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Compressed sensing
Candés, Romberg & Tao (2006); Donoho (2006)

Task: Given y0 = Ax0 where A : RN → Rm with N � m, recover x0.

In general, this is impossible, since we have more unknowns than knowns.

Suppose that f ∈ CN is sparse in some orthonormal basis Ψ. That is, f = Ψx0 for some
sparse vector x0. Then,

y = Af = A ◦Ψx0 = Φx0.

Solve instead
min
x
‖x‖0 subject to Φx = y

Even though this problem might have a unique solution, it is nontrivial to find an
algorithm to solve this.

Naively, we can attempt to solve ASu = y for all subsets S of size s. However, it is

unpractical to check all
(N
s

)
such subsets! E.g. if N = 1000, s = 10, then there are(1000

10

)
> (1000/10)10 = 1020 linear systems of size 10× 10. Even if each system is

solved in 10−10s, this approach requires 1010 s > 300 years.

In general, the `0 problem can be transposed into an NP-hard problem.
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Compressed sensing
Candés, Romberg & Tao (2006); Donoho (2006)

Let ‖x‖qq =
∑
j |xj |

q . Convex when q > 1 and “close to” `0 for small q.

min
x
‖x‖p subject to Φx = y

Image with 2 pixels:

q = 0 q = 1 q = 2q = 3/2q = 1/2

Jq(x) =
�

m

|xm|q

J0(x) = # {m \ xm �= 0}
J0(x) = 0 �� null image.
J0(x) = 1 �� sparse image.
J0(x) = 2 �� non-sparse image.

x2

Convex Relaxation: L1 Prior

�q priors: (convex for q � 1)

x1
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Compressed sensing
Candés, Romberg & Tao (2006); Donoho (2006)

Key outcome of compressed sensing:
We can recover sparse vectors of length N from m� N randomised linear measurements by
solving the following convex optimisation problem:

min
x
‖x‖1 subject to Φx = y. (BP)
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Applications of compressed sensing – Fourier measurements

Many imaging devices can be seen as providing pointwise samples of the Fourier transform.

Magnetic resonance imaging

Radio interferometry

Electron microscopy

Tomography.

For tomography, if pθ is the Radon projection of f at angle θ, then the Fourier splice
theorem says:

p̂θ(t) = f̂(t cos(θ), t sin(θ)).

We therefore are interested in y = PΩFWx.
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The matlab phantom experiment [Candès, Romberg and Tao ’06]

Let PΩFx = (x̂j)j∈Ω. Given observations y0 = PΩFx0, take the reconstruction z as

argmin
x
‖Wx‖1 subject to PΩFx = y0

If W is invertible, this is equivalent to

argmin
x
‖x‖1 subject to PΩFW−1x = y0

Sampling map Ω F−1PΩy0 Sparse reconstruction

6 / 34



The single pixel camera [Duarte, Davenporte, Takhar, Laska, Sun, Kelly, Baraniuk ’08]

Let z = RN .

The single pixel camera is a
microarry consisting of N mirrors,
each of which can be switched on or
off individually.

The light from the image is reflected
on the micro array, and a lens then
combines all reflected beams in one
sensor.

Each measurement is 〈z, b〉 where b is a vector consisting of 1’s at locations where the
mirrors are ‘on’ and 0 where the mirrors are ‘off’.
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on the micro array, and a lens then
combines all reflected beams in one
sensor.

Each measurement is 〈z, b〉 where b is a vector consisting of 1’s at locations where the
mirrors are ‘on’ and 0 where the mirrors are ‘off’.

Link to Bernoulli measurements

We can think of this as recovering sparse x from y = Az = AW ∗x. where A ∈ {−1, 1}m×N a
Bernoulli random matrix (entries take values ±1 with equal probability:
if a ∈ {−1, 1}N is a Bernoulli sequence, then

b1j =

{
1 aj = 1

0 aj = −1
and b2j =

{
1 aj = −1

0 aj = 1

we have 〈z, a〉 = 〈z, b1〉 − 〈z, b2〉. So, 2m measurements is equivalent to taking m Bernoulli
measurements.
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Outline

1 Minimal number of measurements

2 Conditions for uniform recovery of sparse vectors via `1 minimisation

3 Recovery with incoherent bases
Theoretical results - Non-uniform recovery
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Lower bound on sampling complexity

Task 1: Find A ∈ Cm×N and recovery maps ∆ : Cm → CN such that ∆(Ax) = x for all
x ∈ CN s-sparse.

