(x)_S, v \rangle| < ||v_{S^c}||_1 \text{ for all } v \in \mathcal{N}(A) \setminus \{0\},$
- (b) A_S is injective and $\exists h \in \mathbb{C}^m$ s.t.

$$(A^*h)_S = \operatorname{sign}(x_S)$$
 and $\|(A^*h)_{S^c}\|_{\infty} < 1$

Non-universal recovery and dual certificates

RIP and NSP are concerned with the recovery of all s-sparse vectors or all vectors supported on some $S \subset [N]$. What if we are only interested in the recovery of one vector x?

Theorem

Given $A \in \mathbb{C}^{m \times N}$, $x \in \mathbb{C}^N$ with support S is the unique minimiser of BP with y = Ax if either

- (a) $|\langle \operatorname{sign}(x)_S, v \rangle| < ||v_{S^c}||_1 \text{ for all } v \in \mathcal{N}(A) \setminus \{0\},$
- (b) A_S is injective and $\exists h \in \mathbb{C}^m$ s.t.

$$(A^*h)_S = \text{sign}(x_S)$$
 and $\|(A^*h)_{S^c}\|_{\infty} < 1$

- (a) and (b) are equivalent.
- The null space property relative to S implies (a).
- A^*h is called a dual certificate.
- The converse is also true in the real setting, but false in general.

Dual certificates guarantee robust and stable recovery

Theorem (Dual certificate)

Suppose that a

$$||A_S^*A_S - \operatorname{Id}|| \leqslant \frac{1}{2} \quad and \quad \max_{\ell \in S^c} ||A_S^*A_{\{\ell\}}||_2 \leqslant 1,$$

and there exists $u = A^*h$ such that

$$u_S = \operatorname{sign}(x_S)$$
 and $\|u_{S^c}\|_{\infty} \leqslant \frac{1}{2}$ and $\|h\|_2 \leqslant 2\sqrt{s}$.

Then any minimizer x^* to $\min_z \|z\|_1$ subject to $\|Az - y\|_2 \leqslant \eta$ where y = Ax + e with $\|e\| \leqslant \eta$ satisfies

$$||x - x^*||_2 \lesssim \sigma_s(x)_1 + \sqrt{s}\eta.$$

^aFor simplicity, I have made constants in the upper bounds explicit here.

Our aim: recover x from $y = P_{\Omega}Ux + e$, where U is a unitary matrix and $\Omega \stackrel{\text{def.}}{=} \{k_{\ell}\}_{\ell=1}^{m}$ are chosen iid unif. rand.

Our aim: recover x from $y = P_{\Omega}Ux + e$, where U is a unitary matrix and $\Omega \stackrel{\text{def.}}{=} \{k_{\ell}\}_{\ell=1}^{m}$ are chosen iid unif. rand.

Let
$$A\stackrel{\text{def.}}{=} \sqrt{\frac{N}{m}} P_{\Omega} U$$
. Then $\mathbb{E}[A^*A] = \text{Id}$ and $\mathbb{E}[A_S^*A_{S^c}] = 0$:

$$\mathbb{E}[(A^*A)_{i,j}] = \frac{N}{m} \sum_{\ell=1}^m \mathbb{E}[U_{i,k_{\ell}}^* U_{k_{\ell},j}] = \frac{N}{m} \sum_{\ell=1}^m \sum_{k=1}^N \frac{1}{N} U_{i,k}^* U_{k,j} = (U^*U)_{i,j} = \delta_{ij}.$$

Our aim: recover x from $y = P_{\Omega}Ux + e$, where U is a unitary matrix and $\Omega \stackrel{\text{def.}}{=} \{k_{\ell}\}_{\ell=1}^{m}$ are chosen iid unif. rand.

Let $A\stackrel{\text{def.}}{=} \sqrt{\frac{N}{m}} P_{\Omega} U$. Then $\mathbb{E}[A^*A] = \text{Id}$ and $\mathbb{E}[A_S^*A_{S^c}] = 0$:

$$\mathbb{E}[(A^*A)_{i,j}] = \frac{N}{m} \sum_{\ell=1}^m \mathbb{E}[U_{i,k_\ell}^* U_{k_\ell,j}] = \frac{N}{m} \sum_{\ell=1}^m \sum_{k=1}^N \frac{1}{N} U_{i,k}^* U_{k,j} = (U^*U)_{i,j} = \delta_{ij}.$$

Key question: How large does m need to be such that with probability at least $1 - \rho$,

- $||A_S^*A_S \text{Id}|| \le \frac{1}{2} \text{ and } \max_{\ell \in S^c} ||A_S^*A_{\{\ell\}}||_2 \le 1$,
- there exists $u = A^*h$ such that

$$u_S = \operatorname{sign}(x_S)$$
 and $\|u_{S^c}\|_{\infty} \leqslant \frac{1}{2}$ and $\|h\|_2 \leqslant 2\sqrt{s}$.

