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Compressed sensing
Candés, Romberg & Tao (2006); Donoho (2006)

Task: Given yg = Azg where A : RN — R™ with N > m, recover zg.

In general, this is impossible, since we have more unknowns than knowns.
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sparse vector xg. Then,
y=Af=AoVxy= Pxg.

Solve instead
min ||z]|, subject to ®x =y
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@ Even though this problem might have a unique solution, it is nontrivial to find an
algorithm to solve this.

@ Naively, we can attempt to solve Agu = y for all subsets S of size s. However, it is
unpractical to check all (];]) such subsets! E.g. if N = 1000, s = 10, then there are
(1?80) > (1000/10)'0 = 1020 linear systems of size 10 x 10. Even if each system is
solved in 10~ 19s, this approach requires 10'° s > 300 years.
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Compressed sensing
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Task: Given yg = Azg where A : RN — R™ with N > m, recover zg.

In general, this is impossible, since we have more unknowns than knowns.

Suppose that f € CN is sparse in some orthonormal basis ¥. That is, f = Wxq for some
sparse vector xg. Then,
y=Af=AoVxy= Pxg.

Solve instead
min ||z]|, subject to ®x =y
x

@ Even though this problem might have a unique solution, it is nontrivial to find an
algorithm to solve this.

@ Naively, we can attempt to solve Agu = y for all subsets S of size s. However, it is
unpractical to check all (];]) such subsets! E.g. if N = 1000, s = 10, then there are
(%) > (1000/10)° = 10?° linear systems of size 10 x 10. Even if each system is
solved in 10~ 19s, this approach requires 10'° s > 300 years.

@ In general, the 0 problem can be transposed into an NP-hard problem.
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Compressed sensing
Candés, Romberg & Tao (2006); Donoho (2006)

Let ||lzl|7 = 3=, |z;|?. Convex when g > 1 and “close to” £o for small q.

min ||z[|, subject to ®z =y
x

® Jy(zr)=0 — null image
® Jo(z)=1 —> sparse image.
o Jo(r)=2 — non-sparse image.
T2
X
1 - » = s > >
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Compressed sensing
Candés, Romberg & Tao (2006); Donoho (2006)

Key outcome of compressed sensing:
We can recover sparse vectors of length N from m <« N randomised linear measurements by
solving the following convex optimisation problem:

min ||z]|; subject to Pz = y. (BP)
x




Applications of compressed sensing — Fourier measurements

Many imaging devices can be seen as providing pointwise samples of the Fourier transform.
@ Magnetic resonance imaging
o Radio interferometry
@ Electron microscopy

@ Tomography.

oy

Linage [

For tomography, if pg is the Radon projection of f at angle 8, then the Fourier splice
theorem says:

Po(t) = f(tcos(0),tsin(0)).
We therefore are interested in y = PoFWe.



The matlab phantom experiment [Candes, Romberg and Tao *06]

Let PoFx = (:i‘j)jeg. Given observations yg = PqJFxo, take the reconstruction z as

argmin ||Wz||; subject to PoFx = yo
x

If W is invertible, this is equivalent to

argmin ||z||; subject to PoFW ~tz = yo
x
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The SnglC piXCl camera [Duarte, Davenporte, Takhar, Laska, Sun, Kelly, Baraniuk ’08]

o Let z =RN.

@ The single pixel camera is a
microarry consisting of N mirrors,
each of which can be switched on or
off individually.

@ The light from the image is reflected
on the micro array, and a lens then
combines all reflected beams in one
Sensor.

Each measurement is (z, b) where b is a vector consisting of 1’s at locations where the
mirrors are ‘on’ and 0 where the mirrors are ‘off’.
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microarry consisting of N mirrors,
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mm

m/N =1 m/N = 0.16 m/N = 0.02




The slnglo piXCl camera [Duarte, Davenporte, Takhar, Laska, Sun, Kelly, Baraniuk ’08]

o Let z =RN.

@ The single pixel camera is a
microarry consisting of N mirrors,
each of which can be switched on or
off individually.

@ The light from the image is reflected
on the micro array, and a lens then
combines all reflected beams in one
sensor.

Each measurement is (z, b) where b is a vector consisting of 1’s at locations where the
mirrors are ‘on’ and 0 where the mirrors are ‘off’.

Link to Bernoulli measurements

We can think of this as recovering sparse x from y = Az = AW*z. where A € {—1,1}"*N a
Bernoulli random matrix (entries take values +1 with equal probability:
if a € {—1,1}" is a Bernoulli sequence, then

bl — 1 a;=1 and b2 — 1 a;=-1
J 0 a;j=-1 J 0 a;=1

we have (z, a) = (z, b') — (2, b2). So, 2m measurements is equivalent to taking m Bernoulli
measurements.




Outline

@ Minimal number of measurements

© Conditions for uniform recovery of sparse vectors via £! minimisation

e Recovery with incoherent bases
@ Theoretical results - Non-uniform recovery
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Lower bound on sampling complexity

Task 1: Find A € C™*¥ and recovery maps A : C™ — C¥ such that A(Az) = x for all
xz € CN s-sparse.