In general, we need m > 2s.

Task 2: Find A ∈ Cm×N and recovery maps ∆ : Cm → CN such that

‖x−∆(Ax)‖2 6 C
√
s
σs(x)1, ∀x ∈ CN .

In order for (A,∆) to be stable of order s, we need m > Cs ln(eN/s).
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Gelfand widths

Given K ⊂ X where X is a normed space, the Gelfand m-width are:

dm(K,X)
def.
= inf

{
sup

x∈K∩Lm
‖x‖ ; Lm ⊂ X, codim(Lm) 6 m

}

[Kashin ’77, Garnaev & Gluskin ’84] proved

dm(BN1 , `
N
2 ) � min

(
1,

√
ln(eN/m)

m

)
.

where BN1 is the `1 ball and `N2 is the N -dimensional vector space with norm ‖·‖2.

Consequence of dm(BN
1 , `N2 ) &

√
ln(eN/m)

m is m & s ln(eN/s).

If (A,∆) is stable of order s, then for v ∈ N (A) ∩BN1 , stable recovery of vS and vSc

respectively means:

‖−vS −∆(A(−vS))‖ 6 0 =⇒ −vS = ∆(A(−vS)) = ∆(AvSc )

‖vSc −∆(AvSc )‖ 6 C
√
s
σs(vSc )1 6 C

√
s
‖v‖1 =⇒ ‖v‖2 6 C

√
s

So, we have dm(BN1 , `
n
2 ) 6 C/

√
s which implies that m & s ln(eN/m).
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Null space property

Note that x uniquely minimises

min
z
‖z‖1 subject to Az = Ax

if and only if Fx ∩ Bx = {x} where Fx
def.
= {z ; Az = Ax} and Bx

def.
=
{
z ; ‖z‖1 6 ‖x‖1

}
x

Null space property

A ∈ Cm×N is said to satisfy the NSP relative to a set S ⊂ [N ] if

‖vS‖1 < ‖vSc‖1 , ∀v ∈ N (A) \ {0}

It is said to satisfy the NSP of order s if this holds for all S ⊂ [N ] with |S| 6 s.
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Null space property

Theorem

Given A ∈ Cm×N , every x ∈ CN supported on S ⊂ [N ] is the unique solution to (BP) if and
only if A satisfies the NSP relative to set S.

Spe. Ax∗ = Ax, x∗ 6= x, ‖x∗‖1 6 ‖x‖1

x

x∗

v

vSc

vS

v
def.
= x∗ − x ∈ N (A) \ {0} satisfies:

‖vSc‖1 =
∥∥x∗Sc

∥∥
1

=
∥∥x∗Sc

∥∥
1
− ‖x‖1 +

∥∥x− x∗S + x∗S
∥∥

1

6
∥∥x∗Sc

∥∥
1
− ‖x‖1 + ‖vS‖1 +

∥∥x∗S∥∥1
6 ‖vS‖1

Spe. ∃v ∈ N (A)\{0} s.t. ‖vS‖1 > ‖vSc‖1

vS

−vSc

v

Let x
def.
= vS . Then, AvS = −AvSc but x

is not the unique solution to (BP).

Fx = {z ; Az = Ax} is the dotted red line.
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Robust and stable recovery

Let y = Ax+ e with ‖e‖ 6 η. What conditions should we impose on A such that

∆η
BP (y)

def.
= argmin ‖z‖1 subject to ‖Az − y‖2 6 η.

satisfies
∥∥x−∆η

BP (y)
∥∥

2
6 C√

s
σs(x)1 +Dη for some C,D > 0?

Robust null space property

We say that A satisfies the robust NSP with constant ρ, τ > 0 if

‖vS‖2 6 ρ
√
s
‖vSc‖1 + τ ‖Av‖2 , ∀v ∈ CN .

robust NSP with ρ < 1 implies the NSP.

If A satisfies the robust NSP with ρ < 1, then this is sufficient for robust and stable
recovery.

