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Sparsistency

Q: Given , does the solution to  consist of precisely  spikes?y = Φμa,x + w Pλ(y) s



If  and  is non degenerate: 

๏  

๏  

๏  for  

Then stable and exact recovery is guaranteed.

μ =
s

∑
j=1

ajδxj
η = Φ*p

η(xj) = sign(aj)

η′ ′ (xj) ≠ 0

|η(x) | < 1 x ∉ {x1, …, xs}

Yesterday…
min

μ∈ℳ(𝒳)
∥μ∥TV +

1
2λ

∥Φμ − y∥2 sup
∥Φ*p∥∞≤1

⟨p, y⟩ −
λ
2

∥p∥2 (Dλ(y))Primal: Dual:

 is a solution to η D0(Φμ)There exists a non-degenerate  provided that η min
i≠j

dg(xi, xj) ≥ Δ



Support stability

Recall: if    and  , then pλ = argmax Dλ(y) ηλ = Φ*pλ Supp(μλ) ⊂ {x : |ηλ(x) | = 1}

What is the behaviour of  when  and  are small?ηλ λ ∥w∥

If  has a solution, then as ,  

  ,         

D0(y) λ → 0, ∥w∥ → 0

∥pλ − p0∥ → 0 p0 = argmin{∥p∥ : p ∈ argmax D0(Φμa,x)}

Limit of :   Suppose . ηλ y = Φμa,x + w



The limit dual problem
• Recall  

• Let  be of minimal norm such that 

pλ = argmax∥Φ*p∥∞≤1⟨p, y⟩ − λ∥p∥2/2

p0 p0 ∈ argmax∥Φ*p∥∞≤1⟨p, y⟩

⟨pλ, y⟩ − λ∥pλ∥2/2 ≥ ⟨p0, y⟩ − λ∥p0∥2/2 ≥ ⟨pλ, y⟩ − λ∥p0∥2/2

      for all . 

•    converges (up to subseq) to  

•   

•

⟹ ∥pλ∥ ≤ ∥p0∥ λ

(pλ)λ p̄

∥p0∥ ≥ ∥p̄∥

∥Φ*p̄∥∞ ≤ 1  ,  so ⟨p̄, y⟩ ≥ ⟨p0, y⟩ p̄ = p0

Take limit λ → 0



Minimal norm certificate
We say that  is non degenerate if: 

•  

•  

•

η
η′ ′ (xi) ≠ 0
η(xi) = sign(ai)
∀x ∉ {xi}, |η(x) | < 1

If  is non-degenerate, then  is also non degenerate when  is sufficiently small.η0 ηλ λ

Theorem (Duval and Peyre, 2015):  

If  is non-degenerate, then for   and , the solution to 

 is unique,  and 

η0 ∥w∥/λ = 𝒪(1) λ = 𝒪(1)

Pλ(y) μλ =
s

∑
i=1

aλ,iδxλ,i
∥(xλ, aλ) − (x0, a0)∥ = 𝒪(∥w∥)

η0 = argmin
η=Φ*p

∥p∥ s.t. {∀i, η(xi) = sign(ai)
∥η∥∞ ≤ 1

ηλ
L∞

→ η0 = Φ*p0

Minimal norm certificate



Computing the minimal norm certificate
η0 = Φ*p0 = argmin

η=Φ*p
∥p∥ s.t. {∀i, η(xi) = sign(ai)

∥η∥∞ ≤ 1

ηV = Φ*pV = argmin
η=Φ*p

∥p∥ s.t. {∀i, η(xi) = sign(ai)
∀i, η′ (xi) = 0

{sign(ai) = ⟨p, ϕ(xi)⟩
0 = ⟨p, ϕ′ (xi)⟩

Γ*p = (sign(a)
0sd )

Γ = [(ϕ(xi))i, (∇ϕ(xi))i]

Minimal norm certificate

Pre-certificate

Linear system of  equations ds + s

Necessary:



Computing the minimal norm certificate

 can be computed by solving a linear systemηV

ηV(x) =
n

∑
i=1

uiK(xi, x) +
n

∑
i=1

viK(10)(xi, x)⟩

(
[K(xi, xj)]i,j [K(1,0)(xi, xj)]i,j

[K(0,1)(xi, xj)]i,j [K(1,1)(xi, xj)]i,j) (u
v) = (sign(a)

0n )
K(x, x′ ) = ⟨ϕ(x), ϕ(x′ )⟩

Useful checks for analysing support stability: 

[Necessary cond]     must satisfy  for support stability. 