Our aim: recover x from $y = P_{\Omega}Ux + e$, where U is a unitary matrix and $\Omega \stackrel{\text{def.}}{=} \{k_{\ell}\}_{\ell=1}^{m}$ are chosen iid unif. rand.

Let $A \stackrel{\text{def.}}{=} \sqrt{\frac{N}{m}} P_{\Omega} U$. Then $\mathbb{E}[A^*A] = \text{Id}$ and $\mathbb{E}[A_S^*A_{S^c}] = 0$:

$$\mathbb{E}[(A^*A)_{i,j}] = \frac{N}{m} \sum_{\ell=1}^m \mathbb{E}[U_{i,k_\ell}^* U_{k_\ell,j}] = \frac{N}{m} \sum_{\ell=1}^m \sum_{k=1}^N \frac{1}{N} U_{i,k}^* U_{k,j} = (U^*U)_{i,j} = \delta_{ij}.$$

Key question: How large does m need to be such that with probability at least $1 - \rho$,

- $||A_S^*A_S Id|| \le \frac{1}{2}$ and $\max_{\ell \in S^c} ||A_S^*A_{\{\ell\}}||_2 \le 1$,
- there exists $u = A^*h$ such that

$$u_S = \operatorname{sign}(x_S)$$
 and $\|u_{S^c}\|_{\infty} \leqslant \frac{1}{2}$ and $\|h\|_2 \leqslant 2\sqrt{s}$.

Let $\eta \geqslant ||e||$. This would guarantee that any solution \tilde{x} to

$$\min \|z\|_1$$
 subject to $\|P_{\Omega}Uz - y\| \leqslant \eta$

satisfies

$$\|\tilde{x} - x\|_2 \lesssim \sigma_s(x)_1 + \sqrt{s}\eta.$$

Existence of dual certificates

A natural candidate of a certificate is the Fuchs certificate:

$$u = A^* A_S (A_S^* A_S)^{-1} \operatorname{sign}(x_S).$$

Note that $u_S = \text{sign}(x_S)$ and we simply need to check that $|u_{S^c}| < 1$. Therefore,

- we simply need to control $A_{S^c}^*A_S$ and $(A_S^*A_S)^{-1}$.
- NB: $\mathbb{E}[A_{S^c}^* A_S] = 0$ and $\mathbb{E}[A_S^* A_S] = \mathrm{Id}$.

Existence of dual certificates

A natural candidate of a certificate is the Fuchs certificate:

$$u = A^* A_S (A_S^* A_S)^{-1} \operatorname{sign}(x_S).$$

Note that $u_S = \text{sign}(x_S)$ and we simply need to check that $|u_{S^c}| < 1$. Therefore,

- we simply need to control $A_{S^c}^* A_S$ and $(A_S^* A_S)^{-1}$.
- NB: $\mathbb{E}[A_{S^c}^* A_S] = 0$ and $\mathbb{E}[A_S^* A_S] = \mathrm{Id}$.

Probabilistic bounds (proved using Bernstein concentration inequalities). With probability at least $1-\varepsilon,$

- (I) $||A_S^*A_S \operatorname{Id}|| \le \delta \text{ if } m \gtrsim K^2 \delta^{-2} s \ln(2s\varepsilon^{-1}).$
- (II) $\max_{j \in S^c} ||A_S^* a_j|| \le t \text{ if } m \gtrsim K^2 \max (\ln^2(N\varepsilon^{-1}), st^{-2}).$
- (III) $\max_{j \in S^c} \left| \langle \operatorname{sign}(x_S), A_S^* a_j \rangle \right| \leqslant r \text{ if } m \gtrsim K^2 s r^{-2} \ln(N \varepsilon^{-1}).$

Existence of dual certificates

A natural candidate of a certificate is the Fuchs certificate:

$$u = A^* A_S (A_S^* A_S)^{-1} \operatorname{sign}(x_S).$$

Note that $u_S = \text{sign}(x_S)$ and we simply need to check that $|u_{S^c}| < 1$. Therefore,

- we simply need to control $A_{S^c}^* A_S$ and $(A_S^* A_S)^{-1}$.
- NB: $\mathbb{E}[A_{S^c}^* A_S] = 0$ and $\mathbb{E}[A_S^* A_S] = \mathrm{Id}$.

