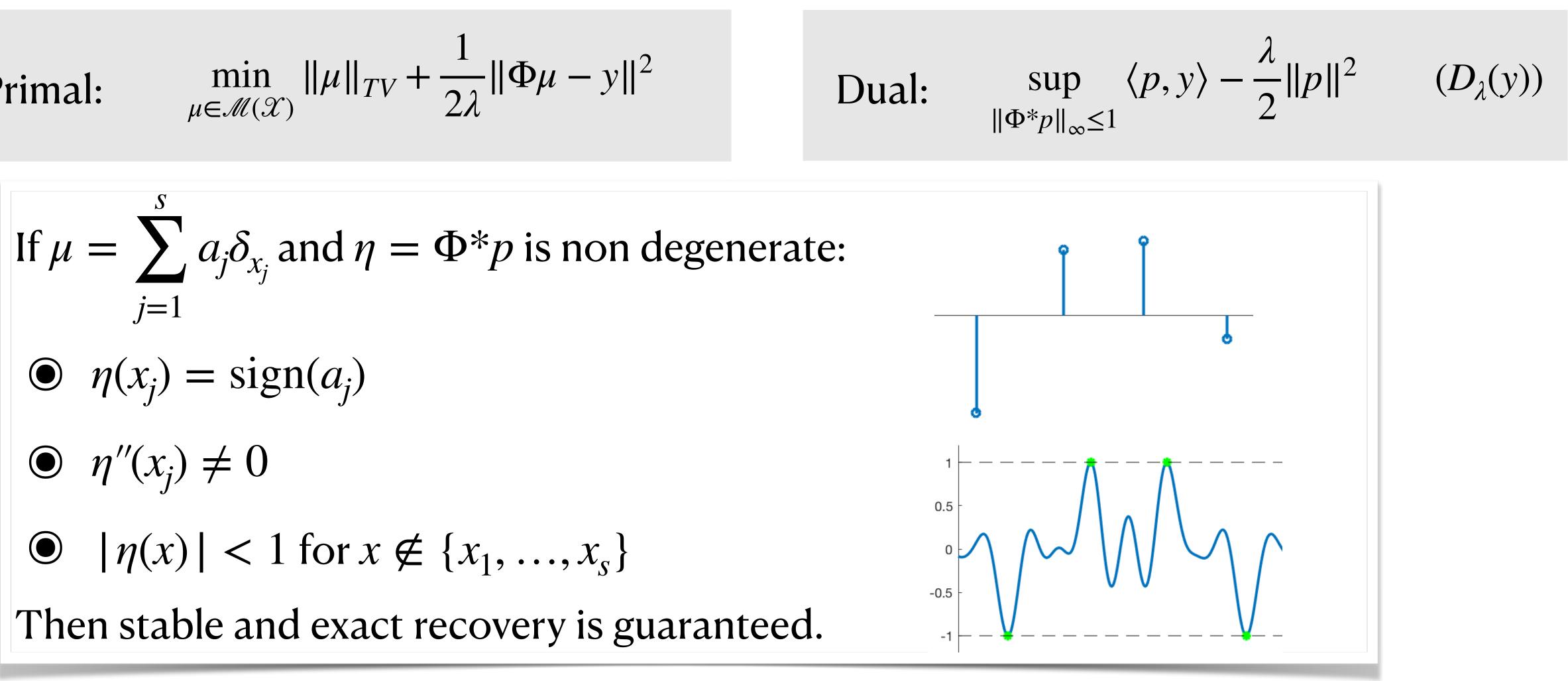
Mini-course on Sparse estimation off-the-grid Sparsistency

Q: Given $y = \Phi \mu_{a,x} + w$, does the solution to $P_{\lambda}(y)$ consist of precisely *s* spikes?

Clarice Poon

Primal:



There exists a non-degenerate η provided that $\min d_g(x_i, x_j) \ge \Delta$

Yesterday...

 η is a solution to $D_0(\Phi\mu)$

Support stability

What is the behaviour of η_{λ} when λ and ||w|| are small?

Limit of η_{λ} : Suppose $y = \Phi \mu_{a,x} + w$. If $D_0(y)$ has a solution, then as λ $||p_{\lambda} - p_0|| \to 0, \qquad p_0 = \operatorname{argm}$

Recall: if $p_{\lambda} = \operatorname{argmax} D_{\lambda}(y)$ and $\eta_{\lambda} = \Phi^* p_{\lambda}$, then $\operatorname{Supp}(\mu_{\lambda}) \subset \{x : |\eta_{\lambda}(x)| = 1\}$

$$\rightarrow 0, \|w\| \rightarrow 0,$$

$$\min\left\{\|p\| : p \in \operatorname{argmax} D_0(\Phi\mu_{a,x})\right\}$$

The limit dual problem

- Recall $p_{\lambda} = \operatorname{argmax}_{\|\Phi^*p\|_{\infty} \le 1} \langle p, y \rangle \lambda \|p\|^2 / 2$
- Let p_0 be of minimal norm such that $p_0 \in \operatorname{argmax}_{\|\Phi^*p\|_{\infty} \leq 1} \langle p, y \rangle$

$$\langle p_{\lambda}, y \rangle - \lambda \| p_{\lambda} \|^{2}/2 \ge \langle p_{0}, y \rangle$$

 $\implies ||p_{\lambda}|| \le ||p_0||$ for all λ .

- $(p_{\lambda})_{\lambda}$ converges (up to subseq) to \bar{p}
- $||p_0|| \ge ||\bar{p}||$
- $\|\Phi^*\bar{p}\|_{\infty} \le 1$

$\langle \rangle - \lambda \|p_0\|^2/2 \ge \langle p_\lambda, y \rangle - \lambda \|p_0\|^2/2$

Take limit $\lambda \rightarrow 0$ $\langle \bar{p}, y \rangle \geq \langle p_0, y \rangle$, so $\bar{p} = p_0$

Minimal norm certificate

We say that η is non degenerate if:

- $\bullet \eta''(x_i) \neq 0$
- $\bullet \eta(x_i) = \operatorname{sign}(a_i)$
- $\forall x \notin \{x_i\}, |\eta(x)| < 1$

If η_0 is non-degenerate, then η_λ is also non degenerate when λ is sufficiently small.