If we have stable and robust recovery, then setting x
def.
= v ∈ CN , e = −Av and

η = ‖Av‖2, we have ∆η
BP (Ax+ e) = 0 and ‖v‖2 6 C√

s
σs(v)1 +D ‖Av‖2 . So, this

condition is necessary.
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The restricted isometry property

This is one way to assess the quality of the matrix A for recovering s-sparse vectors.

The RIP

The sth restricted isometry constant δs of a matrix A is the smallest δ > 0 such that

(1− δ) ‖x‖22 6 ‖Ax‖22 6 (1 + δ) ‖x‖22 ,

for all s-sparse vectors x ∈ CN .

δs = max|S|6s
∥∥A∗SAS − Id

∥∥.

All singular values of AS are restricted to [1− δs, 1 + δs].

Theorem (RIP =⇒ robust NSP =⇒ robust and stable recovery)

If δ2s <
1√
2

, then A satisfies the robust NSP of order s with ρ ∈ (0, 1) and τ > 0 dependent

only on δ2s. So, the RIP implies that
∥∥x−∆η

BP (Ax+ e)
∥∥

2
6 C√

s
σs(x)1 +Dη for some

C,D > 0 which depend only on δ2s.
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Random Gaussian matrices [Mendelson et al ’09, Baraniuk et al ’08]

Theorem

Let A ∈ Rm×N with entries as iid N (0, 1). Let Ã = 1√
m
A. Then, provided that

m > Cδ−2s ln(eN/s), wp > 1− 2 exp
(
−mδ

2

128

)
, Ã has RIP constant δs 6 δ.
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Theorem

Let A ∈ Rm×N with entries as iid N (0, 1). Let Ã = 1√
m
A. Then, provided that

m > Cδ−2s ln(eN/s), wp > 1− 2 exp
(
−mδ

2

128

)
, Ã has RIP constant δs 6 δ.

Step 1, Concentration inequality: For fixed x ∈ RN and t > 0,

P
(∣∣∣∣∥∥∥Ãx∥∥∥2

2
− ‖x‖22

∣∣∣∣ > t ‖x‖22

)
6 2 exp

(
−
mt2

16

)
.

Note that (Ãx)i = 1√
m

∑N
j=1 Aijxj =

‖x‖2√
m
gi where gi = N (0, 1).

P
(∥∥∥Ãx∥∥∥2

> (1 + t)

)
= P

(
1
m

∑
i g

2
i > (1 + t)

)
= P

(
exp

(
u
∑
i g

2
i

)
> exp (um(1 + t))

)
By Markov’s inequality ∗, this is upper bounded by

E
(
exp

(
u
∑
i g

2
i

))
exp (um(1 + t))

=︸︷︷︸
indep.

m∏
i=1

E
(
exp

(
ug2
i

))
exp (u(1 + t))

=︸︷︷︸
moment gen. fn.†

(
1/
√

1− 2u

exp(u(1 + t))

)m

Choosing u = t/8 < 1/4, this is exponentially decaying in t, in particular, upper
bounded by exp(−mt2/16).

∗P(|X| > t) 6 E |X| /t
†For a < 1/2, E[exp(ag2)] = 1√

1−2a
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Random Gaussian matrices [Mendelson et al ’09, Baraniuk et al ’08]

Theorem

Let A ∈ Rm×N with entries as iid N (0, 1). Let Ã = 1√
m
A. Then, provided that

m > Cδ−2s ln(eN/s), wp > 1− 2 exp
(
−mδ

2

128

)
, Ã has RIP constant δs 6 δ.

Step 2: Fix S ⊂ [N ] with |S| = s. Then
∥∥∥Ã∗SÃS − Id

∥∥∥ 6 δ whp.

The unit sphere of Rs can be covered by n 6 (1 + 2/ρ)s balls of radius ρ.

Let ΣS
def.
=
{
z ∈ RN ; Supp(z) ⊆ S

}
. There exists `2 normalised u1, . . . , un ∈ ΣS ,

n 6 (1 + 2/ρ)s s.t. for all x ∈ ΣS with ‖x‖ = 1, there exists k s.t. ‖x− uk‖ 6 ρ.