Probabilistic bounds (proved using Bernstein concentration inequalities). With probability at least $1 - \varepsilon$,

- With probability at least 1ε ,
 - (I) $||A_S^*A_S \operatorname{Id}|| \leq \delta \text{ if } m \gtrsim K^2 \delta^{-2} s \ln(2s\varepsilon^{-1}).$
- (II) $\max_{j \in S^c} ||A_S^* a_j|| \le t \text{ if } m \gtrsim K^2 \max \left(\ln^2(N\varepsilon^{-1}), st^{-2}\right).$
- $\text{(III)} \ \max_{j \in S^c} \left| \langle \operatorname{sign}(x_S), \, A_S^* a_j \rangle \right| \leqslant r \text{ if } m \gtrsim K^2 s r^{-2} \ln(N \varepsilon^{-1}). \quad {}^*$

*(III) comes from the stronger result "For a fixed vector v, with probability at least $1-\delta$, $\max_{j\in S^c}|\langle v,\,A_S^*a_j\rangle|\leqslant \frac{r\|v\|}{\sqrt{s}}$ if $m\gtrsim K^2sr^{-2}\ln(N\varepsilon^{-1})$ "

Naive approaches

To control $u_j = (A^*A_S(A_S^*A_S)^{-1}\operatorname{sign}(x_S))_j$ for $j \notin S...$

Naive approaches

To control $u_j = (A^*A_S(A_S^*A_S)^{-1}\operatorname{sign}(x_S))_j$ for $j \notin S...$

Naive approach:

$$\begin{split} |u_j| &= \left| \langle (A_S^*A_S)^{-1} A_S^* a_j, \, \mathrm{sign}(x_S) \rangle \right| \leqslant \|A_S^* a_j\| \, \big\| (A_S^*A_S)^{-1} \big\| \, \sqrt{s} < 1 \end{split}$$
 if $\big\| (A_S^*A_S)^{-1} \big\| < 2$ and $\big\| A_S^* a_j \big\| < \frac{1}{2\sqrt{s}}$ for all $j \in S^c$.

This holds with probability at least ε if

$$m \gtrsim K^2 \max \left(s \ln(2s/\varepsilon), \ln^2(N/\varepsilon), s^2 \right).$$

Naive approaches

To control $u_j = (A^*A_S(A_S^*A_S)^{-1}\operatorname{sign}(x_S))_j$ for $j \not \in S...$

Naive approach:

$$\begin{split} |u_j| &= \left| \langle (A_S^*A_S)^{-1} A_S^* a_j, \, \mathrm{sign}(x_S) \rangle \right| \leqslant \|A_S^* a_j\| \, \big\| (A_S^*A_S)^{-1} \big\| \, \sqrt{s} < 1 \end{split}$$
 if $\big\| (A_S^*A_S)^{-1} \big\| < 2$ and $\big\| A_S^* a_j \big\| < \frac{1}{2\sqrt{s}}$ for all $j \in S^c$.

This holds with probability at least ε if

$$m \gtrsim K^2 \max (s \ln(2s/\varepsilon), \ln^2(N/\varepsilon), s^2)$$
.

Slightly less naive approach:

$$\begin{aligned} |u_j| &= \left| \langle (A_S^* A_S)^{-1} A_S^* a_j, \operatorname{sign}(x_S) \rangle \right| \\ &\leqslant \left| \langle \left((A_S^* A_S)^{-1} - \operatorname{Id} \right) A_S^* a_j, \operatorname{sign}(x_S) \rangle \right| + \left| \langle A_S^* a_j, \operatorname{sign}(x_S) \rangle \right| \\ &\leqslant \underbrace{\left\| (A_S^* A_S)^{-1} - \operatorname{Id} \right\|}_{<\frac{1}{\sqrt{2\sqrt{s}}}} \underbrace{\left\| A_S^* a_j \right\|}_{<\frac{1}{\sqrt{2\sqrt{s}}}} \sqrt{s} + \underbrace{\left| \langle A_S^* a_j, \operatorname{sign}(x_S) \rangle \right|}_{<\frac{1}{2}} < 1 \end{aligned}$$

holds provided that

$$m \gtrsim K^2 \max \left(\frac{s^{3/2} \ln(s/\varepsilon), s \ln(N/\varepsilon), \ln^2(N/\varepsilon) \right).$$