In general, we need m > 2s.



Lower bound on sampling complexity

Task 1: Find A € C™*¥ and recovery maps A : C™ — C¥ such that A(Az) = x for all
xz € CN s-sparse.

In general, we need m > 2s.

Task 2: Find A € C™*Y and recovery maps A : C™ — C¥ such that

[z — A(Az)|l, < 7

os(®)1, vz e CV.

In order for (A, A) to be stable of order s, we need m > CsIn(eN/s).



Gelfand widths

Given K C X where X is a normed space, the Gelfand m-width are:

d™(K,X) def- inf{ sup |lz|]| ; L™ C X, codim(L™) < m}
zeKNL™



Gelfand widths
Given K C X where X is a normed space, the Gelfand m-width are:
d™(K,X) < inf sup  |lz]] ; A: X — R™ linear
zEKNN(A)

Measures the extent to which one can determine elements of K from m linear
measurements.

[Kashin ’77, Garnaev & Gluskin ’'84] proved

(B, 43) = min (l, 1<N/m>>

m

where BYV is the ¢! ball and £} is the N-dimensional vector space with norm ||-||,.
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zEKNN(A)

Measures the extent to which one can determine elements of K from m linear
measurements.

[Kashin ’77, Garnaev & Gluskin ’'84] proved

(B, 43) = min (l, 1<N/m>>

m

where BYV is the ¢! ball and £} is the N-dimensional vector space with norm ||-||,.

Consequence of d™ (BN, 65) > 1/ % is m 2 sln(eN/s).

If (A, A) is stable of order s, then for v € N (A) N B{V, stable recovery of vg and vge
respectively means:
|[-vs — A(A(=vs))[| <0 = —vs = A(A(—vs)) = A(Avse)
C C
llvse — A(Avge)|| < ﬁos(vsch < 7 lvlly, = llvlly <
So, we have d™ (B}, £2) < C/+/s which implies that m > sIln(eN/m).

<
N




Outline

© Conditions for uniform recovery of sparse vectors via £! minimisation
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Null space property

Note that  uniquely minimises

min ||z||; subject to Az = Ax
z

if and only if F; N By = {z} where 7, et {z; Az = Az} and B, def- {z; llzll; <=l }

Null space property
A € C™*N s said to satisfy the NSP relative to a set S C [N] if
lloslly <llvselly, Vo e N(A)\{0}
It is said to satisfy the NSP of order s if this holds for all S C [N] with |S| < s.

13 /34



Null space property

Theorem

Given A € C*N | every x € CN supported on S C [N] is the unique solution to (BP) if and
only if A satisfies the NSP relative to set S.

14 /34



Null space property
Theorem

Given A € C*N | every x € CN supported on S C [N] is the unique solution to (BP) if and
only if A satisfies the NSP relative to set S.

v

Spe. Az* = Az, z* 7é T, ||$*||1 < ||$||1
\
T

v & g* — g e N(A) \ {0} satisfies:

loselly = llz%ell;

= |legelly = llally + [|l= = =5 + 25,
<2 lly = llally + llvslly + I,

< lvslly




Null space property

Theorem

Given A € C*N | every x € CN supported on S C [N] is the unique solution to (BP) if and

only if A satisfies the NSP relative to set S.

v

Spe. Az* = Az, z* 7é T, H‘r*Hl < ||$||1
\
T

def.
v =

x* —x € N(A) \ {0} satisfies:
loselly = [z,

= |legelly = llally + [|l= = =5 + 25,
< legell, = ll2lhy + lloslly + |25,
< lvslly

Spe. Jv € N(A)\ {0} s.t. [osll; > [lvsell,

\

Let o % vg. Then, Avg = —Avge but z
is not the unique solution to (BP).

Fr ={z; Az = Az} is the dotted red line.




Robust and stable recovery

Let y = Az + e with |le]| < n. What conditions should we impose on A such that

A%P (v)

satisfies ||:c - A;’BP(y)H2 < %as(z)l + D for some C, D > 07

! argmin llz|l; subject to [|Az —yll, < 7.



Robust and stable recovery

Let y = Az + e with ||e|| < . What conditions should we impose on A such that
def. . .
AL p(y) = argmin ||z]|; subject to [|[Az —y|l, <.

satisfies ||:c — A%P(y)H2 < %os(w)l + Dn for some C, D > 07

Robust null space property

We say that A satisfies the robust NSP with constant p,7 > 0 if
p

luslly < 7 lvselly + 7 || Av||, , vv e CN.

15/ 34



Robust and stable recovery

Let y = Az + e with |le]| < n. What conditions should we impose on A such that

def.