Theorem (Duval and Peyre, 2015): If η_0 is non-degenerate, then for $||w||/\lambda =$ S $P_{\lambda}(y)$ is unique, $\mu_{\lambda} = \sum a_{\lambda,i} \delta_{x_{\lambda,i}}$ and $\|(x_{\lambda}, y_{\lambda,i})\|$ i=1

Minimal norm certificate

$$\eta_{\lambda} \xrightarrow{L^{\infty}} \eta_{0} = \Phi^{*} p_{0}$$
$$\eta_{0} = \operatorname{argmin} \|p\| \quad \text{s.t.} \quad \begin{cases} \forall i, \eta(x_{i}) = \text{sign} \\ \|\eta\|_{\infty} \leq 1 \end{cases}$$

$$\mathcal{O}(1)$$
 and $\lambda = \mathcal{O}(1)$, the solution to

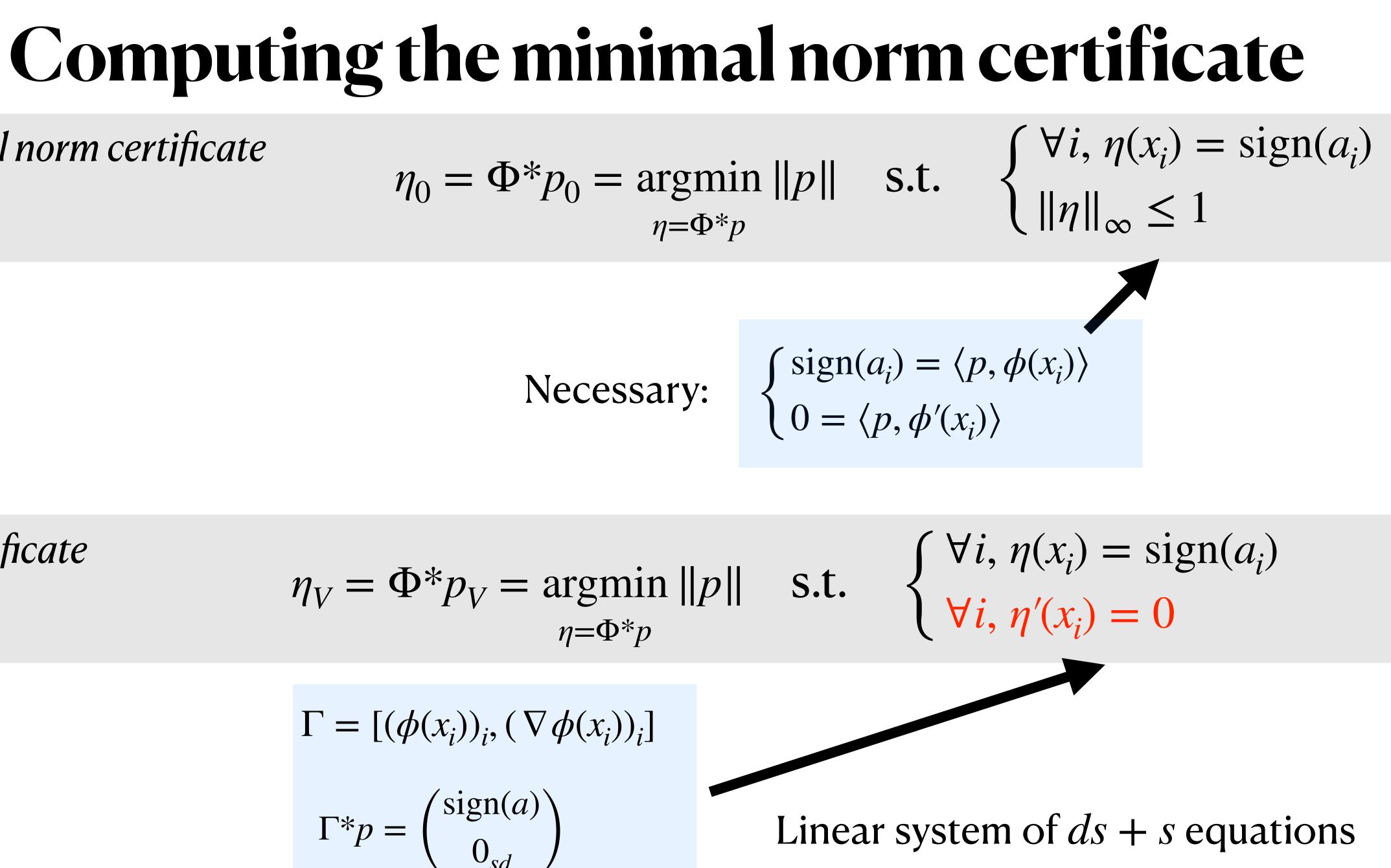
$$(a_{\lambda}) - (x_0, a_0) \| = \mathcal{O}(\|w\|)$$

Minimal norm certificate

Pre-certificate

$$\eta_V = \Phi^* p_V = \arg_{\eta = \Phi}$$

$$\Gamma = [(\phi(x_i))_i, (\nabla \phi(x_i))_i]$$
$$\Gamma^* p = \begin{pmatrix} \operatorname{sign}(a) \\ 0_{sd} \end{pmatrix}$$



Computing the minimal norm certificate

 η_V can be computed by solving a linear system

$$\begin{pmatrix} [K(x_i, x_j)]_{i,j} & [K^{(1,0)}(x_i, x_j)]_{i,j} \\ [K^{(0,1)}(x_i, x_j)]_{i,j} & [K^{(1,1)}(x_i, x_j)]_{i,j} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix}$$

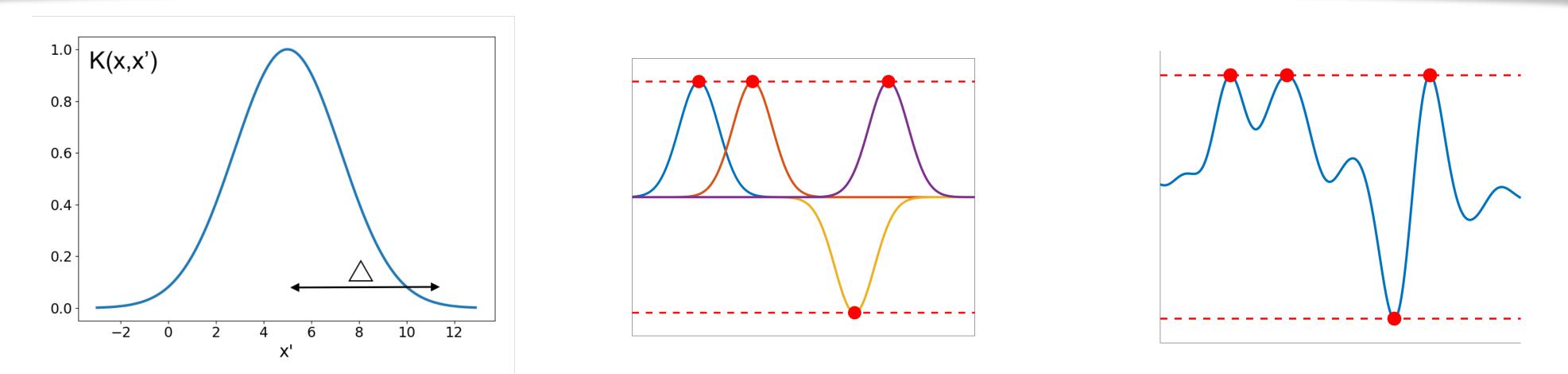
$$\eta_V(x) = \sum_{i=1}^n u_i K(x_i, x) + \sum_{i=1}^n v_i K^{(10)}(x_i, x) \rangle \qquad K(x_i, x) = \sum_{i=1}^n u_i K(x_i, x) + \sum_{i=1}^n u_$$