Optimal number of samples via random signs [Candès & Romberg '07, Tropp '08]

Lemma (Hoeffding's inequality)

Given $v \in \mathbb{C}^s$, if $\alpha \geqslant ||v||$ and σ is a Rademacher sequence,

$$\mathbb{P}(\langle v,\,\sigma\rangle\geqslant w)\leqslant 2\exp\left(-w^2/(2\alpha^2)\right).$$

Optimal number of samples via random signs [Candès & Romberg '07, Tropp '08]

Lemma (Hoeffding's inequality)

Given $v \in \mathbb{C}^s$, if $\alpha \geqslant ||v||$ and σ is a Rademacher sequence,

$$\mathbb{P}(\langle v, \sigma \rangle \geqslant w) \leqslant 2 \exp(-w^2/(2\alpha^2))$$
.

We already know that w.p. at least $1 - \varepsilon'$, if $m \gtrsim K^2 \max\left(s \ln(2s/\varepsilon'), \ln^2(N/\varepsilon'), \frac{s}{t^2}\right)$, then $v_j \stackrel{\text{def.}}{=} (A_S^* A_S)^{-1} A_S^* a_j$ satisfies

$$||v_j||^2 \le ||(A_S^*A_S)^{-1}||^2 ||A^*a_j||^2 \le \frac{t^2}{(1-\delta)^2} = 2t^2 \stackrel{\text{def.}}{=} \alpha^2.$$

Lemma (Hoeffding's inequality)

Given $v \in \mathbb{C}^s$, if $\alpha \geqslant ||v||$ and σ is a Rademacher sequence,

$$\mathbb{P}(\langle v, \sigma \rangle \geqslant w) \leqslant 2 \exp(-w^2/(2\alpha^2))$$
.

We already know that w.p. at least $1 - \varepsilon'$, if $m \gtrsim K^2 \max\left(s \ln(2s/\varepsilon'), \ln^2(N/\varepsilon'), \frac{s}{t^2}\right)$, then $v_j \stackrel{\text{def.}}{=} (A_S^* A_S)^{-1} A_S^* a_j$ satisfies

$$||v_j||^2 \le ||(A_S^*A_S)^{-1}||^2 ||A^*a_j||^2 \le \frac{t^2}{(1-\delta)^2} = 2t^2 \stackrel{\text{def.}}{=} \alpha^2.$$

Assume that $\operatorname{sign}(x_S)$ is a Rademacher sequence and recall that $|u_j| = |\langle v_j, \operatorname{sign}(x_S) \rangle|$.

$$\mathbb{P}(\exists j \in S^c, |u_j| > \frac{1}{2}) \leqslant N\mathbb{P}(|u_j| > \frac{1}{2}| ||v_j|| \leqslant \alpha) + \mathbb{P}(\exists j \in S^c ||v_j|| > \alpha)$$
$$\leqslant N \exp(-1/(16t^2)) + \varepsilon' \leqslant \varepsilon,$$

if
$$\varepsilon' = \varepsilon/2$$
 and $t^2 = (16 \ln(2N/\varepsilon))^{-1}$.

Lemma (Hoeffding's inequality)

Given $v \in \mathbb{C}^s$, if $\alpha \geqslant ||v||$ and σ is a Rademacher sequence,

$$\mathbb{P}(\langle v, \sigma \rangle \geqslant w) \leqslant 2 \exp\left(-w^2/(2\alpha^2)\right).$$

We already know that w.p. at least $1 - \varepsilon'$, if $m \gtrsim K^2 \max\left(s \ln(2s/\varepsilon'), \ln^2(N/\varepsilon'), \frac{s}{t^2}\right)$, then $v_j \stackrel{\text{def.}}{=} (A_S^* A_S)^{-1} A_S^* a_j$ satisfies

$$||v_j||^2 \le ||(A_S^*A_S)^{-1}||^2 ||A^*a_j||^2 \le \frac{t^2}{(1-\delta)^2} = 2t^2 \stackrel{\text{def.}}{=} \alpha^2.$$

Assume that $\operatorname{sign}(x_S)$ is a Rademacher sequence and recall that $|u_j| = |\langle v_j, \operatorname{sign}(x_S) \rangle|$.