AL o(y) = argmin||z]|; subject to [|Az —yll, < 7.
satisfies ||:c — A%P(y)”2 < %O’S(Z‘)l + Dn for some C, D > 07

Robust null space property
We say that A satisfies the robust NSP with constant p, 7 > 0 if

P

N
lvslly < VG lvselly +TllAvlly, Vo€ C™.

@ robust NSP with p < 1 implies the NSP.
o If A satisfies the robust NSP with p < 1, then this is sufficient for robust and stable

recovery.
o If we have stable and robust recovery, then setting x oy ey ,e=—Av and
n = ||Av||y, we have AL ,(Az +e€) =0 and [|v]|, < %os(v)l + D||Av]|, . So, this

condition is necessary.



The restricted isometry property

This is one way to assess the quality of the matrix A for recovering s-sparse vectors.

The RIP
The sth restricted isometry constant ds of a matrix A is the smallest § > 0 such that
(1 -9 llzll3 < | Az]3 < (1 +36) |3,

for all s-sparse vectors z € CN.

@ s = max|g|<s ||AE‘AS — Id”.

o All singular values of Ag are restricted to [1 — ds,1 + d5].
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The restricted isometry property

This is one way to assess the quality of the matrix A for recovering s-sparse vectors.

The RIP
The sth restricted isometry constant ds of a matrix A is the smallest § > 0 such that
(1 -9 llzll3 < | Az]3 < (1 +36) |3,

for all s-sparse vectors z € CN.

@ s = max|g|<s ||AE‘AS - Id”.
o All singular values of Ag are restricted to [1 — ds,1 + d5].

Theorem (RIP = robust NSP = robust and stable recovery)

If 625 < f’ then A satisfies the robust NSP of order s with p € (0,1) and 7 > 0 dependent

only on d2s. So, the RIP implies that ||a: — A%P(Aac +e ||2 < \/gas(x)l + Dn for some
C, D > 0 which depend only on 2.

16 / 34



Random Gaussian matrices [Mendelson et al '09, Baraniuk et al *08]

Theorem

Let A € R™*N with entries as iid N'(0,1). Let A = TLA Then, provided that

m > Cé 2sln(eN/s), wp > 1 — 2exp ( R ) A has RIP constant 85 < 9.
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Random Gaussian matrices [Mendelson et al '09, Baraniuk et al *08]
Theorem

Let A € R™*N with entries as iid N(0,1). Let A = %A Then, provided that

m > C6 2sln(eN/s), wp > 1 — 2exp ( S ) A has RIP constant &5 < 6.

Step 1, Concentration inequality: For fixed z € RN and ¢t > 0,
-2 . mt?

P “Az‘lfw?>tw2 < 2e - ).
(|14 = 1e13] > enat) < 2emw (=%

o Note that (Az); = \ﬁ Zj 1A = ”\/lzg where g; = N(0,1).

° ]P’(HAxH 1+t)> (% 392> (1+1) =P (exp (u); 92) > exp (um(1 + 1))
@ By Markov’s inequality *, this is upper bounded by
E(exp(ud,97) _ ﬁE(exp(ugf)) _ ( 1/VT—32u )m
exp (um(1l +1t)) i:l’ch i exp (u(l+1)) ~~ exp(u(l +1))

moment gen. fn.

@ Choosing u = ¢/8 < 1/4, this is exponentially decaying in ¢, in particular, upper
bounded by exp(—mt?/16).

“P(X| > ) <E|X]| /t

fFor a < 1/2, Elexp(ag?)] =

1
1—2a



Random Gaussian matrices [Mendelson et al '09, Baraniuk et al *08]
Theorem
Let A € R™*N with entries as iid N'(0,1). Let A= —= A. Then, provided that

NG
m > C6 2sln(eN/s), wp > 1 — 2exp ( e ) A has RIP constant &5 < 6.

Step 2: Fix S C [N] with S| = s. Then HA*VAS - IdH < 8 whp.
@ The unit sphere of R® can be covered by n < (1 + 2/p)® balls of radius p.

o Let Xg et {z € RN ; Supp(z) C S}. There exists ¢2 normalised u1,...,un € Xg,
n < (142/p)° s.t. for all z € g with ||z|| = 1, there exists k s.t. ||z — ug|| < p.

o Let B AxAg —Id.
2> 1)

2 2 52 .
< 2nexp (7%) < 2(1+2/p)°exp (7m—> = 2exp (ln(g)s - m—) et o

16
ifp=1/4 and t =4/2.
@ This means that w.p. 1 —¢, ||B|| < ¢

Pk € [n], [(Buk, ue)| > 1) =P(3k € [n], ‘HAWHE -

1
[(Bz, z)| = [(Buk, u) + (B(z + ug), (z —up))| < o + | B |z + ug || [|o — ul

[\

0 6 1
<=+2p||Bll==-+=|B]-
S+ 2Bl = 5 + 5 IB]



Random Gaussian matrices [Mendelson et al '09, Baraniuk et al *08]

Theorem
Let A € R™XN with entries as wd N(0,1). Let A = \FA Then, provided that
m > C6 2sln(eN/s), wp > 1 — 2exp ( o5 ) A has RIP constant 65 < 6.