Useful checks for analysing support stability: [Necessary cond] η_V must satisfy $\|\eta_V\|_{\infty} \leq 1$ for support stability. [Sufficient cond] If η_V is non-degenerate, then support stability is guaranteed

 $\left(\begin{array}{c} \operatorname{sign}(a) \\ 0_n \end{array} \right)$

 $x, x') = \langle \phi(x), \phi(x') \rangle$

Recovery under minimal separation



if $\min_{x_i \to x_j} |x_i - x_j| \ge \frac{1}{f}$, then η_V is non-degenerate. So, we have stable recovery. i≠j

- Typical analysis strategy to understand sparse identifiability properties of Φ :
 - Compute η_V and check if it is non-degenerate.

- Candès and Fernandez-Granda (2012): Let $\phi(x) = (\exp(2\pi\sqrt{-1kx})_{|k| \le f_c})$

Super-resolution

No super-resolution for opposite sign spikes: If $|x - x'| < 1/f_c$, then $\mu := \delta_x - \delta_{x'}$ cannot be recovered from $P_0(\Phi\mu)$

De Castro & Fabrice (2012):

Q: Given N spikes at distance t apart, how small does the noise level ||w|| need to be to identify N spikes?

When is it non-degenerate?

To recover N spikes with positive amplitudes, we need $f_c \ge N$ when there is no noise.

Hint: Look at the certificate η_{tx} corresponding to positions $tx = (tx_i)_{i=1,...,N}$,



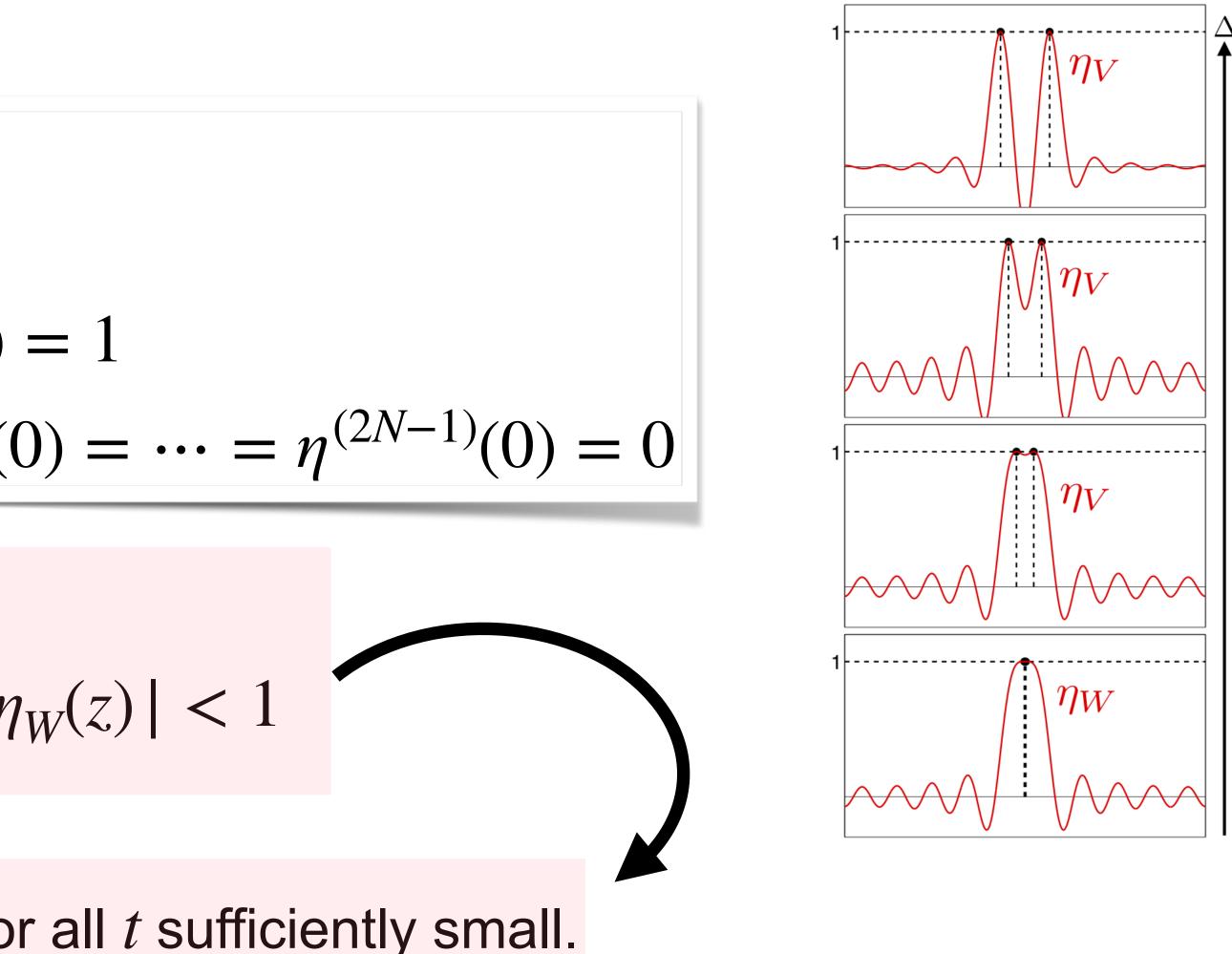
Asymptotic vanishing derivatives precertificate in 1D

Theorem (Denoyelle et al, 2015):
As
$$t \to 0$$
, $\eta_{V,tx} \to \eta_{W}$ where
 $\eta_{W} = \operatorname{argmin}_{\eta = \Phi^{*}p} ||p||$ s.t. $\begin{cases} \eta(0) \\ \eta^{(1)}(0) \end{cases}$