[Sufficient cond]    If  is non-degenerate, then support stability is guaranteed

ηV ∥ηV∥∞ ≤ 1

ηV



Recovery under minimal separation
Typical analysis strategy to understand sparse identifiability properties of : 

Compute  and check if it is non-degenerate.

Φ

ηV

Candès and Fernandez-Granda (2012):  Let ,  

if , then  is non-degenerate. So, we have stable recovery. 

ϕ(x) = (exp(2π −1kx)|k|≤ fc

min
i≠j

|xi − xj | ≥
C
fc

ηV



Super-resolution
No super-resolution for opposite sign spikes: 

If , then  cannot be recovered from |x − x′ | < 1/fc μ := δx − δx′ 
P0(Φμ)

De Castro & Fabrice (2012):  

To recover  spikes with positive amplitudes, we need  when there is no noise.N fc ≥ N

Q: Given  spikes at distance  apart, how small does the noise level  need to be to 
identify  spikes?

N t ∥w∥
N

Hint: Look at the certificate  corresponding to positions  ,  

         When is it non-degenerate?

ηtx tx = (txi)i=1,…,N



Asymptotic vanishing derivatives precertificate in 1D

Theorem (Denoyelle et al, 2015):  

As ,  where t → 0 ηV,tx → ηw

ηW = argminη=Φ*p∥p∥ s.t. {η(0) = 1
η(1)(0) = ⋯ = η(2N−1)(0) = 0

This is called non-degenerate if 

η(2N)
W (0) < 0 and ∀z ≠ 0, |ηW(z) | < 1

For , ,  recovers exactly  spikes.∥w∥/λ = 𝒪(1) λ = 𝒪(t2N−1) Pλ(Φμa,tx + w) N

 is non-degenerate for all  sufficiently small.ηV,tx t



Asymptotic vanishing derivatives precertificate in higher dimensions

The limit of  depends on the spikes configuration!ηV

t = 1 t = 0.5 t = 0.2 t = 0.1



The multivariate limiting certificate

Hermite interpolation problem : Given  ,  

find  such that   

ci, di

P ∈ 𝒮 {P(zi) = ci

∇P(zi) = di

Theorem (Poon and Peyré, 2019):   

Let  be the precertificate associated to support , then  

where   

The polynomial space  is the least interpolant polynomial space associated to .

pV,tz tz := (tzi)N
i=1 ∥pV,tz − pw,z∥ = 𝒪(t)

pw,z = argmin {∥p∥ : (Φ*p)(0) = 1, P(∂)(Φ*p)(0) = 0, P ∈ 𝒮z}
𝒮z z

[De Boor and Ron (1990)]:  
The least interpolant space is the polynomial 
space of least degree for which there is a 
unique solution.



The multivariate limiting certificate

Theorem (sufficiency)  

Given 2 spikes spaced  apart,  non degenerate and , , then
 recovers exactly 2 spikes and 

t ηW ∥w∥/λ = 𝒪(1) λ = 𝒪(t4)
Pλ(Φμa,tx + w) | (a, x) − ( ̂a, ̂x) |∞ ≲ (λ + ∥w∥)/t3 .

Useful check: For support stability, it is necessary that ∥ηW,z∥∞ ≤ 1

Theorem (necessity): 

If there exists  and  with  such that  is support 
stable, then 

tn → 0 (an, Zn) ∈ ℝN
+ × 𝒳N Zn → Z0 μan,tnZn

∥ηW,Z0
∥∞ = 1



Gaussian convolution

Numerical observation:  is always uniformly bounded by 1. ηW,z

ϕ(x) = exp( −∥x − ⋅∥2/(2σ2)) ∈ L2(ℝ2)

So, we can expect super-resolution when SNR is large enough.



Neuro-imaging
Let . To model MEG/EEG, 𝒳 = {x ∈ ℝ2; ∥x∥ ≤ 1} ϕ(x) = u ↦ ∥x − u∥−2 ∈ L2(∂𝒳)

Numerical observation: 

•  always valid when  consists of aligned spikes 

•It is not valid when the spikes are not aligned.

ηW,z z

In general, cannot super-resolve 3 close spikes under noise.



Gaussian mixture

For ,    x = (m, s) ∈ 𝒳 = ℝ × ℝ+ ϕ(x) =
1
s

exp (−
( ⋅ − m)2

2s2 ) ∈ L2(ℝ)

Y-axis = mean, X-axis = standard deviation

Observation:   is a valid certificate if ηW,z |m1 − m2 | ≤ |s1 − s2 |

One cannot expect to super-resolve a mixture of 2 Gaussians when the 
variation in means is too large wrt variation in standard deviations.