Step 3, Union bound: There are (N) < (eN/s)® subsets of size s in [N]. Therefore,

P(6 > §) (HASAS - IdH > § for some S C [N, |S] = 5)

mé? md?
< 2(eN/s)® In(9)s — 2~} <2 _me
(eN/s)® exp ( n(9)s o ) exp ( 128 )

provided that In(9e)sIn(eN/s) < mé2/128, i.e. m > C5~2sln(eN/s).
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Random Gaussian matrices [Mendelson et al '09, Baraniuk et al *08]

Theorem
Let A € R™*N with entries as iid N (0, 1). Let A= rA Then, provided that
m > C6 2sln(eN/s), wp > 1 — 2exp ( o5 ) A has RIP constant 85 < 6.

Step 3, Union bound: There are (N) < (eN/s)® subsets of size s in [N]. Therefore,

P(6s > 9) (HASAS — IdH > ¢ for some S C [N],|S| = s)

mé? ma?
2(eN/s)® In(9)s — — ) <2 —_—
(eN/s)® exp ( n(9)s o ) exp ( 128 )

provided that In(9¢)sIn(eN/s) < md2/128, i.e. m > C5~2sln(eN/s).

Remarks:

@ Similar result of random Bernoulli matrices.

@ Let U € RV*N be unitary. Then, 6S(AU*) < § with the same probability, since given

any z € CV, let o/ < U*a:
~ 2 —mit?
P ({||Av*a| 2 s t]|of|?) < 2exp [ ——).
([ Jo'13) < 2exp (=5
v

2>t ||x||§) =P (“‘Ax'

=




Summary

Compressed sensing allows for the recovery of s-sparse vectors € CN from randomised
linear measurements Az € C™ with m < N via ¢'-minimisation.

@ To guarantee the stable recovery of s-sparse signals, we need at least
m = O(slog(N/s)) measurements (for any method).

@ the NSP is a necessary and sufficient condition for the recovery of s-sparse signals.

@ the robust NSP is a sufficient (and almost necessary) condition for the stable and
robust recovery of s-sparse signals.

@ if a matrix has sufficiently small RIP constant Js, then it satisfies the robust-NSP.
@ random Gaussian/random Bernoulli matrices satisfy the RIP with m = O(slog(N/s)).



Outline

e Recovery with incoherent bases
@ Theoretical results - Non-uniform recovery
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Setup

Suppose that V = [v1|---|ox] € CV*N and W = [w1] - - - |wy] € CV XN are unitary
matrices. Let z € CV be the signal of interest.

@ Observe (z, wj) for j € Q where Q C [N] is a randomly chosen set of indices.
@ z is s-sparse in V| that is, z = Vz where z € ;.

Therefore, we want to recover x from

y= PqUx, where U =W"V.



Setup

Suppose that V = [v1]|---Juy] € CV*N and W = [w1] - - - |wy] € CVXN are unitary
matrices. Let z € CV be the signal of interest.

@ Observe (z, w;) for j € Q where Q C [N] is a randomly chosen set of indices.
@ z is s-sparse in V, that is, z = V& where z € 5.

Therefore, we want to recover x from

y= PqUx, where U =W"V.

Definition

The coherence of V and W is v def- maxy, ¢ |[(ve, wi)|. In the following, let K def- VN

-

20 /34



Setup

Suppose that V = [v1|---|ox] € CV*N and W = [w1] - - - |wy] € CV XN are unitary
matrices. Let z € CV be the signal of interest.

@ Observe (z, wj) for j € Q where Q C [N] is a randomly chosen set of indices.
@ z is s-sparse in V, that is, z = V& where z € 5.

Therefore, we want to recover x from

y= PoUx, where U =W*V.

Definition

The coherence of V and W is v def- maxy ¢ |(ve, wg)|. In the following, let K def- VN .

Clearly, p < 1, and since W and V' are unitary, we have

N
2 2
1= [lwgl® =Y [(wk, ve)|> < Np?
=1

SO p = \/LN When p = ﬁ, we say that V and W are maximally incoherent. So,

1

\/ﬁ,l] and K € [1,VN]

meE |



Examples

@ The Fourier transform W = \/—% (eiQW(z*l)(’“*U/N)iV[:l is maximally incoherent with
the canonical basis V = Idy, with p = \/%



Examples

@ The Fourier transform W = \/—% (eiQW(@il)(’“’U/N)Z[:
1

VN’
@ The Hadamard transform is maximally incoherence with the canonical basis, where the
Hadamard transform is H H, € R2"*2" is defined recursively by
1 (Hy-1 Hp-1
H,=— " n , Hop =1.
" \/i (anl n—1 0

It can be computed in O(N log(N)) time and is useful in modelling systems where there
are ‘on/off” measurements, such as the single-pixel camera, or Fluorescence microscopy.
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the canonical basis V' = Idy, with pu =
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Uniform recovery guarantee
If
m < Q| > K25 2sInd (),

then 4/ %U satisfies ds < & with probability at least 1 — N~ n®(N) | This guarantees uniform
recovery of all s-sparse vectors.