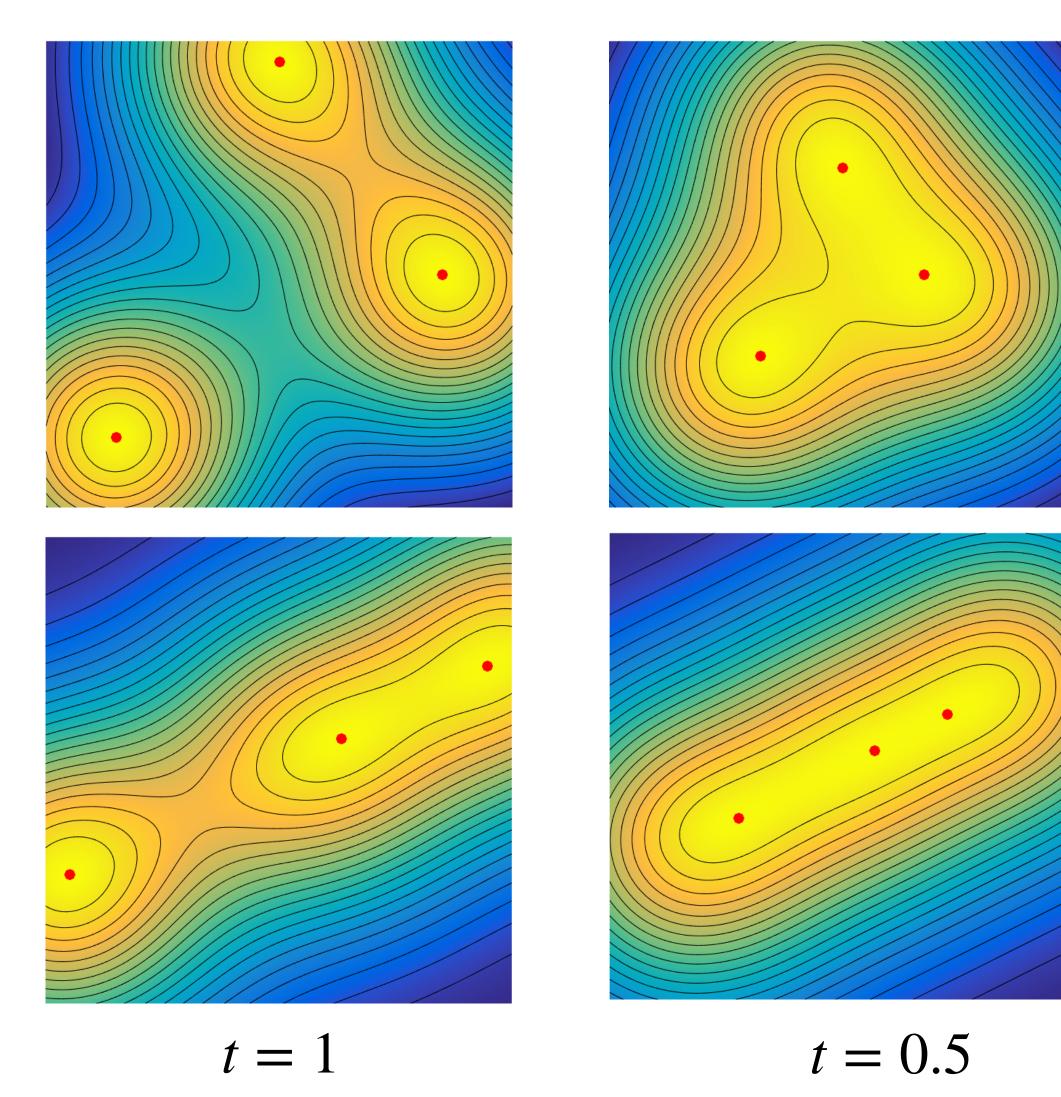
This is called non-degenerate if $\eta_W^{(2N)}(0) < 0$ and $\forall z \neq 0$, $|\eta_W(z)| < 1$

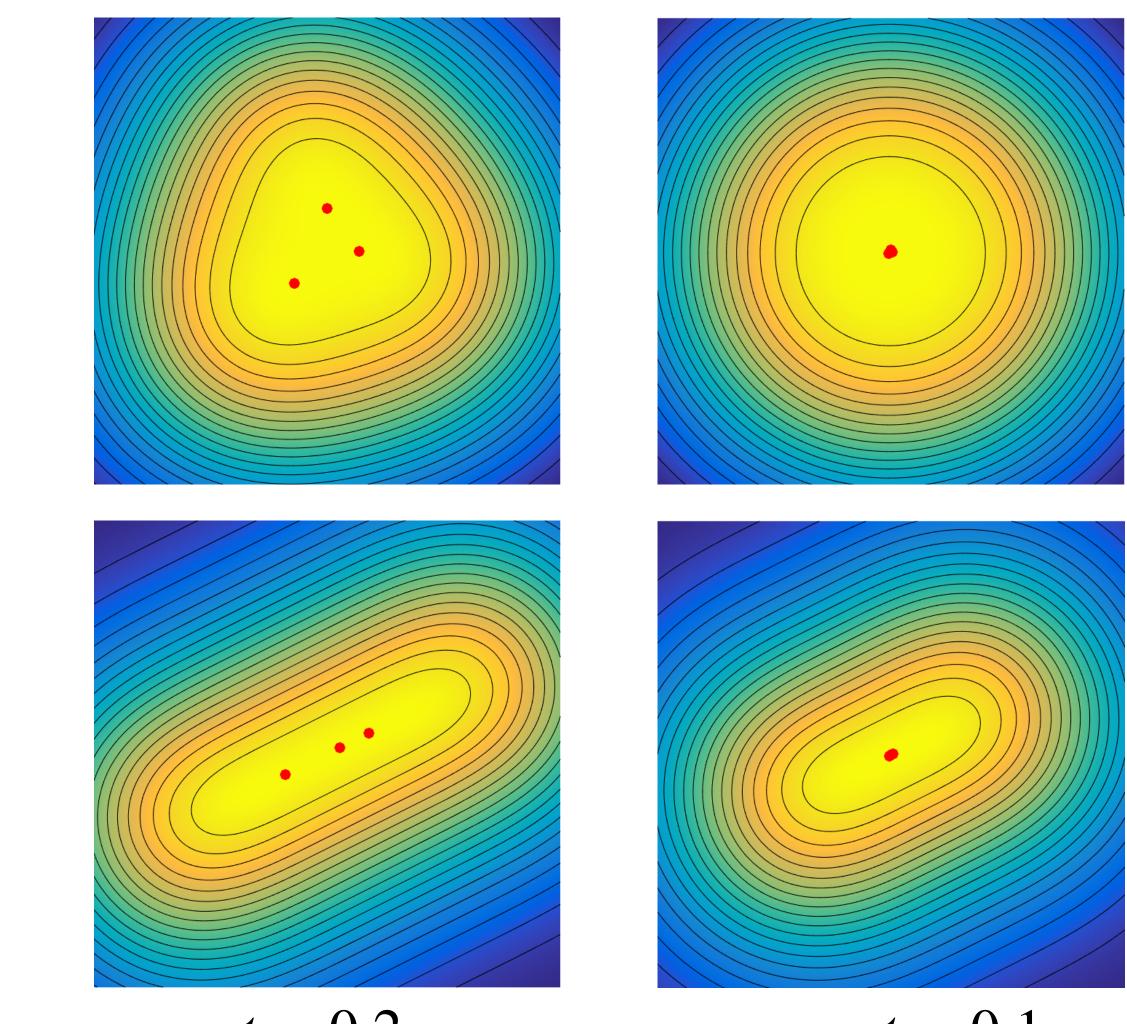
 $\eta_{V,tx}$ is non-degenerate for all *t* sufficiently small.