Let B
def.
= Ã∗SÃS − Id.

P(∃k ∈ [n], |〈Buk, uk〉| > t) = P(∃k ∈ [n],

∣∣∣∣∥∥∥Ãuk∥∥∥2

2
− ‖uk‖22

∣∣∣∣ > t)

6 2n exp

(
−
mt2

16

)
6 2(1 + 2/ρ)s exp

(
−
mt2

16

)
= 2 exp

(
ln(9)s−

mδ2

64

)
def.
= ε.

if ρ = 1/4 and t = δ/2.

This means that w.p. 1− ε, ‖B‖ 6 δ:

|〈Bx, x〉| = |〈Buk, uk〉+ 〈B(x+ uk), (x− uk)〉| 6 δ

2
+ ‖B‖ ‖x+ uk‖ ‖x− uk‖

6 δ

2
+ 2ρ ‖B‖ =

δ

2
+

1

2
‖B‖ .
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m > Cδ−2s ln(eN/s), wp > 1− 2 exp
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−mδ

2

128

)
, Ã has RIP constant δs 6 δ.

Step 3, Union bound: There are
(N
s

)
6 (eN/s)s subsets of size s in [N ]. Therefore,

P(δs > δ) = P
(∥∥∥Ã∗SÃS − Id

∥∥∥ > δ for some S ⊂ [N ], |S| = s
)

6 2(eN/s)s exp

(
ln(9)s−

mδ2

64

)
6 2 exp

(
−
mδ2

128

)
provided that ln(9e)s ln(eN/s) 6 mδ2/128, i.e. m > Cδ−2s ln(eN/s).
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Remarks:

Similar result of random Bernoulli matrices.

Let U ∈ RN×N be unitary. Then, δs(ÃU∗) 6 δ with the same probability, since given

any x ∈ CN , let x′
def.
= U∗x:

P
(∣∣∣∣∥∥∥ÃU∗x∥∥∥2

2
− ‖x‖2

∣∣∣∣ > t ‖x‖22

)
= P

(∣∣∣∣∥∥∥Ãx′∥∥∥2

2
−
∥∥x′∥∥2

∣∣∣∣ > t
∥∥x′∥∥2

2

)
6 2 exp

(
−mt2

16

)
.
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Summary

Compressed sensing allows for the recovery of s-sparse vectors x ∈ CN from randomised
linear measurements Ax ∈ Cm with m� N via `1-minimisation.

To guarantee the stable recovery of s-sparse signals, we need at least
m = O(s log(N/s)) measurements (for any method).

the NSP is a necessary and sufficient condition for the recovery of s-sparse signals.

the robust NSP is a sufficient (and almost necessary) condition for the stable and
robust recovery of s-sparse signals.

if a matrix has sufficiently small RIP constant δs, then it satisfies the robust-NSP.

random Gaussian/random Bernoulli matrices satisfy the RIP with m = O(s log(N/s)).
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Setup

Suppose that V = [v1| · · · |vN ] ∈ CN×N and W = [w1| · · · |wN ] ∈ CN×N are unitary
matrices. Let z ∈ CN be the signal of interest.

Observe 〈z, wj〉 for j ∈ Ω where Ω ⊆ [N ] is a randomly chosen set of indices.

z is s-sparse in V , that is, z = V x where x ∈ Σs.

Therefore, we want to recover x from

y = PΩUx, where U = W ∗V.

Definition

The coherence of V and W is µ
def.
= maxk,` |〈v`, wk〉|. In the following, let K

def.
=
√
Nµ.

Clearly, µ 6 1, and since W and V are unitary, we have

1 = ‖wk‖2 =

N∑
`=1

|〈wk, v`〉|2 6 Nµ2

so µ > 1√
N

. When µ = 1√
N

, we say that V and W are maximally incoherent. So,

µ ∈ [
1
√
N
, 1] and K ∈ [1,

√
N ]
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Examples

The Fourier transform W = 1√
N

(
ei2π(`−1)(k−1)/N

)N
k,`=1

is maximally incoherent with

the canonical basis V = IdN , with µ = 1√
N

.