$$\mathbb{P}(\exists j \in S^c, |u_j| > \frac{1}{2}) \leqslant N\mathbb{P}(|u_j| > \frac{1}{2}| ||v_j|| \leqslant \alpha) + \mathbb{P}(\exists j \in S^c ||v_j|| > \alpha)$$
$$\leqslant N \exp(-1/(16t^2)) + \varepsilon' \leqslant \varepsilon,$$

if
$$\varepsilon' = \varepsilon/2$$
 and $t^2 = (16 \ln(2N/\varepsilon))^{-1}$.

i.e. $\mathbb{P}(\exists j \in S^c, \ |u_j| > 1) \leqslant \varepsilon$ provided that

$$m \gtrsim K^2 \max (s \ln(N/\varepsilon), \ln^2(N/\varepsilon))$$
.

Recovery statement

Let U be an unitary matrix, $\mu \stackrel{\text{def.}}{=} \max_{k,j} |U_{k,j}|$ and $K \stackrel{\text{def.}}{=} \sqrt{N}\mu$. We want to recover $x \in \mathbb{C}^N$ from $y = P_{\Omega}Ux + e$ where Ω consists of m indices chosen uniformly at random.

We have so far shown:

Theorem

Suppose that $\operatorname{sign}(x)$ is a Rademacher sequence and $m \gtrsim K^2 \max \left(s \ln(N/\varepsilon), \ln^2(N/\varepsilon) \right)$. Let $\eta \geqslant ||e||$. Then, with probability at least $1 - \varepsilon$, any solution \tilde{x} to

$$\min \|z\|_1 \ \ subject \ to \ \ \|P_{\Omega} Uz - y\| \leqslant \eta$$

satisfies

$$\|\tilde{x} - x\|_2 \lesssim \sigma_s(x)_1 + \sqrt{s\eta}.$$

Recovery statement

Let U be an unitary matrix, $\mu \stackrel{\text{def.}}{=} \max_{k,j} |U_{k,j}|$ and $K \stackrel{\text{def.}}{=} \sqrt{N}\mu$. We want to recover $x \in \mathbb{C}^N$ from $y = P_{\Omega}Ux + e$ where Ω consists of m indices chosen uniformly at random.

We have so far shown:

Theorem

Suppose that $\operatorname{sign}(x)$ is a Rademacher sequence and $m \gtrsim K^2 \max\left(s \ln(N/\varepsilon), \ln^2(N/\varepsilon)\right)$. Let $\eta \geqslant ||e||$. Then, with probability at least $1 - \varepsilon$, any solution \tilde{x} to

$$\min \|z\|_1 \ \ subject \ to \ \ \|P_{\Omega} Uz - y\| \leqslant \eta$$

satisfies

$$\|\tilde{x} - x\|_2 \lesssim \sigma_s(x)_1 + \sqrt{s}\eta.$$

The assumptions in red can be replaced by

$$m \gtrsim K^2 s \ln(N) \ln(\varepsilon^{-1}).$$

using the idea of **inexact dual certificates** and a **golfing scheme** dual certificate construction (which constructs a different certificate to the Fuchs certificate).

Optimal sampling complexity without the random signs assumption Recall that

Theorem (Dual certificate)

Suppose that a

$$\|A_S^*A_S - \operatorname{Id}\| \leqslant \frac{1}{2} \quad and \quad \max_{\ell \in S^c} \left\|A_S^*A_{\{\ell\}}\right\|_2 \leqslant 1,$$

and there exists $u = A^*h$ such that

$$u_S = \operatorname{sign}(x_S)$$
 and $\|u_{S^c}\|_{\infty} \leqslant \frac{1}{2}$ and $\|h\|_2 \leqslant 2\sqrt{s}$.

Then any minimizer x^* to $\|z\|_1$ subject to $\|Az - y\|_2 \leqslant \eta$ where y = Ax + e with $\|e\| \leqslant \eta$ satisfies

$$||x - x^*||_2 \lesssim \sigma_s(x)_1 + \sqrt{s}\eta.$$

^aFor simplicity, I have made constants in the upper bounds explicit here.