For $||w||/\lambda = \mathcal{O}(1)$, $\lambda = \mathcal{O}(t^{2N-1})$, $P_{\lambda}(\Phi \mu_{a,tx} + w)$ recovers exactly N spikes.



Asymptotic vanishing derivatives precertificate in higher dimensions





t = 0.2

t = 0.1

The limit of η_V depends on the spikes configuration!

The multivariate limiting certificate

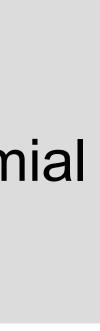
Theorem (Poon and Peyré, 2019): where $p_{w,z} = \operatorname{argmin} \{ \|p\| : (\Phi^* p)(0) = 1, P(\partial)(\Phi^* p)(0) = 0, P \in \mathcal{S}_z \}$ The polynomial space ${\mathcal S}_{_7}$ is the least interpolant polynomial space associated to z.

Hermite interpolation problem : Given c_i, d_i , find $P \in S$ such that $\begin{cases} P(z_i) = c_i \\ \nabla P(z_i) = d_i \end{cases}$

- Let $p_{V,tz}$ be the precertificate associated to support $tz := (tz_i)_{i=1}^N$, then $\|p_{V,tz} p_{W,z}\| = O(t)$

[De Boor and Ron (1990)]:

The least interpolant space is the polynomial space of least degree for which there is a unique solution.



The multivariate limiting certificate

Theorem (sufficiency)

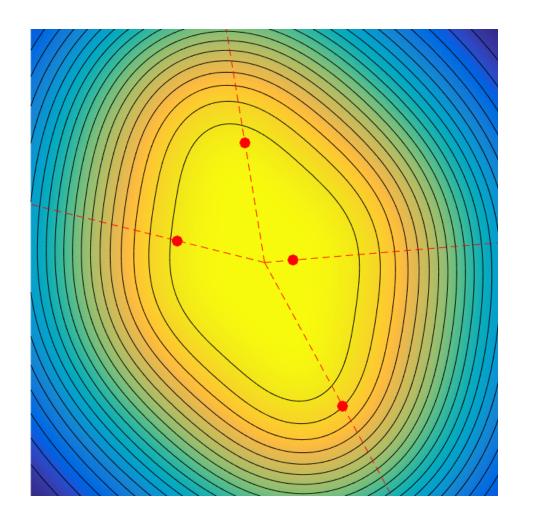
Given 2 spikes spaced t apart, η_W non degenerate and $\|w\|/\lambda = O(1)$, $\lambda = O(t^4)$, then $P_{\lambda}(\Phi\mu_{a,tx}+w)$ recovers exactly 2 spikes and $|(a,x) - (\hat{a},\hat{x})|_{\infty} \leq (\lambda + ||w||)/t^3$.

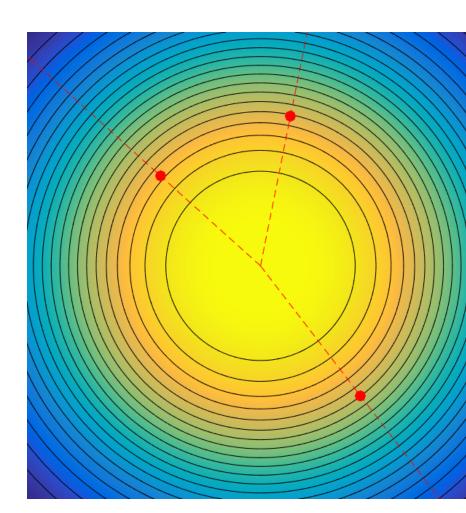
Theorem (necessity):

stable, then $\|\eta_{W,Z_0}\|_{\infty} = 1$

Useful check: For support stability, it is necessary that $\|\eta_{W,\tau}\|_{\infty} \leq 1$

If there exists $t_n \to 0$ and $(a_n, Z_n) \in \mathbb{R}^N_+ \times \mathscr{X}^N$ with $Z_n \to Z_0$ such that μ_{a_n, t_n, Z_n} is support

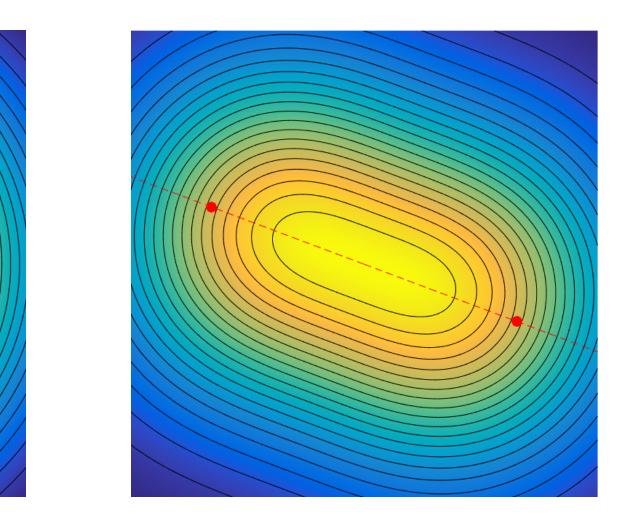


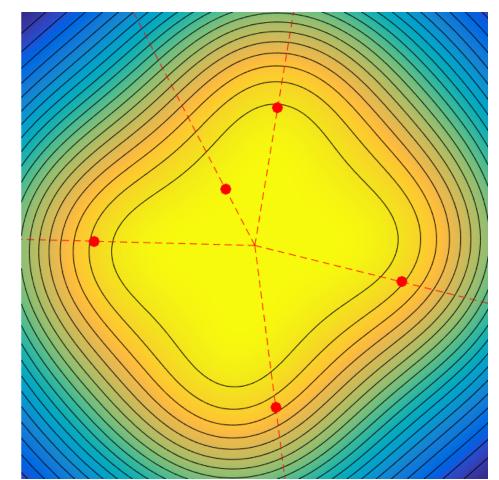


Numerical observation: $\eta_{W,z}$ is always uniformly bounded by 1.