The Hadamard transform is maximally incoherence with the canonical basis, where the

Hadamard transform is H
def.
= Hn ∈ R2n×2n

is defined recursively by

Hn =
1
√

2

(
Hn−1 Hn−1

Hn−1 −Hn−1

)
, H0 = 1.

It can be computed in O(N log(N)) time and is useful in modelling systems where there
are ‘on/off’ measurements, such as the single-pixel camera, or Fluorescence microscopy.

The Haar wavelet basis is maximally incoherent with the noiselet basis.

Any basis is maximally coherent with itself, as µ = 1.

Uniform recovery guarantee

If

m
def.
= |Ω| & K2δ−2s ln4(N),

then
√
N
m
U satisfies δs 6 δ with probability at least 1−N− ln3(N). This guarantees uniform

recovery of all s-sparse vectors.

Note that log(N)4 is not so small... for N = 1000, log(N) ≈ 6.9 but log4(N) > 2N !.
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Uniform vs nonuniform guarantees

So far, we have seen that NSP, robust NSP, RIP guarantee recovery of all s-sparse vectors.
In particular, we have seen the following uniform recovery guarantee:

P (∀x ∈ Σs, ∆BP (Ax+ e) recovers x) > 1− ε

However, we could ask for a weaker statement: given one vector x ∈ Σs, show that

P (∆BP (Ax+ e) recovers x) > 1− ε

In this section, we shall derive nonuniform recovery statements when m & K2s ln(N).

Remark

Recall that stable recovery requires m & s ln(N/s), and random Gaussian matrices achieve
this optimal rate.
However, one can show that for subsampled orthonormal systems, if we want

‖∆BP (x)− x‖1 . σs(x)1

to hold for all vectors x, then necessarily, m & s ln(N).
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Non-universal recovery and dual certificates

RIP and NSP are concerned with the recovery of all s-sparse vectors or all vectors supported
on some S ⊂ [N ]. What if we are only interested in the recovery of one vector x?

Theorem

Given A ∈ Cm×N , x ∈ CN with support S is the unique minimiser of BP with y = Ax if
either

(a) |〈sign(x)S , v〉| < ‖vSc‖1 for all v ∈ N (A) \ {0},
(b) AS is injective and ∃h ∈ Cm s.t.

(A∗h)S = sign(xS) and ‖(A∗h)Sc‖∞ < 1

(a) and (b) are equivalent.

The null space property relative to S implies (a).

A∗h is called a dual certificate.

The converse is also true in the real setting, but false in general.
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Dual certificates guarantee robust and stable recovery

Theorem (Dual certificate)

Suppose that a

‖A∗SAS − Id‖ 6 1

2
and max

`∈Sc

∥∥A∗SA{`}∥∥2
6 1,

and there exists u = A∗h such that

uS = sign(xS) and ‖uSc‖∞ 6 1

2
and ‖h‖2 6 2

√
s.

Then any minimizer x∗ to minz ‖z‖1 subject to ‖Az − y‖2 6 η where y = Ax+ e with
‖e‖ 6 η satisfies

‖x− x∗‖2 . σs(x)1 +
√
sη.

aFor simplicity, I have made constants in the upper bounds explicit here.
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Application to our problem

Our aim: recover x from y = PΩUx+ e, where U is a unitary matrix and Ω
def.
= {k`}m`=1 are

chosen iid unif. rand.

Let A
def.
=
√
N
m
PΩU . Then E[A∗A] = Id and E[A∗SASc ] = 0:

E[(A∗A)i,j ] =
N

m

m∑
`=1

E[U∗i,k`Uk`,j ] =
N

m

m∑
`=1

N∑
k=1

1

N
U∗i,kUk,j = (U∗U)i,j = δij .

Key question: How large does m need to be such that with probability at least 1− ρ,∥∥A∗SAS − Id
∥∥ 6 1

2
and max`∈Sc

∥∥A∗SA{`}∥∥2
6 1,

there exists u = A∗h such that

uS = sign(xS) and ‖uSc‖∞ 6 1

2
and ‖h‖2 6 2

√
s.

Let η > ‖e‖. This would guarantee that any solution x̃ to

min ‖z‖1 subject to ‖PΩUz − y‖ 6 η

satisfies
‖x̃− x‖2 . σs(x)1 +

√
sη.
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= {k`}m`=1 are

chosen iid unif. rand.

