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Sparse Estimation

Recovering point wise sources from low resolution data

Let Z C R%andlet ¢ : & — F where # is a Hilbert space.
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Recoverg; € Rand x; € 2 given y = Z aip(x;)
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Radon measures

The space of Radon measures /() is the dual of

(RS
Co() = { fe C(X): f hascompact supportin & }

View u € A () as linear functional on Cy():

-For f& LY(X), define u by (¢, u) = ng(x)f(x)dx

For u = Z ajéxj , (P, u) = Z ¢(xj)aj
j J




Linear inverse problem

Consider a measure yon 2 C | d Observe linear measurements:
' : : Define: @y = J ¢p(x)du(x)
: 5 : x
o Mg,z b(x) € H where p : L — H
\)
Hax = Z a’iéxi’ a; €R, x e Observe: y = ®u + noise

/\ / /\ P NB: Dy, , = i a; P(x;)

T N i=1



Signal/image processing

Deconvolution: ' : Omyg, /\ /\

P(x) = ¢(- — x) € LA(R%
e.g. p(x) = exp(|x — - \2/0) /\

5'um  'Boulanger et,al. 2014]

Laplace:

P(x) = exp( — {(x, - ) € L*(RY)

Fourier:

p(x) = (exp(kxy/— 1)), , € CHH!



Quanttative MRI

: : Time series measurements at voxel v:
Time series data ¥ = (y")

yv — [)’19)72, °'°9yT]
Recover the NMR properties

\)

y = Z a; p(0;) = J¢(9)dﬂa,9(9)

=1

There can be more than 1 tissue type in

each image voxel (son > 1).

6 = T1/T2 representing tissue type
0 € X are parameters corresponding to different NMR properties.
®(60) = Block response of each tissue



Position/scale: (z,0) = (mean,std) € X = |
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Mixture models
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Density estimation with sketching

Given samples t,, f,, ..., t, iid from from density:
\)

: D) = ) af(x, 1) = | &x, du, (x)

j=1

[Gribonval et al 2017]

1 n
Sketch using functions g, : v, = — Z 80, (1), k € [m]
e

Goal: recover a,x from  y, ~ | g, (D&(1)dr = 2., (NEC, DAt dpg (x)
x
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Muldi-layer perceptro

For training data (%, y,),—;  n Ot f, (&) =Y,

Non-convex

min Z ‘fa,z,b(ti) — Y ‘2 ((z,t) + b) € R”
l

a;
; @,(Z,b)(t) e R

n

feo® = ) ap((z.1) + b)

a,z,b

l i=1
[fa,z,b(ti)]i = Ou = J ¢p(x)du(x)

Rd

Convex

: 2 ' ' Y
min Hy — (I)ﬂH P(x) = _p(<z, fi) +b)_i=1w.9N H = Z a; Oz, )
i=1

Linear operator

HEM ()




Total variation

A () is a Banach space with norm ||| 7

lillry =sup { | A0duo) : 7€ G Ml <1

f€ LN(X), du(x) = fo)dx == ||ull 7y = J\f(X) | dx

The extremal points of {u : ||u|l;y < 1} are {6, : x € X'}



The Beurling-Lasso

1
P,(y) int  Af|pu| v+—H<I>ﬂ yll*
HEM ()

Relaxation for any K: 1nf/12 \a | + —H 2 gb(x )a — sz > 1nf P,(y)
J=1 J=1

Fisher-Jerome (1973):

If ¢(x) € R™ with ¢ continuous, then there exists a solution to P,(y) with

at most m Diracs. -
| The relaxation is tight when K > m

[Beurling (1973)]
[De Castro and Fabrice (2012)]

Py(y) it |fullyy St Pu=y.

UeEM () [Candés and Fernandez-Granda (2012)]
[Duval and Peyré (2015).]




The Beurling-Lasso

|
P min A + —||Ddu — v|I?
162, e pll 7y 5 | Pp — |

The Lasso: Giveny = Xa, y € R™, X € R™" to recover a sparse vector a € |

|
min — || Xa — v||? + ||la
min ——{|Xa = yII” + llall

@ Optimisation is over the space of measures (not just Diracs) with no a-priori
choice on the number of spikes.

@ Ihis is a convex problem, with strong recovery guarantees.
® Some non-convex problems can be placed into this framework




Questions

® When is py = Z ajéxj an exact solution to (Py(y))?
J
® Are solutions to P,(y) stable to noise?

® Numerical algorithms in the infinite dimensional space?
® Under what conditions do we recover the exact number of spikes?

® Compressed sensing — if @ is a random operator, how many measurements to
recover?



Optimality conditions
p« € argmin, F(u) <= V() =0

But ||¢|| 7 is not differentiable. Need to consider its sub-differential.

Let ¥ : U — R be a convex function, its sub-differential is:

W) ={pe U : Va, Y@ = VW) + (p.i - )|




Optimality conditions

Equivalent characterization for ||| 7 olpllry ={f€CX): flle <1, {fop) = llpell7v)

e <1
For sparse measures: gl v = {f < (L) {Vi f(x;) = sign(a;)

]’ | r \
T I IANAWS \/\ [\ P
1 por= Y 5. . v e allu, i

\/ \/
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Optimality conditions

For convex problem min F(x), minimiser iff 0 € 0F(x)
X

1 |
i, € argmin Al|u|| ;v + =||®Pu —y||> € 0€dlyllry+ ICI)*(CI% - )
ueM(IX) 2

Hyx = Zal 5xi n e a”//ta,xHTV N, = — I(I)*((I)Il/tl — y) = @H,M/IHTV

R .