Optimal sampling complexity without the random signs assumption

Theorem (Inexact Dual certificate)

Suppose that a

$$\|A_S^*A_S - \operatorname{Id}\| \leqslant \frac{1}{2} \quad and \quad \max_{\ell \in S^c} \left\|A_S^*A_{\{\ell\}}\right\|_2 \leqslant 1,$$

and there exists $u = A^*h$ such that

$$\|u_S - \operatorname{sign}(x_S)\| \leqslant \frac{1}{8} \quad and \quad \|u_{S^c}\|_{\infty} \leqslant \frac{1}{4} \quad and \quad \|h\|_2 \leqslant 2\sqrt{s}.$$

Then any minimizer x^* to $\|z\|_1$ subject to $\|Az - y\|_2 \leqslant \eta$ where y = Ax + e with $\|e\| \leqslant \eta$ satisfies

$$||x - x^*||_2 \lesssim \sigma_s(x)_1 + \sqrt{s}\eta.$$

 a For simplicity, I have made constants in the upper bounds explicit here.

Proof: Inexact dual certificate implies dual certificate.

Let $v \stackrel{\text{def.}}{=} u + \tilde{u}$ where $\tilde{u} \stackrel{\text{def.}}{=} A^*A_S(A_S^*A_S)^{-1}w$ and $w = \text{sign}(x_S) - u_S$.

Note that

$$\|\tilde{u}_{S^c}\|_{\infty} \le \|A_{S^c}^* A_S\|_{2\to\infty} \|(A_S^* A_S)^{-1}\|_{2\to2} \|w\|_2 \le \frac{1}{4}.$$

Therefore, $v_S = u_S + w_S = \text{sign}(x_S)$ and $\|v_{S^c}\|_{\infty} \leqslant \|u_{S^c}\|_{\infty} + \|\tilde{u}_{S^c}\|_{\infty} \leqslant \frac{1}{2}$.

Golfing Scheme [Gross '11, Candès & Plan '11]

The golfing scheme shows that with probability at least $1 - \varepsilon$, there exists an inexact dual certificate when $m \gtrsim K^2 s \log(N/\varepsilon)$.

First observe that the Fuchs precertificate is

$$u = A^* A_S (A_S^* A_S)^{-1} \operatorname{sign}(x_S) = \sum_{n=1}^{\infty} A^* A_S (\operatorname{Id} - A_S^* A_S)^{n-1} \operatorname{sign}(x_S)$$
$$= \sum_{n=1}^{\infty} A^* A_S w_{n-1}, \quad \text{where} \quad w_n \stackrel{\text{def.}}{=} (\operatorname{Id} - A_S^* A_S) w_{n-1}, \ w_0 = \operatorname{sign}(x_S).$$

Golfing Scheme [Gross '11, Candès & Plan '11]

The golfing scheme shows that with probability at least $1 - \varepsilon$, there exists an inexact dual certificate when $m \gtrsim K^2 s \log(N/\varepsilon)$.

First observe that the Fuchs precertificate is

$$u = A^* A_S (A_S^* A_S)^{-1} \operatorname{sign}(x_S) = \sum_{n=1}^{\infty} A^* A_S (\operatorname{Id} - A_S^* A_S)^{n-1} \operatorname{sign}(x_S)$$
$$= \sum_{n=1}^{\infty} A^* A_S w_{n-1}, \quad \text{where} \quad w_n \stackrel{\text{def.}}{=} (\operatorname{Id} - A_S^* A_S) w_{n-1}, \ w_0 = \operatorname{sign}(x_S).$$

Recall that
$$A = \sqrt{\frac{N}{m}} P_{\Omega} U$$
, where $\Omega = \{k_\ell\}_{\ell=1}^m$. Partition into L subsets $\Omega = \bigcup_{\ell=1}^L \Omega_\ell$, where Ω_ℓ consists of m_ℓ indices. Define $A^{(\ell)} \stackrel{\mathrm{def.}}{=} \sqrt{\frac{N}{m_\ell}} P_{\Omega_\ell} U$.

Golfing Scheme [Gross '11, Candès & Plan '11]

The golfing scheme shows that with probability at least $1 - \varepsilon$, there exists an inexact dual certificate when $m \gtrsim K^2 s \log(N/\varepsilon)$.