Let A
def.
=
√
N
m
PΩU . Then E[A∗A] = Id and E[A∗SASc ] = 0:

E[(A∗A)i,j ] =
N

m

m∑
`=1

E[U∗i,k`Uk`,j ] =
N

m

m∑
`=1

N∑
k=1

1

N
U∗i,kUk,j = (U∗U)i,j = δij .

Key question: How large does m need to be such that with probability at least 1− ρ,∥∥A∗SAS − Id
∥∥ 6 1

2
and max`∈Sc

∥∥A∗SA{`}∥∥2
6 1,

there exists u = A∗h such that

uS = sign(xS) and ‖uSc‖∞ 6 1

2
and ‖h‖2 6 2

√
s.

Let η > ‖e‖. This would guarantee that any solution x̃ to
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sη.
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Existence of dual certificates

A natural candidate of a certificate is the Fuchs certificate:

u = A∗AS(A∗SAS)−1 sign(xS).

Note that uS = sign(xS) and we simply need to check that |uSc | < 1. Therefore,

we simply need to control A∗ScAS and (A∗SAS)−1.

NB: E[A∗ScAS ] = 0 and E[A∗SAS ] = Id.

Probabilistic bounds (proved using Bernstein concentration inequalities).
With probability at least 1− ε,
(I)

∥∥A∗SAS − Id
∥∥ 6 δ if m & K2δ−2s ln(2sε−1).

(II) maxj∈Sc

∥∥A∗Saj∥∥ 6 t if m & K2 max
(
ln2(Nε−1), st−2

)
.

(III) maxj∈Sc

∣∣〈sign(xS), A∗Saj〉
∣∣ 6 r if m & K2sr−2 ln(Nε−1).
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∣∣〈sign(xS), A∗Saj〉
∣∣ 6 r if m & K2sr−2 ln(Nε−1). ∗

∗(III) comes from the stronger result “For a fixed vector v, with probability at least 1− δ,
maxj∈Sc |〈v, A∗Saj〉| 6

r‖v‖√
s

if m & K2sr−2 ln(Nε−1)”
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Naive approaches

To control uj = (A∗AS(A∗SAS)−1 sign(xS))j for j 6∈ S...

Naive approach:

|uj | =
∣∣〈(A∗SAS)−1A∗Saj , sign(xS)〉

∣∣ 6 ‖A∗Saj‖∥∥(A∗SAS)−1
∥∥√s < 1

if
∥∥(A∗SAS)−1

∥∥ < 2 and
∥∥A∗Saj∥∥ < 1

2
√
s

for all j ∈ Sc.

This holds with probability at least ε if

m & K2 max
(
s ln(2s/ε), ln2(N/ε), s2

)
.

Slightly less naive approach:

|uj | =
∣∣〈(A∗SAS)−1A∗Saj , sign(xS)〉

∣∣
6
∣∣〈((A∗SAS)−1 − Id

)
A∗Saj , sign(xS)〉

∣∣+ |〈A∗Saj , sign(xS)〉|

6
∥∥(A∗SAS)−1 − Id

∥∥︸ ︷︷ ︸
< 1√

2
√

s

‖A∗Saj‖︸ ︷︷ ︸
< 1√

2
√

s

√
s+ |〈A∗Saj , sign(xS)〉|︸ ︷︷ ︸

< 1
2

< 1

holds provided that

m & K2 max
(
s3/2 ln(s/ε), s ln(N/ε), ln2(N/ε)

)
.
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Optimal number of samples via random signs [Candès & Romberg ’07, Tropp ’08]

Lemma (Hoeffding’s inequality)

Given v ∈ Cs, if α > ‖v‖ and σ is a Rademacher sequence,

P(〈v, σ〉 > w) 6 2 exp
(
−w2/(2α2)

)
.

We already know that w.p. at least 1− ε′, if m & K2 max
(
s ln(2s/ε′), ln2(N/ε′), s

t2

)
, then

vj
def.
= (A∗SAS)−1A∗Saj satisfies

‖vj‖2 6
∥∥(A∗SAS)−1

∥∥2 ‖A∗aj‖2 6 t2

(1− δ)2
= 2t2

def.
= α2.

