Mini-course on
Sparse estimation off-the-grid

Sparsistency

Q: Giveny = ®u,  + w, does the solution to P,(y) consist of precisely s spikes?

Clarice Poon
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If u = Z ajéxj and n = ®*p is non degenerate: T 7
j=1 :

® n(x;) = sign(a;)

® n"(x)#0 Aﬁ/‘h
® |nx)| <1forx ¢ {x,...,x,} o J\/

Then stable and exact recovery is guaranteed. . /\/ __________ f

There exists a non-degenerate n provided that min d (x xj) > A

1 is a solution to Dy(Du)

7]



Support stability

Recall: it p, = argmax D,(y) and 5, = ®*p,, then Supp(y,) C {x : |n,x)| =1}

What is the behaviour of 1, when A and ||w || are small?

Limit of ;: Supposey = ®u, . + w.
Iif Dy(y) has a solution, thenas A — 0, ||w|| = O,

Ip,=poll >0, py=argmin{ [lpll : p € argmax Dy(@s,,,) |



The limit dual problem

+ Recall p; = argmax g, <1{p,y) — Allpl|*/2

» Let py be of minimal norm such that p, € argmax g+, <;(P>¥)

(P3 ) = APlIP12 2 (po, ) = AIpoll*/2 = (py, ) = AlpolI*/2

'

—> ||Ip,|l £ ||pol| for all 4.

* (p,), converges (up to subseq) to p

* lIpoll Z 1Ip| Take limit A — O

e ||D*7 <1 _ _
H p”oo — <p,y> Z <P(),y>, SOp :p()



Minimal norm certificate

We say that 77 is non degenerate if: Minimal norm certificate
// LOO
n(x;) = sign(a;) . Vi, n(x;) = sign(a;)
o = argmin ||pf|  S.Lt.
Vx g L) G| < 1 Il <

If 7 is non-degenerate, then 7, is also non degenerate when 4 is sufficiently small.

Theorem (Duval and Peyre, 2015):
If iy is non-degenerate, then for [|w|[/A = O(1) and A = O(1), the solution to

\)

PA(Y) IS unique, [, = 2 a, 15 and H(x,p 0,1) — (X()a a())” = O(||w||)
=1



Computing the minimal norm certificate

Minimal norm certificate . Vi, n(x;) = sign(a;)
Ny = ®*py = argmin ||p|| S.t il <1

n==>o*p

sign(a;) = (p, ¢(x.))

Necessary: {

0= (p,d'(x))
Pre-certificate , Vi, n(x;) = sign(a;)
ny = ®*py, = argmin ||p|| S.t. C

[ = [0, (Vo) /

. sign(a) . .
Fp=1 ) Linear system of ds + s equations



Computing the minimal norm certificate

1y can be computed by solving a linear system

[KCe, )] (KT, x)],; (u) - (sign(a))
[K(O’l)(xiaxj)]i,j [K(l’l)(xiaxj)]i,j v 0,

(X)) = Z 1;K(x;, x) + Z VK00 x)) K, x) = (p(), p(x))

Useful checks for analysing support stability:
[Necessary cond] nymust satisfy ||nyl| ., < 1 for support stability.

[Sufficient cond] If iy, is non-degenerate, then support stability is guaranteed




Recovery under minimal separation

Typical analysis strategy to understand sparse identifiability properties of ®:

Compute 7y, and check if it is non-degenerate.

Candes and Fernandez-Granda (2012): Let ¢(x) = (exp(2zy/ — 1kx) ;< 7
C

if min | x; — xj\ > —, then 7y, is non-degenerate. So, we have stable recovery.
i7] c



Super-resolution

No super-resolution for opposite sign spikes:

If |x —x"| < 1/f,, then u := 6, — o, cannot be recovered from P,(Du)

De Castro & Fabrice (2012):

To recover N spikes with positive amplitudes, we need f. > N when there is no noise.

Q: Given N spikes at distance t apart, how small does the noise level ||w|| need to be to
identify N spikes?

Hint: Look at the certificate 1, corresponding to positions tx = (1x;);,—;  n .

When is it non-degenerate?



Asymptotic vanishing derivatives precertificate in 1D

1

Theorem (Denoyelle et al, 2015):

Ast — 0, Ny e — M, Where |
n0) =1
,7(1)(()) e ,7(2N—1)(()) — ()

My = argmin, _q ||p]| st {

—

This is called non-degenerate if
r]‘(ﬁN)(O) <0 and Vz#O, |pu(2)]| <1

Ny i IS non-degenerate for all 7 sufficiently small.

For ||w||/A = O(1), A = 6N, P;,(®u, . + w) recovers exactly NV spikes.



Asymptotic vanishing derivatives precertificate in higher dimensions
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The limit of #,, depends on the spikes configuration!



The multivariate limiting certificate

Theorem (Poon and Peyre, 2019):

Let py .. be the precertificate associated to support 1z := (7)., then ||py .. — p,, .|| = O(1)
where p,,. = argmin{||p|| : (®*p)(0) =1, P@)(@*p)(0)=0, P S,}

The polynomial space & . IS the least interpolant polynomial space associated to 7.

