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Recovery statement

We have so far shown:

Theorem

Let x ∈ CN and suppose we observe y = PΩUx+ e whre

U be an unitary matrix,

Ω consists of m indices chosen uniformly at random.

‖e‖ 6 η.

Suppose that
m & K2s ln(N) ln(ε−1),

where K
def.
=
√
Nµ and µ

def.
= maxk,j

∣∣Uk,j∣∣ is the coherence of U .
Then, with probability at least 1− ε, any solution x̃ to

min ‖z‖1 subject to ‖PΩUz − y‖ 6 η

satisfies
‖x̃− x‖2 . σs(x)1 +

√
sη.

Accurate recovery guaranteed provided that

U is incoherent, that is µ = 1,

x is s-sparse (or approximately s-sparse),

We observe m = O(s log(N)) samples uniformly at random.
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Compressed sensing in action

Applications: Magnetic Resonance Imaging (MRI), X-ray Computed Tomography,
Electron Microscopy, Seismology, Radio interferometry,....

Mathematically: We observe samples of the Fourier transform, and typical images are
sparse in wavelets.

CS approach: Solve

min
z∈CN2

‖U∗z‖1 subject to
∥∥∥PΩUdfz − PΩf̂

∥∥∥
2
6 δ

where Udf is the discrete Fourier transform, and U∗ is some sparsifying transform (e.g.
wavelets).
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Compressed sensing in action

If U∗ is a discrete wavelet transform, then µ(UdfU
−1
∗ ) = 1 so K =

√
N , so

K2 · s · log(N) log(ε−1 + 1) > N !

Also, uniform random sampling does not work.

Original Ω Rec. Wavelet Rec. TV

Test phantom constructed by Guerquin-Kern, Lejeune, Pruessmann, Unser, 2012
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∗ ) = 1 so K =

√
N , so

K2 · s · log(N) log(ε−1 + 1) > N !

Also, uniform random sampling does not work.

Original Ω Rec. Wavelet Rec. TV

Lustig, Donoho & Pauli ’07, Lustig et al. ’08: Sample more densely at low Fourier
frequencies and less at higher Fourier frequencies. Why?

Test phantom constructed by Guerquin-Kern, Lejeune, Pruessmann, Unser, 2012
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Outline

1 Asymptotic incoherence

2 Sparsity structure

3 The recovery statement
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The coherence barrier

For essentially any wavelet basis {ϕj}j∈N, if Udw,N is its discrete wavelet transform and
Udf,N is the discrete Fourier transform, then

Udf,NU
−1
dw,N

WOT−−−−→ U, N →∞

where {ψj}j∈N = {e2πik·}k∈Z,

U =

 〈ϕ1, ψ1〉 〈ϕ2, ψ1〉 · · ·
〈ϕ1, ψ2〉 〈ϕ2, ψ2〉 · · ·

...
...

. . .

 , µ(U) > c.

Any systems arising from the discretization of continuous problems will always run into the
coherence barrier.
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Asymptotic incoherence

If U is the Fourier-wavelets matrix, then

µ(P⊥NU), µ(UP⊥N ) = O
(
N−1

)
.

Fourier to DB4 Fourier to Legendre polynomials

Notation: PNx = (x1, · · · , xN , 0, 0, · · · ) and P⊥N x = (0, · · · , 0, xN+1, xN+2, · · · )
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Local coherence

Instead of coherence, divide U into rectangular blocks using N = (Nj)
r
j=1,M = (Mj)

r
j=1,

and consider local coherence

µN,M(k, l) = µ(P
Nk
Nk−1

UP
Ml
Ml−1

).

where Pmn α = (. . . , 0, αn+1, αn+2, . . . , αm, 0 . . .).

Implication of asymptotic incoherence: sample more at low Fourier frequencies where
the local coherence is high and less at higher Fourier frequencies.
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Sparsity and the flip test

In standard CS, the only signal structure considered is sparsity and RIP based results
consider the recovery of all s-sparse signals using one Ω. In contrast, the flip test will
demonstrate that we must look beyond sparsity.

Consider the reconstruction of x from PΩUdfx by solving

min ‖z‖1 subject to PΩUdfU
−1
dw z = PΩUdfx.

Ω x Reconstruction
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The flip test

Let α be the wavelet coefficients of x.

α αflip
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Let αflip = (αN , . . . , α1) and xflip = U−1
dwα

flip.
If it is enough to consider sparsity when choosing Ω, then for the same Ω,

α̃f ∈ arg min
z
‖z‖1 subject to PΩUdfU

−1
dw z = PΩUdfx

flip,

would yield

α̃f ≈ αflip =⇒ α̃flipf ≈ α

x̂ = U−1
dw α̃

flip
f ≈ x = U−1

dwα
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The flip test

Ω Standard Reconstruction from
reconstruction flipped coefficients

We can repeat this test for different images, different sampling patterns, or even the
sparsifying transform to that of *-lets or total variation,

min
z∈CN2

‖z‖TV subject to PΩUdfz = PΩUdfx

... and observe that the optimal choice of Ω cannot depend on sparsity alone.
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The flip test

Ω Image 1 Image 2
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We can repeat this test for different images, different sampling patterns, or even different
sparsifying transforms such as *-lets or total variation,

min
z∈CN2

‖z‖TV subject to PΩUdfz = PΩUdfx

... and observe that the optimal choice of Ω cannot depend on sparsity alone.
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The flip test

Ω Image 1 Image 2
reconstruction reconstruction
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We can repeat this test for different images, different sampling patterns, or even the
sparsifying transform to that of *-lets or total variation,

min
z∈CN2

‖z‖TV subject to PΩUdfz = PΩUdfx

The optimal choice of Ω cannot depend on sparsity alone.
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Remark on the RIP

The flip test demonstrated that Ω cannot depend on sparsity alone, and in fact, the RIP is
absent.