Examples
@ The Fourier transform W = \/—% (eiQW(z*l)(’“*U/N)iV[: is maximally incoherent with

the canonical basis V = Idy, with p = \/%

@ The Hadamard transform is maximally incoherence with the canonical basis, where the
Hadamard transform is H H, € R2"*2" is defined recursively by
1 (Hy-1 Hp-1
H,=— " n , Hop =1.
" \/i (H n—1 —din—1 0

It can be computed in O(N log(N)) time and is useful in modelling systems where there
are ‘on/off” measurements, such as the single-pixel camera, or Fluorescence microscopy.

1

@ The Haar wavelet basis is maximally incoherent with the noiselet basis.

@ Any basis is maximally coherent with itself, as u = 1.

Uniform recovery guarantee
If
m < Q| > K25 2sInd (),

then 4/ %U satisfies ds < & with probability at least 1 — N~ n®(N) | This guarantees uniform
recovery of all s-sparse vectors.

Note that log(N)* is not so small... for N = 1000, log(N) = 6.9 but log*(N) > 2N!.



Uniform vs nonuniform guarantees

So far, we have seen that NSP, robust NSP, RIP guarantee recovery of all s-sparse vectors.
In particular, we have seen the following uniform recovery guarantee:

P (Ve € X5, App(Az +e) recovers x) > 1 —¢
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In particular, we have seen the following uniform recovery guarantee:

P (Ve € X5, App(Az +e) recovers x) > 1 —¢
However, we could ask for a weaker statement: given one vector € ¥, show that
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N
N}



Uniform vs nonuniform guarantees

So far, we have seen that NSP, robust NSP, RIP guarantee recovery of all s-sparse vectors.
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Uniform vs nonuniform guarantees

So far, we have seen that NSP, robust NSP, RIP guarantee recovery of all s-sparse vectors.
In particular, we have seen the following uniform recovery guarantee:

P (Ve € X5, App(Az +e) recovers x) > 1 —¢
However, we could ask for a weaker statement: given one vector € ¥, show that

P(App(Az +e) recovers z) > 1 —¢

In this section, we shall derive nonuniform recovery statements when m > K2sIn(N).

Remark

Recall that stable recovery requires m > sIn(/N/s), and random Gaussian matrices achieve
this optimal rate.
However, one can show that for subsampled orthonormal systems, if we want

AP (z) — 2|y S os(z)1

to hold for all vectors z, then necessarily, m =~ sln(NV).

N
N}
@



Non-universal recovery and dual certificates

RIP and NSP are concerned with the recovery of all s-sparse vectors or all vectors supported
on some S C [N]. What if we are only interested in the recovery of one vector z?

Theorem

Given A € C™*N € CN with support S is the unique minimiser of BP with y = Az if
either

(a) [sign(x)s, v)| < [lvselly for all v € N(A)\{0},
(b) Ag is injective and 3h € C™ s.t.

(A%h)s = sign(zg) and [[(A"h)se|l, <1
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Non-universal recovery and dual certificates

RIP and NSP are concerned with the recovery of all s-sparse vectors or all vectors supported
on some S C [N]. What if we are only interested in the recovery of one vector z?

Theorem

Given A € C™*N € CN with support S is the unique minimiser of BP with y = Az if
either

(a) |(sign(z)s, v)| < [lvgelly for allv € N(A)\ {0},
(b) Ag is injective and 3h € C™ s.t.
(A*h)s =sign(zs) and [|(A"h)sello, <1

@ (a) and (b) are equivalent.
@ The null space property relative to S implies (a).
@ A*h is called a dual certificate.

@ The converse is also true in the real setting, but false in general.



Dual certificates guarantee robust and stable recovery

Theorem (Dual certificate)
Suppose that *

1 *
[AgAs —Id|| < 5 and max ||ASA{Z}||2 <1,
and there exists u = A*h such that

ug =sign(zg) and |luge|,, < and ||h|ly < 2v/s.

1
2
Then any minimizer x* to min, ||z||; subject to ||Az — y||, < n where y = Az + e with
llell < n satisfies

lz — 2"y S os()1 + Vsn.

“For simplicity, I have made constants in the upper bounds explicit here.
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Application to our problem

. . . . def.
Our aim: recover  from y = PoUx + e, where U is a unitary matrix and Q = {k¢}7>, are
chosen iid unif. rand.
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Our aim: recover z from y = PoUz + e, where U is a unitary matrix and Q < {k‘g}é , are
chosen iid unif. rand.

def.

Let A= /X PoU. Then E[A*A] = Id and E[A§Age] = 0:

E[(A*A); 4l Z]E[ k/Uke,J] Z Z kUk,g (U*U)Z‘,]' = d;j.
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Key question: How large does m need to be such that with probability at least 1 — p,
o [|[A5As —1d|| < § and maxpese ||[A5 Ay, <1
@ there exists u = A*h such that
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ug =sign(zg) and |Juge|,, < 5

and ||hlly < 2v/s.