Evolution of solutions

Displaying evolution of solutions from  (blue) to 0 (red)λmax

When  is non-degenerateηW, z

Gaussian deconvolution, N = 3 Neuro-imaging, N = 2

Zoom Zoom and ηW,Z μλ  and ηW,Z μλ

Measurements:  

 where  with , where  with y = Φμ0 + λw w = Φ ̂μ ̂μ =
20

∑
j=1

bjδuj
b ∈ 𝒩(0,σ2) σ = 10−3



Evolution of solutions
Measurements:  

 where  with , where  with y = Φμ0 + λw w = Φ ̂μ ̂μ =
20

∑
j=1

bjδuj
b ∈ 𝒩(0,σ2) σ = 10−3

Solution unstable when  is degenerate.  Many tiny spikes (light blue) are added!ηW,z

When  is degenerateηW, z

Gaussian mixture, N = 2

ηW,Z η(ℓ) μ(ℓ)μ0

Neuro-imaging, N = 3

ηW,Z η(ℓ) μ(ℓ)μ0



Compressed sensing for the Blasso



Off-the-grid Compressed sensing

• Let  where . 

• Suppose we observe  where  are drawn iid from 

ϕω(x) ∈ 𝒞(𝒳) ω ∈ Ω

Φμ = (⟨ϕωk
, μ⟩)

m

k=1
ω1, …, ωm Ω

• Random Fourier sampling :     
 and ϕω(x) = exp( −12πωx) ω ∈ {−N, …, N}

If , how many random samples   do we need to reconstruct μ =
s

∑
j=1

ajδxj
n m?

Problem:

Example:

Question:



Recovery results (random Fourier)

Theorem (Tang et al 2013): in the case of random Fourier samples. 

If , and  is distributed uniformly iid on the 

complex unit circle, then exact recovery is guaranteed with probability at least 
 provided that 

 

min
i≠j

|xi − xj | ≥ C/fc sign(a)

1 − δ

m = 𝒪(s log(s/δ)log( fc/δ))



Recovery results (general)
Theorem (Poon et al 2019): 

If , exact recovery is guaranteed with probability at least  

provided that                     

where   depends on  and the kernel and  depends on the bounds on the 
derivatives of  and the diameter   . 

Stable recovery:  where  is the noise level. Then, 

min
i≠j

dg(xi, xj) ≥ Δ 1 − ρ

m = 𝒪(s log(s/ρ)2 + log(L/ρ))

Δ s L
ϕω sup

x,x′ ∈𝒳
dg(x, x′ )

λ = ϵ/ s ϵ

W2
2(∑

j

̂Ajδxj
, | ̂μ | ) ≲ ϵ s and max

j
|aj − ̂aj | ≲ ϵ s

In practice the bound is:  
s × log factors × poly(d)



Sketching Gaussian mixtures
➡  Data samples  drawn iid from Gaussian mixture . 

➡  Need to find:  and  

➡ Sketch: Draw  iid from ,    

z1, …, zn ∈ ℝd ξ =
s

∑
i=1

ai𝒩(xi, Σ)

a1, …, as > 0 x1, …, xs ∈ ℝd

ω1, …, ωn 𝒩(0,Σ−1/d) y :=
C
n

n

∑
i=1

(exp(− −1ω⊤
k zi))m

k=1

Provided that  , stable recovery is guaranteed with 

,    

min
i≠j

∥Σ−1/2(xi − xj)∥ ≳ d log(s)

m ≳ s (d log(s)log(s/ρ) + d2 log(sdR)d /ρ) ϵ = 𝒪(n−1/2)

 

with  and 

y ≈ 𝔼z[C exp(− −1ω⊤
k zi)] = Φμ0

μ0 =
s

∑
i=1

aiδxi
ϕω(x) = 𝔼z∼𝒩(x,Σ)[C exp( −1ω⊤z)]



Summary

•  converges to  the minimal solution to  

•Support stability is determined by the minimal norm certificate.

pλ p0 D0(y)

One can compute a pre-certificate  in closed form and check its properties. 

•  implies stability is impossible. 

•  outside the support  and a pos-def/neg Hessian implies stability

ηV

∥ηV∥∞ > 1

|ηV(x) | < 1 {xi}i

Analysis of  has led to theoretical understanding of super-resolution and 
compressed sensing.

ηV
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