First observe that the Fuchs precertificate is

$$u = A^* A_S (A_S^* A_S)^{-1} \operatorname{sign}(x_S) = \sum_{n=1}^{\infty} A^* A_S (\operatorname{Id} - A_S^* A_S)^{n-1} \operatorname{sign}(x_S)$$
$$= \sum_{n=1}^{\infty} A^* A_S w_{n-1}, \quad \text{where} \quad w_n \stackrel{\text{def.}}{=} (\operatorname{Id} - A_S^* A_S) w_{n-1}, \ w_0 = \operatorname{sign}(x_S).$$

Recall that $A = \sqrt{\frac{N}{m}} P_{\Omega} U$, where $\Omega = \{k_{\ell}\}_{\ell=1}^{m}$. Partition into L subsets $\Omega = \bigcup_{\ell=1}^{L} \Omega_{\ell}$, where Ω_{ℓ} consists of m_{ℓ} indices. Define $A^{(\ell)} \stackrel{\text{def.}}{=} \sqrt{\frac{N}{m_{\ell}}} P_{\Omega_{\ell}} U$.

Consider the function

$$\tilde{u}^{(L)} \stackrel{\text{def.}}{=} \sum_{\ell=1}^{L} (A^{(\ell)})^* A_S^{(\ell)} \tilde{w}_{\ell-1}$$

where $\tilde{w}_{\ell} \stackrel{\text{def.}}{=} (\text{Id} - (A_S^{(\ell)})^* A_S^{(\ell)}) \tilde{w}_{\ell-1}, \ \tilde{w}_0 = \text{sign}(x_S).$

We still have $\tilde{u}^{(L)} \in \text{Im}(A^*)$. The idea is that we have now decoupled the randomness.

Golfing Scheme

We have

$$\tilde{w}^{(\ell)} = \operatorname{sign}(x_S) - \tilde{u}_S^{(\ell)}.$$

If

(I)
$$\left\| \left(\operatorname{Id} - (A_S^{(\ell)})^* A_S^{(\ell)} \right) \tilde{w}_{\ell-1} \right\|_2 \leqslant r_{\ell} \left\| \tilde{w}_{\ell-1} \right\|_2$$

(II)
$$\|(A_{S^c}^{(\ell)})^* A_S^{(\ell)} \tilde{w}_{\ell-1}\|_{\infty} \leqslant \frac{t_{\ell}}{\sqrt{s}} \|\tilde{w}_{\ell-1}\|_2$$
,

then

$$\left\|\operatorname{sign}(x_S) - \tilde{u}_S^{(L)}\right\| \le \left\|\tilde{w}^{(L)}\right\| \le \sqrt{s} \prod_{n=1}^L r_n$$

$$\left\| \tilde{u}_{S^c}^{(L)} \right\|_{\infty} \leqslant \sum_{\ell=1}^{L} \left\| (A_{S^c}^{(\ell)})^* A_{S}^{(\ell)} \tilde{w}_{\ell-1} \right\|_{\infty} \leqslant \sum_{\ell=1}^{L} \frac{t_{\ell}}{\sqrt{s}} \left\| \tilde{w}^{(\ell-1)} \right\|_{2} \leqslant \sum_{\ell=1}^{L} t_{\ell} \prod_{j=1}^{\ell-1} r_{j}.$$

Golfing Scheme

We have

$$\tilde{w}^{(\ell)} = \operatorname{sign}(x_S) - \tilde{u}_S^{(\ell)}.$$

If

(I)
$$\left\| \left(\operatorname{Id} - (A_S^{(\ell)})^* A_S^{(\ell)} \right) \tilde{w}_{\ell-1} \right\|_2 \le r_{\ell} \left\| \tilde{w}_{\ell-1} \right\|_2$$

(II)
$$\|(A_{S^c}^{(\ell)})^* A_S^{(\ell)} \tilde{w}_{\ell-1}\|_{\infty} \leqslant \frac{t_{\ell}}{\sqrt{s}} \|\tilde{w}_{\ell-1}\|_2$$
,

then

$$\begin{aligned} \left\| \operatorname{sign}(x_S) - \tilde{u}_S^{(L)} \right\| &\leq \left\| \tilde{w}^{(L)} \right\| \leq \sqrt{s} \prod_{n=1}^L r_n \\ \left\| \tilde{u}_{S^c}^{(L)} \right\|_{\infty} &\leq \sum_{\ell=1}^L \left\| (A_{S^c}^{(\ell)})^* A_S^{(\ell)} \tilde{w}_{\ell-1} \right\|_{\infty} \leq \sum_{\ell=1}^L \frac{t_\ell}{\sqrt{s}} \left\| \tilde{w}^{(\ell-1)} \right\|_2 \leq \sum_{\ell=1}^L t_\ell \prod_{j=1}^{\ell-1} r_j. \end{aligned}$$