Application to our problem

Our aim: recover z from y = PoUz + e, where U is a unitary matrix and Q < {k‘g}é , are
chosen iid unif. rand.

def.

Let A< /N PoU. Then E[A*A] = Id and E[A5Age] = O:

E[(A*A); 4l Z]E[ k/Uke,J] Z Z kUk,g (U*U)Z‘,]' = d;j.

Zlkl

Key question: How large does m need to be such that with probability at least 1 — p,
o [|[A5As —1d|| < § and maxpese ||[A5 Ay, <1
@ there exists u = A*h such that
1

ug =sign(zg) and |lugel/, < 3 and ||hlly < 2v/s.

Let 1 > ||e||. This would guarantee that any solution Z to

min ||z]|; subject to ||PoUz —y| <7

satisfies
2 —zll; < os(2)1 + Vsn.




Existence of dual certificates

A natural candidate of a certificate is the Fuchs certificate:
u=A*Ag(ALAs) 'sign(zs).
Note that ug = sign(zg) and we simply need to check that |uge| < 1. Therefore,
@ we simply need to control Ag.Ag and (AZAS)’l,
@ NB: E[A§.Ag] =0 and E[A§As] = Id.



Existence of dual certificates

A natural candidate of a certificate is the Fuchs certificate:
u=A*Ag(A%As) ! sign(zg).
Note that ug = sign(zg) and we simply need to check that |uge| < 1. Therefore,
@ we simply need to control Ag.Ag and (AZAS)’l.
@ NB: E[A§.Ag] =0 and E[A§As] = Id.

Probabilistic bounds (proved using Bernstein concentration inequalities).
With probability at least 1 — g,

I) ||ALAs —Id|| < 6 if m 2 K26~ 2sIn(2se ™).
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Existence of dual certificates

A natural candidate of a certificate is the Fuchs certificate:
u= A*AS(A*SAS)71 sign(zg).
Note that ug = sign(zs) and we simply need to check that |uge| < 1. Therefore,
o we simply need to control A%, Ag and (A5Ag)~1L.
o NB: E[A%, Ag] = 0 and E[A%Ag] = Id.

Probabilistic bounds (proved using Bernstein concentration inequalities).
With probability at least 1 — ¢,

(I) ||AsAs —Id|| < 6 if m 2 K26~ 2sIn(2se™1).

(I1) maxjcge ||A5a;| <t if m 2 K? max (In?(Ne™1), st~2).

(IIT) max;ege |(sign(zs), Agaz)| <rif m 2 KZsr=2In(Ne~1). *

*(III) comes from the stronger result “For a fixed vector v, with probability at least 1 — 4,

maxjecge [(v, Agaz)| < L\/%H if m > K2sr~2In(Ne™1)”



Naive approaches

To control uj; = (A*Ag(A%As) Lsign(zxg)), for j € S...



Naive approaches

To control uj; = (A*Ag(A%As) Lsign(zxg)), for j € S...
Naive approach:
luj| = [((A5As) ™! Afay, sign(zs))| < | A5a;l [[(A5As) || Vs <1
if || (A5 As) 71| < 2 and |A%a;|| < 2%/; for all j € S€.
This holds with probability at least € if
m 2 K2 max (s In(2s/e), In?(N/e), s%) .



Naive approaches

To control uj; = (A*Ag(A%As) Lsign(zxg)), for j € S...
Naive approach:
luj| = [((A5As) ™! Afay, sign(zs))| < | A5a;l [[(A5As) || Vs <1
if || (A5 As) 71| < 2 and |A%a;|| < 2%/; for all j € S€.
This holds with probability at least € if
m 2 K2 max (s In(2s/e), In?(N/e), s%) .

Slightly less naive approach:
luj| = [((A§As) ™! Afay, sign(zs))|
< (((A5As) ™" —1d) Afay, sign(zs))| + [(Agay, sign(zs))]
< |[(A5As) ™! —1d]| || A5 ;]| Vs + [(A5ay, sign(zs))| <1
—_— e — —_—

1 1 1
1 <1 1
< V25 2V <z

holds provided that

m 2 K% max (53/2 In(s/e), sIn(N/e), 1n2(N/6)> .