Assume that sign(xS) is a Rademacher sequence and recall that |uj | = |〈vj , sign(xS)〉|.

P(∃j ∈ Sc, |uj | >
1

2
) 6 NP(|uj | >

1

2
| ‖vj‖ 6 α) + P (∃j ∈ Sc ‖vj‖ > α)

6 N exp
(
−1/(16t2)

)
+ ε′ 6 ε,

if ε′ = ε/2 and t2 = (16 ln(2N/ε))−1.

i.e. P(∃j ∈ Sc, |uj | > 1) 6 ε provided that

m & K2 max
(
s ln(N/ε), ln2(N/ε)

)
.
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Recovery statement

Let U be an unitary matrix, µ
def.
= maxk,j

∣∣Uk,j∣∣ and K
def.
=
√
Nµ. We want to recover

x ∈ CN from y = PΩUx+ e where Ω consists of m indices chosen uniformly at random.

We have so far shown:

Theorem

Suppose that sign(x) is a Rademacher sequence and m & K2 max
(
s ln(N/ε), ln2(N/ε)

)
.

Let η > ‖e‖. Then, with probability at least 1− ε, any solution x̃ to

min ‖z‖1 subject to ‖PΩUz − y‖ 6 η

satisfies
‖x̃− x‖2 . σs(x)1 +

√
sη.

The assumptions in red can be replaced by

m & K2s ln(N) ln(ε−1).

using the idea of inexact dual certificates and a golfing scheme dual certificate
construction (which constructs a different certificate to the Fuchs certificate).
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Optimal sampling complexity without the random signs assumption
Recall that

Theorem (Dual certificate)

Suppose that a

‖A∗SAS − Id‖ 6 1

2
and max

`∈Sc

∥∥A∗SA{`}∥∥2
6 1,

and there exists u = A∗h such that

uS = sign(xS) and ‖uSc‖∞ 6 1

2
and ‖h‖2 6 2

√
s.

Then any minimizer x∗ to ‖z‖1 subject to ‖Az − y‖2 6 η where y = Ax+ e with ‖e‖ 6 η
satisfies

‖x− x∗‖2 . σs(x)1 +
√
sη.

aFor simplicity, I have made constants in the upper bounds explicit here.

Proof: Inexact dual certificate implies dual certificate.

Let v
def.
= u+ ũ where ũ

def.
= A∗AS(A∗SAS)−1w and w = sign(xS)− uS .

Note that

‖ũSc‖∞ 6 ‖A∗ScAS‖2→∞
∥∥(A∗SAS)−1

∥∥
2→2
‖w‖2 6 1

4
.

Therefore, vS = uS + wS = sign(xS) and ‖vSc‖∞ 6 ‖uSc‖∞ + ‖ũSc‖∞ 6 1
2

.
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Optimal sampling complexity without the random signs assumption

Theorem (Inexact Dual certificate)
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√
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Golfing Scheme [Gross ’11, Candès & Plan ’11]

The golfing scheme shows that with probability at least 1− ε, there exists an inexact dual
certificate when m & K2s log(N/ε).

First observe that the Fuchs precertificate is

u = A∗AS(A∗SAS)−1 sign(xS) =
∞∑
n=1

A∗AS (Id−A∗SAS)n−1 sign(xS)

=
∞∑
n=1

A∗ASwn−1, where wn
def.
= (Id−A∗SAS)wn−1, w0 = sign(xS).

Recall that A =
√
N
m
PΩU , where Ω = {k`}m`=1. Partition into L subsets Ω =

⋃L
`=1 Ω`, where

Ω` consists of m` indices. Define A(`) def.
=
√

N
m`

PΩ`
U .

Consider the function

ũ(L) def.
=

L∑
`=1

(A(`))∗A
(`)
S w̃`−1

where w̃`
def.
= (Id− (A

(`)
S )∗A

(`)
S )w̃`−1, w̃0 = sign(xS).

We still have ũ(L) ∈ Im(A∗). The idea is that we have now decoupled the randomness.
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ũ(L) def.
=

L∑
`=1

(A(`))∗A
(`)
S w̃`−1

where w̃`
def.
= (Id− (A

(`)
S )∗A

(`)
S )w̃`−1, w̃0 = sign(xS).
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We still have ũ(L) ∈ Im(A∗). The idea is that we have now decoupled the randomness.