• The idea is that by choosing r_{ℓ} , t_{ℓ} and L appropriately, one is guaranteed an inexact dual certificate with probability at least $1 - \varepsilon$ when

$$m = \sum_{\ell} m_{\ell} \gtrsim K^2 s \left(\ln(N) \ln(\varepsilon^{-1}) + \ln(s) \ln(s \varepsilon^{-1}) \right).$$

Golfing Scheme

We have

$$\tilde{w}^{(\ell)} = \operatorname{sign}(x_S) - \tilde{u}_S^{(\ell)}.$$

If

(I)
$$\left\| \left(\operatorname{Id} - (A_S^{(\ell)})^* A_S^{(\ell)} \right) \tilde{w}_{\ell-1} \right\|_2 \le r_{\ell} \left\| \tilde{w}_{\ell-1} \right\|_2$$

(II)
$$\left\| (A_{S^c}^{(\ell)})^* A_S^{(\ell)} \tilde{w}_{\ell-1} \right\|_{\infty} \leqslant \frac{t_{\ell}}{\sqrt{s}} \left\| \tilde{w}_{\ell-1} \right\|_2$$
,

then

$$\begin{aligned} \left\| \operatorname{sign}(x_S) - \tilde{u}_S^{(L)} \right\| &\leq \left\| \tilde{w}^{(L)} \right\| \leq \sqrt{s} \prod_{n=1}^L r_n \\ \left\| \tilde{u}_{S^c}^{(L)} \right\|_{\infty} &\leq \sum_{\ell=1}^L \left\| (A_{S^c}^{(\ell)})^* A_S^{(\ell)} \tilde{w}_{\ell-1} \right\|_{\infty} \leq \sum_{\ell=1}^L \frac{t_\ell}{\sqrt{s}} \left\| \tilde{w}^{(\ell-1)} \right\|_2 \leq \sum_{\ell=1}^L t_\ell \prod_{j=1}^{\ell-1} r_j. \end{aligned}$$

• The idea is that by choosing r_{ℓ} , t_{ℓ} and L appropriately, one is guaranteed an inexact dual certificate with probability at least $1 - \varepsilon$ when

$$m = \sum_{\ell} m_{\ell} \gtrsim K^2 s \left(\ln(N) \ln(\varepsilon^{-1}) + \ln(s) \ln(s \varepsilon^{-1}) \right).$$

• A slightly more refined argument where one is allowed to 'make mistakes' by choosing L slightly larger and throwing away the draws which violate (I) and (II) gives the optimal sampling complexity $m \gtrsim K^2 s \ln(N) \ln(\varepsilon^{-1})$.

Summary

Compressed sensing allows for the recovery of s-sparse vectors $x \in \mathbb{C}^N$ from randomised linear measurements $Ax \in \mathbb{C}^m$ with $m \ll N$ via ℓ^1 -minimisation.

- To guarantee the stable recovery of s-sparse signals, we need at least $m = \mathcal{O}(s \log(N/s))$ measurements (for any method).
- the NSP is a necessary and sufficient condition for the recovery of s-sparse signals.
- the robust NSP is an almost necessary and sufficient condition for the stable and robust recovery of s-sparse signals.
- \bullet if a matrix has sufficiently small RIP constant δ_s , then it satisfies the robust-NSP.
- random Gaussian/random Bernoulli matrices satisfy the RIP with $m = \mathcal{O}(s \log(N/s))$.

We considered the recovery of x from $P_{\Omega}W^*Vx$, with $K = \sqrt{N} \cdot \max_{i,j} |\langle v_j, w_i \rangle|$.

- NSP, robust NSP and RIP are conditions for uniform recovery. They can be hard to establish. For non-uniform recovery results, we look to the construction of dual certificates.
- A dual certificate is an element of $Im(A^*)$ which interpolates $sign(x_0)$ exactly.
- The Fuchs certificate $A^*A_S(A_S^*A_S)^{-1}\operatorname{sign}(x_0)$ is a natural candidate for a dual certificate. We can prove that this is indeed a dual certificate provided that $\operatorname{sign}(x_0)$ is a Rademacher sequence when $m = \mathcal{O}(sK^2\log(N))$.
- The golfing scheme provides another construction of a dual certificate, and allows us to remove the random signs assumption while retaining the optimal sampling complexity.

Sources

- \bullet "A Mathematical Introduction to Compressive Sensing" by Simon Foucart & Holger Rauhut.
- "Flavors of Compressive Sensing" by Simon Foucart.