Optimal number of samples via random signs [Candes & Romberg '07, Tropp ’08]

Lemma (Hoeffding’s inequality)
Given v € C*, if a > ||v|| and o is a Rademacher sequence,

P((v, o) > w) < 2exp (—wz/(Zaz)) .
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Optimal number of samples via random signs [Candes & Romberg '07, Tropp ’08]

Lemma (Hoeffding’s inequality)

Gwen v € C*, if a > ||v|| and o is a Rademacher sequence,

P((v, o) > w) < 2exp (—w2/(2a )) -

We already know that w.p. at least 1 — ¢/, if m > K2 max (s In(2s/¢’), In2(N/e), %) then
4 (AL Ag) "L A%a; satisfies

—112 2 def.
llo; II* < (A5 As) 1” [ A*as]? < =02 =2t> = a2
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Optimal number of samples via random signs [Candes & Romberg '07, Tropp ’08]

Lemma (Hoeffding’s inequality)
Gwen v € C*, if a > ||v|| and o is a Rademacher sequence,

P((v, o) > w) < 2exp (—w2/(2a )) -

We already know that w.p. at least 1 — ¢/, if m > K2 max (s In(2s/¢’), In2(N/e), %) then
4 (AL Ag) "L A%a; satisfies

2
2 —1/12 2 t 2 def. 2
lljI* < [|(A5A) 7|7 1A% a;]1* < oz 2~
Assume that sign(zg) is a Rademacher sequence and recall that |u;| = [(v;, sign(zg))]|.

. 1 1 )
PEj € 5% fujl > 5) < NB(juj| > Sfllvill < @) + P (&) € 5%Jv;ll > o)
< Nexp (=1/(16t%)) +€&' < e
if &/ = ¢/2 and t? = (161n(2N/e)) 1.
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Optimal number of samples via random signs [Candes & Romberg '07, Tropp "08]

Lemma (Hoeffding’s inequality)
Gwen v € C*, if a > ||v|| and o is a Rademacher sequence,

P((v, o) > w) < 2exp (—w2/(2a )) -

We already know that w.p. at least 1 — ¢/, if m > K2 max (s In(2s/¢’), In2(N/e), %) then

def- (AL Ag)~1A%ay satisfies

_12 12 def.
loglI* < [[(A5As) ™17 14 a;11* € —sig =2t = 0®.
(1-9)
Assume that sign(zg) is a Rademacher sequence and recall that |u;| = [(v;, sign(zg))]|.

P € 5°, fugl > 5) < NB(us| > o oyl < @) + P (35 € 5° [y > )
< Nexp (=1/(16t%)) +€&' < e
if &/ = ¢/2 and t? = (161n(2N/e)) 1.
i.e. P(35 € 5S¢, |u;| > 1) < € provided that
m > K? max (s 1n(N/€),ln2(N/s)) .
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Recovery statement

Let U be an unitary matrix, p et maxy j {Uk’j| and K < v/ Np. We want to recover
z € CN from y = PqUz + e where Q consists of m indices chosen uniformly at random.

We have so far shown:

Theorem

Suppose that sign(z) is a Rademacher sequence and m 2 K2 max (sIn(N/e),In?(N/e)).
Let nn > ||e||. Then, with probability at least 1 — e, any solution & to

min ||z[|; subject to ||[PoUz —y|| <n

satisfies
[z —zlly S os(2)1 + Vsn.
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Recovery statement

Let U be an unitary matrix, u = maxg, !Uk7j| and K < v/ Nyp. We want to recover
z € CN from y = PqUz + e where Q consists of m indices chosen uniformly at random.

We have so far shown:

Theorem

Suppose that sign(z) is a Rademacher sequence and m 2 K2 max (sIn(N/e),In?(N/e)).
Let nn > ||e||. Then, with probability at least 1 — e, any solution & to

min ||z[|; subject to ||[PoUz —y|| <n

satisfies
2 = 2lly S os(2)1 + Vsn.

The assumptions in red can be replaced by
m > K?sIn(N)In(e~1).

using the idea of inexact dual certificates and a golfing scheme dual certificate
construction (which constructs a different certificate to the Fuchs certificate).



Optimal sampling complexity without the random signs assumption
Recall that

Theorem (Dual certificate)
Suppose that ¢

[ASAs —Id|| < and Iax ||AgA{e}||2 <1,

1
2
and there exists u = A*h such that

1
5 and ||hly < 2v/s.
Then any minimizer x* to ||z||; subject to ||Az —yl||, < n where y = Az 4 e with |le|| <7
satisfies

e —2*[ly S os(@)1 + V.

“For simplicity, I have made constants in the upper bounds explicit here.

ug =sign(zg) and |luge|,, <
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Optimal sampling complexity without the random signs assumption

Theorem (Inexact Dual certificate)

Suppose that ¢

1
ALAs —d|| < = d ATA <1,
14545 —1dI| < o and  max [[A5A |,
and there exists u = A*h such that
. 1 1
lus —sign(zs)l < o and  Jusello < 7 and |hll; < 2V/s.

Then any manimizer x* to ||z||; subject to ||Az — ylly < n where y = Az + e with |le]| < n
satisfies

e —2"lly S os(@)1 + Vsn.

“For simplicity, I have made constants in the upper bounds explicit here.

Proof: Inexact dual certificate implies dual certificate.

Let v € u + @ where i < A*Ag(A%As)lw and w = sign(ws) — ug.
Note that

= —1
liselloo < [ASe Asllayoo [(A5AS) T 5,5 lwlly <

.