31 / 34



Golfing Scheme
We have

w̃(`) = sign(xS)− ũ(`)
S .

If

(I)
∥∥∥(Id− (A

(`)
S )∗A

(`)
S

)
w̃`−1

∥∥∥
2
6 r` ‖w̃`−1‖2

(II)
∥∥∥(A

(`)
Sc )∗A

(`)
S w̃`−1

∥∥∥
∞

6 t√̀
s
‖w̃`−1‖2,

then ∥∥∥sign(xS)− ũ(L)
S

∥∥∥ 6
∥∥∥w̃(L)

∥∥∥ 6
√
s
L∏
n=1

rn

∥∥∥ũ(L)
Sc

∥∥∥
∞

6
L∑
`=1

∥∥∥(A
(`)
Sc )∗A

(`)
S w̃`−1

∥∥∥
∞

6
L∑
`=1

t`√
s

∥∥∥w̃(`−1)
∥∥∥

2
6

L∑
`=1

t`

`−1∏
j=1

rj .

The idea is that by choosing r`, t` and L appropriately, one is guaranteed an inexact
dual certificate with probability at least 1− ε when

m =
∑
`

m` & K2s
(
ln(N) ln(ε−1) + ln(s) ln(sε−1)

)
.

A slightly more refined argument where one is allowed to ‘make mistakes’ by choosing L
slightly larger and throwing away the draws which violate (I) and (II) gives the optimal
sampling complexity m & K2s ln(N) ln(ε−1).

32 / 34



Golfing Scheme
We have

w̃(`) = sign(xS)− ũ(`)
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ln(N) ln(ε−1) + ln(s) ln(sε−1)

)
.

A slightly more refined argument where one is allowed to ‘make mistakes’ by choosing L
slightly larger and throwing away the draws which violate (I) and (II) gives the optimal
sampling complexity m & K2s ln(N) ln(ε−1).
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Golfing Scheme
We have

w̃(`) = sign(xS)− ũ(`)
S .

If
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∥∥∥
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6

L∑
`=1
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rj .

The idea is that by choosing r`, t` and L appropriately, one is guaranteed an inexact
dual certificate with probability at least 1− ε when

m =
∑
`

m` & K2s
(
ln(N) ln(ε−1) + ln(s) ln(sε−1)

)
.

A slightly more refined argument where one is allowed to ‘make mistakes’ by choosing L
slightly larger and throwing away the draws which violate (I) and (II) gives the optimal
sampling complexity m & K2s ln(N) ln(ε−1).
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Summary
Compressed sensing allows for the recovery of s-sparse vectors x ∈ CN from randomised linear
measurements Ax ∈ Cm with m� N via `1-minimisation.

To guarantee the stable recovery of s-sparse signals, we need at least m = O(s log(N/s))
measurements (for any method).

the NSP is a necessary and sufficient condition for the recovery of s-sparse signals.

the robust NSP is an almost necessary and sufficient condition for the stable and robust
recovery of s-sparse signals.

if a matrix has sufficiently small RIP constant δs, then it satisfies the robust-NSP.

random Gaussian/random Bernoulli matrices satisfy the RIP with m = O(s log(N/s)).

We considered the recovery of x from PΩW
∗V x, with K =

√
N ·maxi,j |〈vj , wi〉|.

NSP, robust NSP and RIP are conditions for uniform recovery. They can be hard to
establish. For non-uniform recovery results, we look to the construction of dual
certificates.

A dual certificate is an element of Im(A∗) which interpolates sign(x0) exactly.

The Fuchs certificate A∗AS(A∗SAS)−1 sign(x0) is a natural candidate for a dual
certificate. We can prove that this is indeed a dual certificate provided that sign(x0) is
a Rademacher sequence when m = O(sK2 log(N)).

The golfing scheme provides another construction of a dual certificate, and allows us to
remove the random signs assumption while retaining the optimal sampling complexity.
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Sources

“A Mathematical Introduction to Compressive Sensing” by Simon Foucart & Holger
Rauhut.

“Flavors of Compressive Sensing” by Simon Foucart.
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