Gaussian convolution

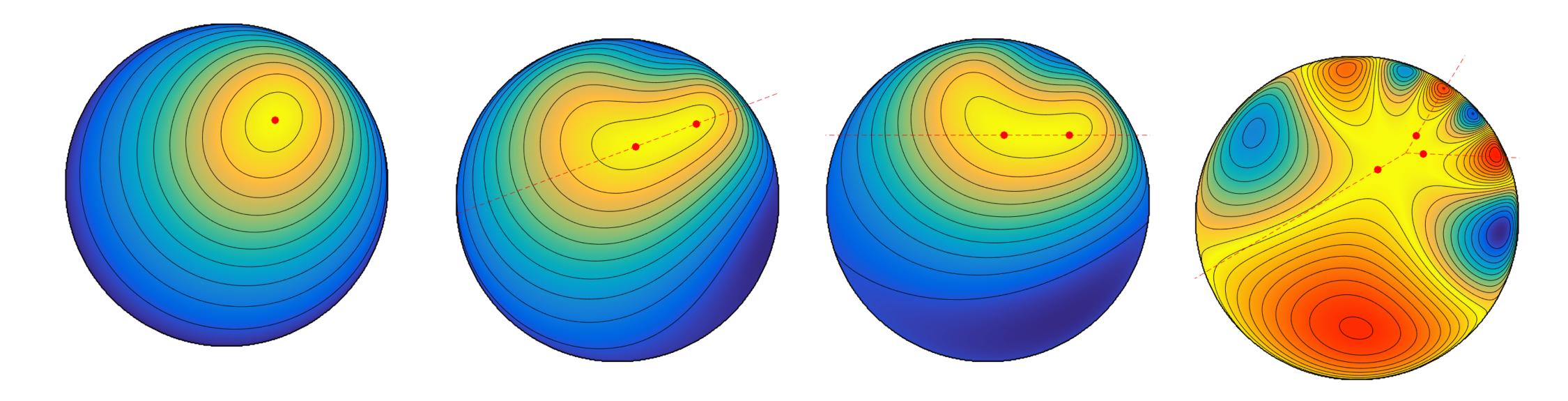
$\phi(x) = \exp(-\|x - \cdot\|^2 / (2\sigma^2)) \in L^2(\mathbb{R}^2)$





So, we can expect super-resolution when SNR is large enough.

Neuro-imaging Let $\mathscr{X} = \{x \in \mathbb{R}^2; \|x\| \le 1\}$. To model MEG/EEG, $\phi(x) = u \mapsto \|x - u\|^{-2} \in L^2(\partial \mathscr{X})$

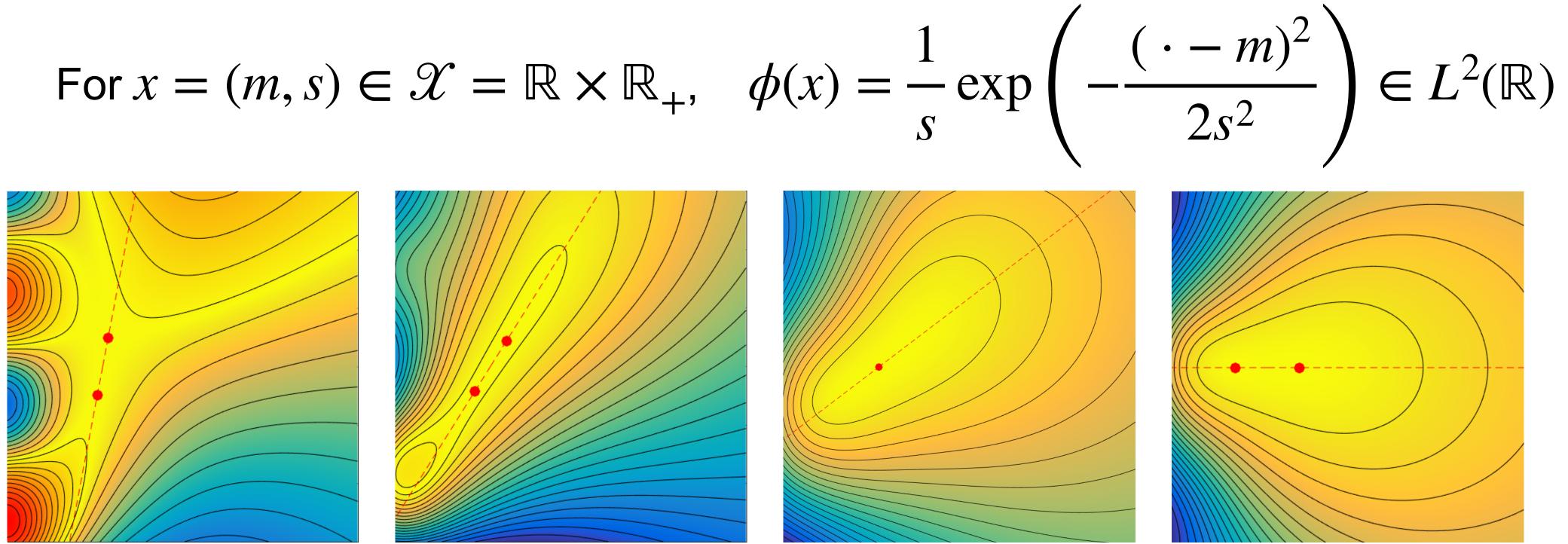


Numerical observation:

- • $\eta_{W,z}$ always valid when z consists of aligned spikes
- It is not valid when the spikes are not aligned.

In general, cannot super-resolve 3 close spikes under noise.