? \

i)

. — i — — — — — — — — — — —) c— —

The dual certificate i, certifies the support of y,



Convex duality

, 1 A
Primal: min_||ullzy + 5 11Pp = yII* Dual: ~ sup (p.y)—llpl* (D)
HEM(Z) 24 4P <1 2



Convex duality

A

p 1
. osup (p,y)—=lpll* = —=llp = y/AI* + =lIyllI°
Dual: o < 2 2 /

Projection onto convex set

® D,(y) is the projection onto a convex set. So, it has a unique solution.

® If # = R", optimise over finite vector space but with infinite constraints.

® There is strong duality. int P,(y) = sup D,(y)
® When 4 > 0, solutions to P,(y) and D,(y) exist.

The noiseless problem

Primal : min ||u|l;y s.t. Ou=y Dual: sup (P, )
HEM() |[D*pll <1

® When 4 = 0, only existence of solutions to Py(y) is guaranteed (unless # is finite).



Convex duality

U, solves (P,(y)) and p, solves (D,(y)) U, solves Py(y) and p, solves Dy (y)
1 _
®*p, € dllwllyy and p, = - I((Dﬂ,z — ) ©*py € dllpollry and Dpg = y

f p, = argmax D,(y) and 7, = ®*p, , then n, € J||, ||y means that
Supp(uy) C {x : |[n,(x0)| =1}

Solutions to Dy(®Pu,) can tell us about the structure of y, € min P,(®Puy + w)



Uniqueness

Theorem:

Ifp, = Z ajéxj and y = ®pu,  and there exists p such that
/o n = O@*p satisfies |n(x)| < 1 forallx & {x;}

® 1(x;) = sign(a;) for all i.

® (¢(x;)); are linearly independent. I

Then, Mo x is the unique solution to Py(y)

o

0.5

-05

. — i e — — — — — — — — — c—y — —

Proof: by the primal-dual relationships, any solution has support contained in {x;}

So, any two solutions take the form: y = Z a0, and fi = Z a0,
' i

l

We must have a; = a. since ®p = ®u and ¢(x;) are linearly independent.



Stability

Theorem [Azais De Castro & Gamboa (20195)]

Suppose we observe y = Ou,  +w with [|w] <e.

In addition to conditions of previous theorem, suppose 1 = ®*p satisfies
) 1n(xX)| <1 —o]lx — xl-Hz for all x € B(x;, 1)

i) |l n(x)| < 1—c, forallx & U B(x;, r)

Then, choosing 4 ~ €/||p||, any solution fi to P,(y) satisfies

Co a (%\UiB(xia r)) + sz I | x — X,-sz\ﬂ | (x) < €llpll

‘ l B(Xl',l") ‘

amplitudes outside neighbourhood of Cluster around true support
true support is small




Stability

Theorem [Azais De Castro & Gamboa (20195)]

Suppose we observe y = Ou,  +w with [|w] <e.
In addition to conditions of previous theorem, suppose 1 = ®*p satisfies
) 1n(xX)| <1 —o]lx — xl-Hz for all x € B(x;, 1)
i) |l n(x)| < 1—c, forallx & U B(x;, r)
Then, choosing 4 ~ €/||p||, any solution fi to P,(y) satisfies
ol AT (X\U;B(x;, 1)) + sz J [|x — X,-sz\ﬂ | (x) Sellpli

i B(xiar)

ml) WY A5 lADSelpl and  max|e-a] S elpl
J

A =14lBG,r) &= ABor)

If n € Im(D*) satisfies (i) and (ii), then we say that it is nondegenerate.



Candidate for a dual certificate
Define: L

NA(x) = uK(x;, x) + v.0,K(x;, x)
K(x, %) = (9(x1), P(x)) - ,zzl ,:21 1

Want: 7(x;) = sign(a}) and 7'(x)) =0 & 2nequations to solve for 2n

unknowns in u, v.

.

Computed n and check if |n(x)| < 1 forallx & {x;} .




Recovery under minimal separation

Candes and Fernandez-Granda (2012): Let ¢(x) = (exp(2zy/ — 1kx) ;< />
C

if min | x; — xj\ > —, then 7~ is non-degenerate. So, we have stable recovery.
i#] c

Necessary: If |x; — x,| < —thenu = 0, — 0, cannot be recovered by the Blasso

C



Recovery under minimal separation

What kind of minimum separation condition to impose for non-translation invariant kernel?
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P2

Fisher-Rao distance

Fisher metric: g, := 0,0,K(x,x") = [Vp(x)][ V()] € R?

1
Fisher-Rao geodesic distance: dg(x, x'):= 1nf J \/ (gy(t)y’(t), y'(¢))dt
0

Yy x—Xx'

Interpretation:

P T x — ¢(x) embeds X into the sphere in # and

P1 Y £ 1
4= inf | Ol
-9 b



Examples

Poon, Keriven and Peyre (2019): If min dg(xi, xj) > A k. then 7 is nondegenerate.

I7]

Gaussian

Fourier

Laplace

p(x) o exp( —|lx = -[|3)

PO = (expQay/ = 1k0) <

¢p(x) x exp(—x-)

g, =X

g =1l

Ex = dlag( 1 /xi)

dg(X, x) =[x =Xy

dg(x9 x) & follx =2,

4,6, x') = \/Z log(x) — log(x) |

A = 4/log(s)

A:V@¢E

A =d + log(ds)




\v / G/f\ - Summary

min_ Allul; V+—uc1>,4 sz <4 1an2 a| +—u Z¢<x>a —ylI?
H
t

To assess the recovery of m, .,

sup  {p,y) — Allpll®

|D*p]| <1 Findn = &*p € C(X) such that
n(x;) = sign(a;) and |n(x)| < 1forallx & {x;}
Provided that spikes are - Exact recovery in the noiseless setting

sufficiently separated: - Stable recovery in the noisy setting.
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