This is in contrast to random Gaussian measurements are insensitive to sparsity structure:

Standard Reconstruction from
reconstruction flipped coefficients
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Asymptotic sparsity

Natural images are not just sparse, but asymptotically sparse.

Given ε ∈ (0, 1) and

f =
∑
j∈N

αjϕj .

we define the number of significant wavelet coefficients of f in the kth scale as

sk(ε) = min{n :

∥∥∥∥∥∥
n∑
j=1

απ(j)ϕπ(j)

∥∥∥∥∥∥
2

> ε

∥∥∥∥∥∥
Mk∑

j=1+Mk−1

αjϕj

∥∥∥∥∥∥
2

}

where the {Mk−1 + 1, . . . ,Mk} be indices corresponding to the kth scale and π is a
permutation of the indices in {Mk−1 + 1, . . . ,Mk} such that∣∣απ(1)

∣∣ > ∣∣απ(2)

∣∣ > ∣∣απ(3)

∣∣ > . . ..
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Asymptotic sparsity
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sk(ε)

Mk −Mk−1
→ 0, k →∞

Variable density sampling patterns work because they exploit this additional structure.
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Sparsity in levels

For M = (Mj)
r
j=1 ∈ Nr, s = (sj)

r
j=1 ∈ Nr with 0 = M0 < M1 < . . . < Mr = N , α ∈ CN is

(s,M)-sparse if
|{j : αj 6= 0} ∩ {Mk−1 + 1, . . . ,Mk}| = sk.
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Multi-level sampling scheme

Let r ∈ N, N = {Nk}rk=1 ∈ Nr, m = {mk}rk=1 ∈ Nr be such that

0 = N0 < N1 < · · · < Nr = N, mk 6 Nk −Nk−1.

Ω = Ω1 ∪ · · · ∪ Ωr is an (N,m)-sampling scheme if Ωk consists of mk indices drawn
uniformly at random from {Nk−1 + 1, . . . , Nk}.

Q: Let U ∈ B(`2(N)) be an isometry. If x is approximately (s,M)-sparse

σs,M(α) = inf
z is (s,M)-sparse

‖z − α‖1 � 1.

then how should N and m be chosen so as to guarantee robust and stable recovery of x by
solving

inf
z∈CN

‖z‖1 subject to ‖PΩUx− PΩUz‖2 6 δ?
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Recovery result

Let ε ∈ (0, e−1] and x be approximately (s,M)-sparse. Suppose that Ω = ΩN,m satisfies the
following.

(ii) mk & (Nk −Nk−1) ·
(∑r

l=1 µN,M(k, l) · sl
)
· log(sε−1) · log (N),

(iii) mk & m̂k · log(sε−1) · log (N), where m̂k satisfies

1 &
r∑
k=1

(
Nk −Nk−1

m̂k
− 1

)
· µN,M(k, l) · s̃k.

Then, with probability exceeding 1− ε, any minimizer x̂ satisfies

‖x̂− x‖2 . δ ·
(

1 +

√
log2 (ε−1)

log2(N)

)
·
√
s+ σs,M(x).
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Recovery of wavelet coefficients from partial Fourier data

{Nk}rk=1 and {Mk}rk=1 correspond to wavelet scales.

The mother wavelet Ψ has v vanishing moments.

There exists α > 1, C > 0 such that
∣∣∣Ψ̂(ξ)

∣∣∣ 6 C
(1+|ξ|)α for all ξ ∈ R.

It suffices that

mk & L ·

ŝk +

k−2∑
l=1

sj · 2−(α− 1
2

)(k−l) +
r∑

l=k+2

sl · 2−v(l−k)


where ŝk = max{sk−1, sk, sk+1} and L = log(sε−1) · log (N)

NB: m1 + . . .+mr & L · (s1 + . . .+ sr).
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Resolution Dependence (5% samples, varying resolution)

Asymptotic sparsity and asymptotic incoherence are only witnessed when N is large. Thus,
V. D. sampling only reaps their benefits for large values of N and the success of compressed
sensing is resolution dependent.

256x256

Error:

19.86%

512x512

Error:

10.69%

24 / 30



Resolution Dependence (5% samples, varying resolution)

1024x1024

Error:

7.35%

2048x2048

Error:

4.87%

4096x4096

Error:

3.06%
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Recovering Fine Details

At finer wavelet scales, the presence of sparsity and incoherence with Fourier samples allows
us to subsample. Thus, compressed sensing allows one to enhance fine details without
increasing the number of samples.

In the next example, consider the reconstruction of a 2048× 2048 test phantom with details
added at the finest wavelet scale.
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Recovering Fine Details

Figure: 2048× 2048 linear reconstruction from the first 512× 512 Fourier samples (6.25%)
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Recovering Fine Details

Figure: 2048× 2048 reconstruction from a multilevel scheme using 512× 512 Fourier samples
(6.25%)
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Summary

There are many real world problems where there is no incoherence or RIP.

The case of wavelet sparsity and Fourier measurements in interesting for many imaging
applications and here, instead of incoherence and sparsity, we have asymptotic
incoherence and asymptotic sparsity.

Two key consequences:

(1) CS is resolution dependent.
(2) Successful recovery is signal dependent, thus, an understanding of the structure

imposed by the sparsifying transform can lead to optimal sampling patterns.

On a practical note, one should see compressed sensing in these situations as a means of
enhancing resolution ...
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