Gaussian mixture



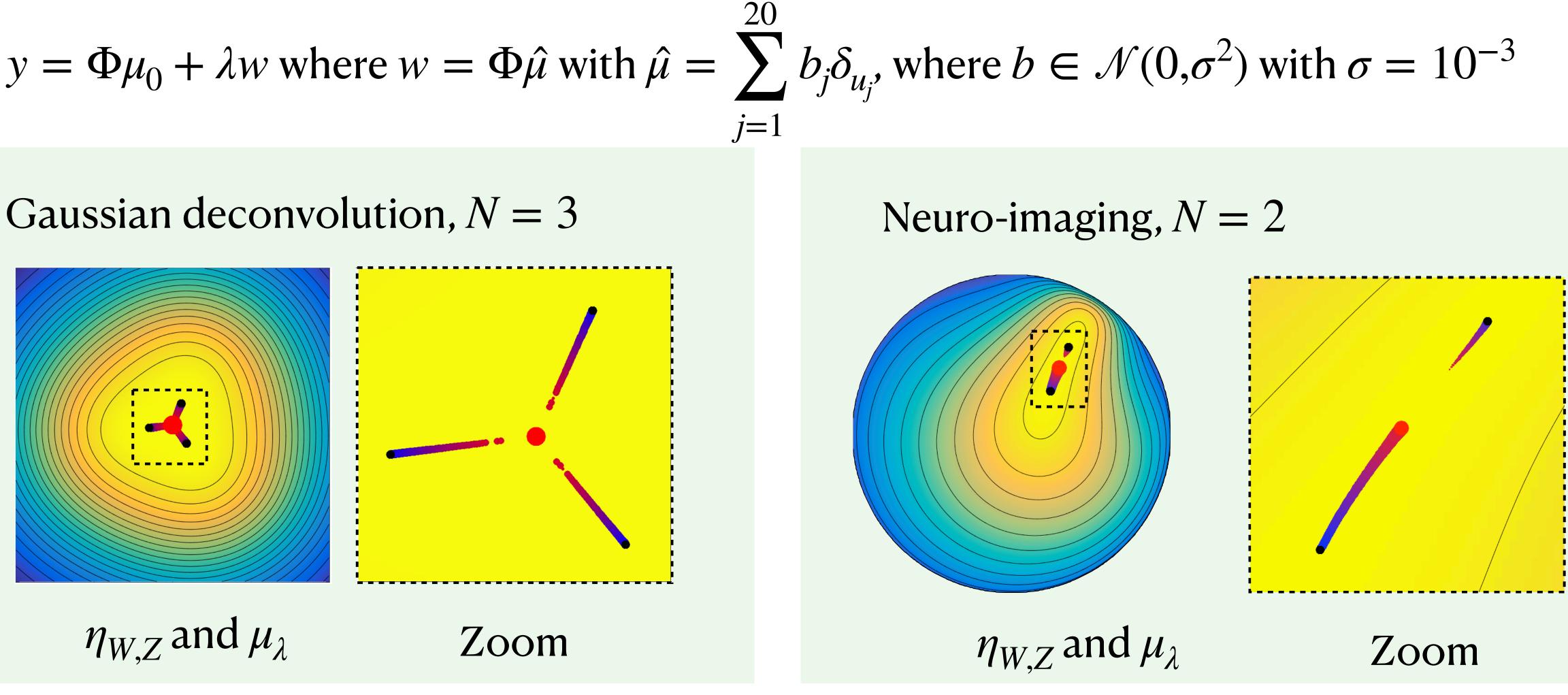
Observation: $\eta_{W,z}$ is a valid certificate if $|m_1 - m_2| \le |s_1 - s_2|$

One cannot expect to super-resolve a mixture of 2 Gaussians when the variation in means is too large wrt variation in standard deviations.

Y-axis = mean, X-axis = standard deviation

Measurements:

$$y = \Phi \mu_0 + \lambda w$$
 where $w = \Phi \hat{\mu}$ with $\hat{\mu} =$



Displaying evolution of solutions from λ_{max} (blue) to 0 (red)

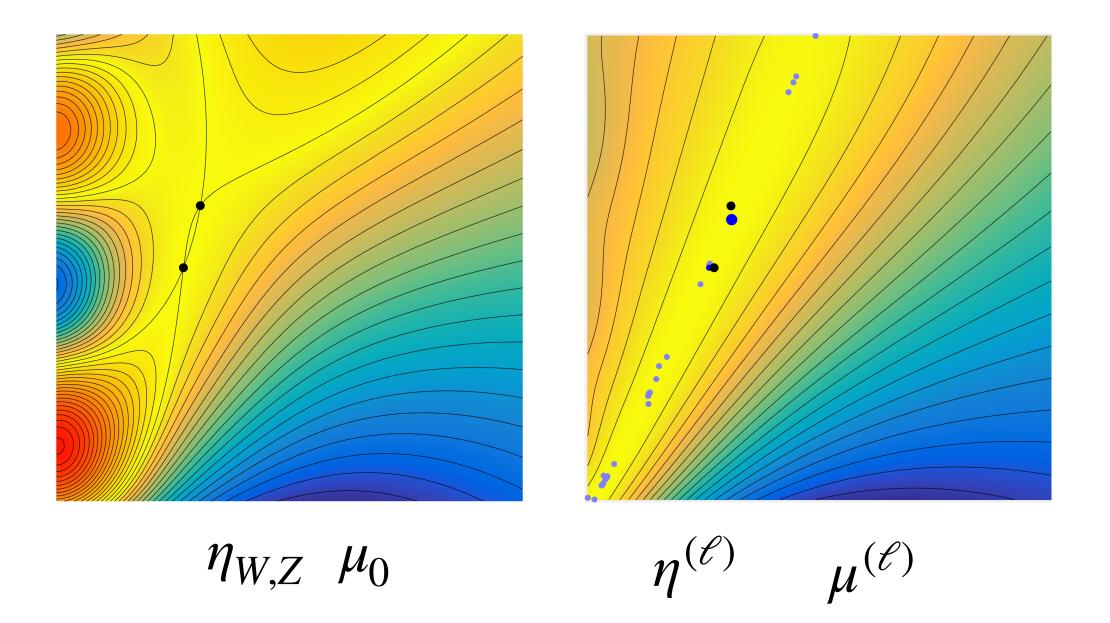
Evolution of solutions

Evolution of solutions

Measurements:

$$y = \Phi \mu_0 + \lambda w$$
 where $w = \Phi \hat{\mu}$ with $\hat{\mu} = \Phi \hat{\mu}$

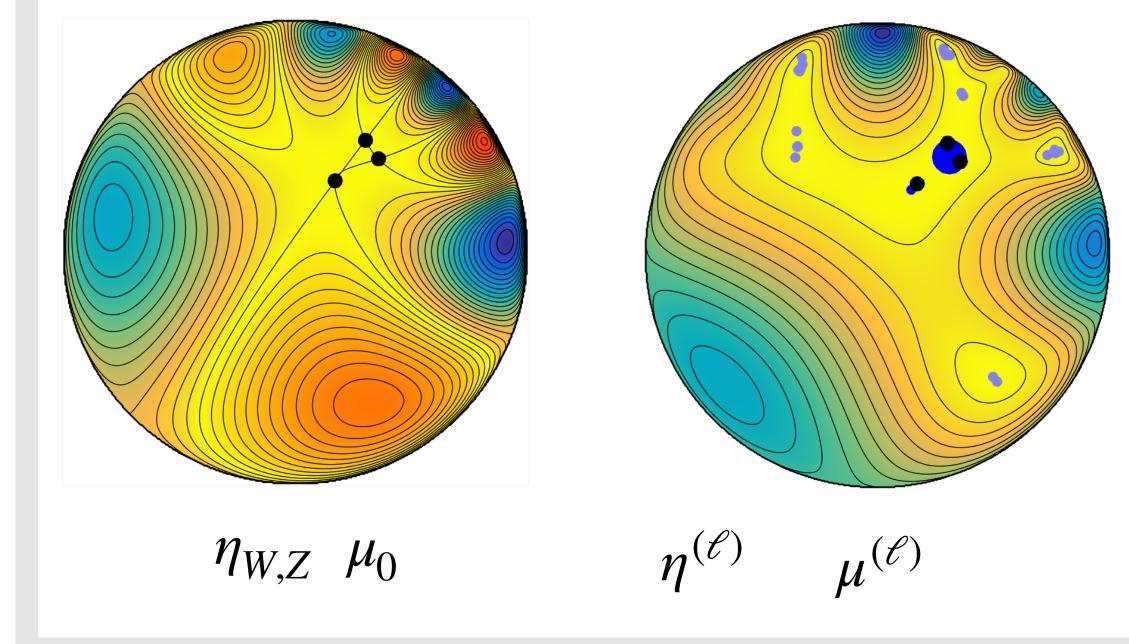
Gaussian mixture, N = 2



Solution unstable when $\eta_{W,z}$ is degenerate. Many tiny spikes (light blue) are added!