Hermite interpolation problem : Given ¢;,d;, [De Boor and Ron (1990)]:

P(Zi) = ¢, The least interpolant space Is the polynomial

space of least degree for which there is a

find P € & such that {
VP(z;) = d, unique solution.



The multivariate limiting certificate

Theorem (sufficiency)

Given 2 spikes spaced ¢ apart, 17y, non degenerate and||w||/A = O(1), A = O(t*), then
P;,(®u, . + w) recovers exactly 2 spikes and |(a,x) — (a,X)| S (4 + lw|)/t> .

Theorem (necessity):

If there exists t, — 0 and (a,,Z,) € RY x ™ with Z, — Z,, such that H, . 7 IS support
stable, then HnW,ZOHOO =1

Useful check: For support stability, it is necessary that HnW,ZHOO <1



Gaussian convolution

p(x) = exp( —|lx —-[|”/(26%)) € LH(R®)

Numerical observation: ny, . is always uniformly bounded by 1.

So, we can expect super-resolution when SNR is large enough.



Neuro-imaging

Let 2 = {x € R?; ||x|| < 1}. To model MEG/EEG, ¢(x) = u — ||x — u||™* € L*(0Z)

Numerical observation:
Ny, always valid when z consists of aligned spikes

*|t Is not valid when the spikes are not aligned.

In general, cannot super-resolve 3 close spikes under noise.



Gaussian mixture

Forx=(m,s) € X =R XI

_|_5

]
Pp(x) =—exp| —
S

Y-axis = mean, X-axis = standard deviation

Observation: 1y, . is a valid certificate if |m; —m,| < |s; — 5, |

One cannot expect to super-resolve a mixture of 2 Gaussians when the
variation in means Is too large wrt variation in standard deviations.



When 1y, 2 is non-degenerate

Evolution of solutions

Measurements:

y = @y + Aw where w = @ with /i = 2 b, where b € N(0,6%) with o = 1073
j=1

Gaussian deconvolution, N = 3 Neuro-imaging, N = 2

My zand u, 7.00m My zand u,

Displaying evolution of solutions from 4_ ..

(blue) to O (red)



AEIREZEZE Evolution of solutions

Measurements: 0

y = ®uy + Aw where w = @ with fi = Z b, where b € N (0,6%) withe = 1072
=1

Gaussian mixture, N = 2 Neuro-imaging, N = 3

=

Nw.z Ko Hw.z Mo ;7({) //t(bﬂ)

Solution unstable when 7y, . is degenerate. Many tiny spikes (light blue) are added!



Compressed sensing for the Blasso



Off-the-grid Compressed sensing

Problem:
» Let ¢, (x) € €(X) where w € Q.

where @, ..., ®,, are drawn iid from £2

m
. Suppose we observe ®p = (<¢wk’ ﬂ))
k=1

Example:
* Random Fourier sampling :

¢, (x) = exp(\/—_IZﬂa)x) andw € {—N, ...,N}

Question:

\)
If u = Z a;0,, how many random samples n do we need to reconstruct m?
J
J=1



Recovery results (random Fourier)

Theorem (Tang et al 2013): in the case of random Fourier samples.

[t m;n | x; — x;| 2 C/f,, and sign(a) is distributed uniformly iid on the
i#]
complex unit circle, then exact recovery is guaranteed with probability at least

1 — o provided that
m = O(s log(s/0)log(f./0))



Recovery results (general)

Theorem (Poon et al 2019):

If mind,(x;, x;) > A, exact recovery is guaranteed with probability at least 1 — p
I7]

provided that m = O(slog(s/p)* + log(L/p))

where A depends on s and the kernel and L depends on the bounds on the

derivatives of ¢, and the diameter sup d,(x,x’) .
xx'ed

Stable recovery: A = ¢/ \/_ where € is the noise level. Then,

WZ(Z ]x,\,u\)<€\/_ and max\a—a\<€\/_

In practice the bound is:

s X log factors X poly(d)



Sketching Gaussian mixtures

\)
mp Data samples zy, ..., 7, €| 4 drawn iid from Gaussian mixture & = Z a N (x;, ).
i=1

"™ Need to find: ag,....,a,>0and x|, ..., x, €I a

C n
= Sketch: Draw @, ..., @, iid from #(0,271/d), y := — Z (exp(—v—lw, )",
n
i=1

y~LE|C exép(—\/ — la)szl-)] = Dy,
with iy = Z a0, and ¢,(x) = E__ y . »lCexp(y/ — 1o 7)]

=1

Provided that min |[|Z~" 2()cl- — X;) | = \/ d log(s) , stable recovery is guaranteed with
i#]
m 2 s (dlog(s)log(s/p) + d*log(sdR)*/p), €= O(n~"?)



Summary

. p, converges to p, the minimal solution to Dy(y)

-Support stability is determined by the minimal norm certificate.

One can compute a pre-certificate 7y, in closed form and check its properties.
-[Invllo > 1 implies stability is impossible.

- | ny(x)| < 1 outside the support {x;}.and a pos-def/neg Hessian implies stability

Analysis of 7y, has led to theoretical understanding of super-resolution and
compressed sensing.
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