Therefore, vs = ug + wg = sign(zg) and ||[vge ||, < [|luse| o + l[sellsy < %
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Golfing Scheme [Gross 11, Candes & Plan '11]

The golfing scheme shows that with probability at least 1 — ¢, there exists an inexact dual
certificate when m 2 K?2slog(N/¢).

First observe that the Fuchs precertificate is

u=A*Ag(A%Ag) Lsign(zg) = Z A*Ag (Id — AL Ag)™ tsign(zs)

n=1

o0
= Z A*Agwn_1, where wp = (Id — A§As)wn—1, wo = sign(zg).
n=1
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Golfing Scheme [Gross 11, Candes & Plan '11]

The golfing scheme shows that with probability at least 1 — ¢, there exists an inexact dual
certificate when m 2 K?2slog(N/¢).

First observe that the Fuchs precertificate is

u=A*Ag(A%Ag) Lsign(zg) = Z A*Ag (Id — AL Ag)™ tsign(zs)

n=1

o0
= Z A*Agwn_1, where wp = (Id — A§As)wn—1, wo = sign(zg).

Recall that A = 1/%P9 U, where Q = {k;}}2 . Partition into L subsets 2 = Ule Qy, where
Qy consists of my indices. Define A(®) = \/ %PQEU

Consider the function

L
L) def. Z(A“))*Ag)u?z
=1

where @, 2" (1d — (ALY APy, _q, w0 = sign(zs).

We still have a(L) ¢ Im(A*). The idea is that we have now decoupled the randomness.



Golfing Scheme

We h.
€ nave )

9 = sign(zg) — Ug’.

¢

H( A(Z)) A(Z)) Do IH <1y ||we— 1”2

(IT) H A(SQ Ag)Uw—lH <*||w£ 2

then

fioen ] < s < & T

L L -1
2] < S aoc] <3t ), < T v

=1 j=1



Golfing Scheme
We have

o0 = sign(zg) — ﬂg).
If

0 [[(1a =A@y AL) @], < relimeall

O 1(£) ~ .
1D [[(AED AL Des | < L el
then

Josntos) =82 < ] < V5 TT v
n=1

~(L) < (O \x 4 (0) ~ Lt (- 1) Lo 1
H oogézle(ASC) Ag we_lH‘”gz:ZliSHw HQée:ZItej];[lrj.

U’SC

@ The idea is that by choosing ry, t; and L appropriately, one is guaranteed an inexact
dual certificate with probability at least 1 — & when

m= ng > K2%s (In(N) In(e™1) + In(s) ln(ssfl)) .
4




Golfing Scheme
We have

o0 = sign(zg) — 11_(;).
If

0 [[(1a =A@y AL) @], < relimeall
(1) [[(a@) AP |

then

t ~
< Sl

Josntos) =82 < ] < V5 TT v
n=1

L

R o | L 20
=1 j=1

e

U’SC

@ The idea is that by choosing ry, t; and L appropriately, one is guaranteed an inexact
dual certificate with probability at least 1 — & when

m= ng > K2%s (In(N) In(e™1) + In(s) ln(ssfl)) .

L

@ A slightly more refined argument where one is allowed to ‘make mistakes’ by choosing L
slightly larger and throwing away the draws which violate (I) and (II) gives the optimal
sampling complexity m > K2sIn(N)In(s~1).




Summary

Compressed sensing allows for the recovery of s-sparse vectors =z € CV from randomised linear
measurements Az € C™ with m < N via £!'-minimisation.

@ To guarantee the stable recovery of s-sparse signals, we need at least m = O(slog(N/s))
measurements (for any method).

@ the NSP is a necessary and sufficient condition for the recovery of s-sparse signals.

@ the robust NSP is an almost necessary and sufficient condition for the stable and robust
recovery of s-sparse signals.

@ if a matrix has sufficiently small RIP constant dg, then it satisfies the robust-NSP.

random Gaussian/random Bernoulli matrices satisfy the RIP with m = O(slog(N/s)).

We considered the recovery of = from PoW*Vx, with K = /N - max; ; [(vj, w;)|.

@ NSP, robust NSP and RIP are conditions for uniform recovery. They can be hard to
establish. For non-uniform recovery results, we look to the construction of dual
certificates.

@ A dual certificate is an element of Im(A*) which interpolates sign(zo) exactly.

o The Fuchs certificate A*Ag(A%Ag)~!sign(zo) is a natural candidate for a dual
certificate. We can prove that this is indeed a dual certificate provided that sign(zo) is
a Rademacher sequence when m = O(sK? log(N)).

@ The golfing scheme provides another construction of a dual certificate, and allows us to
remove the random signs assumption while retaining the optimal sampling complexity.

33 /34



Sources

@ “A Mathematical Introduction to Compressive Sensing” by Simon Foucart & Holger
Rauhut.

@ “Flavors of Compressive Sensing” by Simon Foucart.
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