= $\sum b_j \delta_{u_i}$, where $b \in \mathcal{N}(0,\sigma^2)$ with $\sigma = 10^{-3}$ j=1

Neuro-imaging, N = 3



Compressed sensing for the Blasso

Off-the-grid Compressed sensing

Problem:

- Let $\phi_{\omega}(x) \in \mathscr{C}(\mathscr{X})$ where $\omega \in \Omega$.
- Suppose we observe $\Phi \mu = \left(\langle \phi_{\omega_k}, \mu \rangle \right)$

Example: • Rar $\phi_{\omega}(x)$

Question: If $\mu = \sum_{j=1}^{s} a_j \delta_{x_j}$, how many random samples *n* do we need to reconstruct *m*?

$$\Big)_{k=1}^{m}$$
 where $\omega_1, \ldots, \omega_m$ are drawn iid from Ω

• Random Fourier sampling : $\phi_{\omega}(x) = \exp(\sqrt{-12\pi\omega x}) \text{ and } \omega \in \{-N, ..., N\}$

Recovery results (random Fourier)

Theorem (Tang et al 2013): in the case of random Fourier samples. If $\min_{i \neq i} |x_i - x_j| \ge C/f_c$, and $\operatorname{sign}(a)$ is **distributed uniformly iid** on the i≠j $1 - \delta$ provided that

- complex unit circle, then exact recovery is guaranteed with probability at least
 - $m = \mathcal{O}(s \log(s/\delta) \log(f_c/\delta))$

Recovery results (general)

Theorem (Poon et al 2019):

If $\min_{i \neq j} d_g(x_i, x_j) \ge \Delta$, exact recovery is guaranteed with probability at least $1 - \rho$ provided that $m = O(s \log(s/\rho)^2 + \log(L/\rho))$

where Δ depends on s and the kernel and L depends on the bounds on the derivatives of ϕ_{ω} and the diameter sup $d_g(x, x')$. $x.x' \in \mathcal{X}$

Stable recovery: $\lambda = \epsilon / \sqrt{s}$ where ϵ is the noise level. Then,

$$W_2^2(\sum_j \hat{A}_j \delta_{x_j}, \|\hat{\mu}\|)$$

- $) \lesssim \epsilon \sqrt{s}$ and $\max_{i} |a_{i} \hat{a}_{i}| \lesssim \epsilon \sqrt{s}$

In practice the bound is: $s \times \log factors \times poly(d)$

Sketching Gaussian mixtures

Data samples $z_1, \ldots, z_n \in \mathbb{R}^d$ drawn ii

Need to find: $a_1, \ldots, a_s > 0$ and x_1, \ldots

 \blacksquare Sketch: Draw $\omega_1, \ldots, \omega_n$ iid from $\mathcal{N}(0)$

$$y \approx \mathbb{E}_{z}[C \exp(-\sqrt{-1}\omega_{k}^{\mathsf{T}} z_{i})] = \Phi \mu_{0}$$

with $\mu_{0} = \sum_{i=1}^{s} a_{i} \delta_{x_{i}}$ and $\phi_{\omega}(x) = \mathbb{E}_{z \sim \mathcal{N}(x, \Sigma)}[C \exp(\sqrt{-1}\omega^{\mathsf{T}} z)]$

Provided that min $\|\Sigma^{-1/2}(x_i - x_j)\| \gtrsim \sqrt{d \log(s)}$, stable recovery is guaranteed with i≠j $m \gtrsim s \left(d \log(s) \log(s/\rho) + d^2 \log(sdR)^d/\rho \right), \quad \epsilon = \mathcal{O}(n^{-1/2})$

id from Gaussian mixture
$$\xi = \sum_{i=1}^{s} a_i \mathcal{N}(x_i, \Sigma).$$

$$x_{s} \in \mathbb{R}^{d}$$

$$y_{k} = \frac{C}{n} \sum_{i=1}^{n} (\exp(-\sqrt{-1}\omega_{k}^{\top} z_{i}))_{k=1}^{m}$$

$$\Phi\mu_0$$

Summary

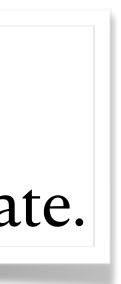
One can compute a pre-certificate η_V in closed form and check its properties.

- $\|\eta_V\|_{\infty} > 1$ implies stability is impossible.
- $|\eta_V(x)| < 1$ outside the support $\{x_i\}_i$ and a pos-def/neg Hessian implies stability

compressed sensing.

- $\cdot p_{\lambda}$ converges to p_0 the minimal solution to $D_0(y)$
- Support stability is determined by the minimal norm certificate.

Analysis of η_V has led to theoretical understanding of super-resolution and



References

Support stability:

• Duval, V., & Peyré, G. (2015). Exact support recovery for sparse spikes deconvolution. *Foundations of* Computational Mathematics, 15(5), 1315-1355.

Super resolution:

- De Castro, Yohann, and Fabrice Gamboa. "Exact reconstruction using Beurling minimal extrapolation." Journal of Mathematical Analysis and applications 395.1 (2012): 336-354.
- Denoyelle, Q., Duval, V., & Peyré, G. (2017). Support recovery for sparse super-resolution of positive measures. Journal of Fourier Analysis and Applications, 23(5), 1153-1194.
- Poon, C., & Peyré, G. (2019). Multidimensional sparse super-resolution. SIAM Journal on Mathematical Analysis, 51(1), 1-44.

Compressed sensing off-the-grid

- Tang, G., Bhaskar, B. N., Shah, P., & Recht, B. (2013). Compressed sensing off the grid. IEEE transactions on *information theory*, *59*(11), 7465-7490.
- Poon, C., Keriven, N., & Peyré, G. (2021). The geometry of off-the-grid compressed sensing. Foundations of Computational Mathematics, 1-87.